You throw a tennis ball straight up (neglect air resistance). It takes 7.0 seconds to go up and then return to your hand. How fast did you throw the ball?

Answers

Answer 1

Answer:

Velocity of throwing = 34.335 m/s

Explanation:

Time taken by the tennis ball to reach maximum height, t = 0.5 x 7 = 3.5 seconds.

Let the initial velocity be u, we have acceleration due to gravity, a = -9.81 m/s² and final velocity = 0 m/s

Equation of motion result we have v = u + at

Substituting

             0 = u - 9.81 x 3.5

             u = 34.335 m/s

Velocity of throwing = 34.335 m/s


Related Questions

wo charged spheres are 1.5 m apart and are exerting an electrostatic force (Fo) on each other. If the charge on each sphere decreases by a factor of 9, determine (in terms of Fo) how much electrostatic force each sphere will exert on the other.

Answers

Answer:

F0 / 81

Explanation:

Let the two charges by Q and q which are separated by d.

By use of coulomb's law

F0 = k Q q / d^2      ......(1)

Now the charges are decreased by factor of 9.

Q' = Q / 9

q' = q / 9                 ......(2)

Now the Force is

F' = k Q' q' / d^2

F' = k (Q /9) (q / 9) / d^2

F' = k Q q / 81d^2

F' = F0 / 81      

What is the change in electric potential energy in moving an electron from a location 3 × 10-10 m from a proton to a location 7 × 10-10 m from the proton? The result should be in joules, with an appropriate sign.

Answers

Answer:

4.39 x 10^-19 J

Explanation:

q1 = 1.6 x 10^-19 C

q2 = - 1.6 x 10^-19 C

r1 = 3 x 10^-10 m

r2 = 7 x 10^-10 m

The formula for the potential energy is given by

U1 = k q1 q2 / r1 = - (9 x 10^9 x 1.6 x 10^-19 x 1.6 x 10^-19) / (3 x 10^-10)

U1 = - 7.68 x 10^-19 J

U2 = k q1 q2 / r2 = - (9 x 10^9 x 1.6 x 10^-19 x 1.6 x 10^-19) / (7 x 10^-10)

U2 = - 3.29 x 10^-19 J

Change in potential energy is

U2 - U1 = - 3.29 x 10^-19 + 7.68 x 10^-19 = 4.39 x 10^-19 J

Final answer:

The change in electric potential energy is calculated using the formula ΔU = kq1q2/r, with the distances and charges plugged into the formula, resulting in a negative value, indicating a decrease in potential energy.

Explanation:

The change in electric potential energy when moving an electron from 3 × 10-10 m to 7 × 10-10 m from a proton can be calculated using the formula for the potential energy between two charges: ΔU = kq1q2/r. Plugging in the constants and distances, we have ΔU = k(-e)(+e)(1/7 × 10-10 - 1/3 × 10-10) where k is the Coulomb's constant (8.987 × 109 Nm2/C2) and e is the elementary charge (1.602 × 10-19 C).

The result, calculated in joules, will be negative, signifying that the electron is moving to a region of lower potential energy as it moves away from the proton.

The electrostatic force between two charges is 1.8 × 10–6 N when q1 = q2; that is, when the charges are equal in magnitude. If the magnitude of q1 only is now doubled, what happens to the force between them if the distance between them is not changed?

Answers

Answer:

Doubled

Explanation:

F = 1.8 x 10^-6 N, q1 = q2

The force between the two charges is directly proportional to the product of two charges and inversely proportional to the square of distance between them.

Now one of the charge is doubled but the distance remains same so the force between the two charges becomes doubled.

Copper has a modulus of elasticity of 110 GPa. A specimen of copper having a rectangular cross section 15.2 mm × 19.1 mm is pulled in tension with 44,500 N force, producing only elastic deformation. Calculate the resulting strain.

Answers

Answer:

[tex]strain = 1.4 \times 10^{-3} [/tex]

Explanation:

As we know by the formula of elasticity that

[tex]E = \frac{stress}{strain}[/tex]

now we have

[tex]E = 110 GPA[/tex]

[tex]E = 110 \times 10^9 Pa[/tex]

Area = 15.2 mm x 19.1 mm

[tex]A = 290.3 \times 10^{-6}[/tex]

now we also know that force is given as

[tex]F = 44500 N[/tex]

here we have

stress = Force / Area

[tex]stress = \frac{44500}{290.3 \times 10^{-6}}[/tex]

[tex]stress = 1.53 \times 10^8 N/m^2[/tex]

now from above formula we have

[tex]strain = \frac{stress}{E}[/tex]

[tex]strain = \frac{1.53 \times 10^8}{110 \times 10^9}[/tex]

[tex]strain = 1.4 \times 10^{-3} [/tex]

Part C Suppose 1 kg each of water (4.19 J/(g ⋅ ∘C)), brick (0.90 J/(g ⋅ ∘C)), iron (0.46 J/(g ⋅ ∘C)), and olive oil (1.79 J/(g ⋅ ∘C)) were held at the same initial temperature and heated for an equivalent amount of time. Indicate their relative final temperatures from lowest (left) to highest (right). Assume no heat is lost to the surroundings. You can use the Intro tab of the PhET to help visualize the temperature changes. (Assume that the mas of the water, iron, and olive oil is 1 kg each and that the mass of the brick is 0.5 kg.) Rank from lowest resulting temperature to highest resulting temperature. To rank items as equivalent, overlap them. View Available Hint(s) ResetHelp IronWaterOlive oilBrick

Answers

Answer:

Water < Olive oil < Brick < Iron

Explanation:

The change in temperature may be calculated from the formula:

Q = m × C × ΔT ⇒ ΔT = Q / (m × C)

Where:

Q = amount of heat energy supplied (or released in case of cooling)

m = mass

C = specific heat (a different constant, property, for every matter)

ΔT = increase of temperatute (decrease when it is cooling)

Then, you can make these assumptions or inferences from the conditions stated in the problem:

Q is the same for all the matters because it is supplied by a external source, taking into account that all the substances are held the same time.

Initial temperature is the same for all the substances (given)

The mass is the same (1 kg each sample)

Then, you can state that, for those samples, ΔT = k / C, i.e. the increase in temperature is inversely related to the specific heat.

That means that the higher the specific heat the lower ΔT, and the lower the specific heat the higher ΔT.

The ranking in decrasing order of specific heat is:

Water (4.19) > Olive oil (1.79) > Brick (0.9) > Iron (0.46)

Ranking in increasing order of ΔT:

Water < Olive oil < Brick < Iron

And since all of them started at the same temperature, that is the ranking in resulting temperature from lowest to highest:

Water < Olive oil < Brick < Iron ← answer

That means that the sample of water, the matter with the highest specific heat capacity (4.19 J/g°C), will reach the lowest temperature, and the sample of iron, the matter with the lowest heat capacity (0.46 J/g°C) will reach the highest temperature.

A car battery has a rating of 270 ampere-hours. This rating is one indication of the total charge that the battery can provide to a circuit before failing. (a) What is the total charge (in coulombs) that this battery can provide? (b) Determine the maximum current that the battery can provide for 42 minutes.

Answers

Answer:

Part a)

charge through the battery is

[tex]Q = 9.72 \times 10^5 C[/tex]

Part b)

Maximum current is

i = 386 A

Explanation:

Part a)

As we know that the rating of battery is given as

[tex]R = 270 A h[/tex]

here we also know that the charge given by the battery is same as the capacity of the battery

so we will have

[tex]Q = i t[/tex]

[tex]Q = (270 A)(3600 s)[/tex]

[tex]Q = 9.72 \times 10^5 C[/tex]

Part b)

Now we know that current in the wire is given by

[tex]i = \frac{Q}{t}[/tex]

now plug in all values in it

[tex]i = \frac{9.72 \times 10^5}{42\times 60}[/tex]

[tex]i = 386 A[/tex]

A bullet of mass 0.093 kg traveling horizontally at a speed of 100 m/s embeds itself in a block of mass 2.5 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block?

Answers

Explanation:

It is given that,

Mass of the bullet, m₁ = 0.093 kg

Initial speed of bullet, u₁ = 100 m/s

Mass of block, m₂ = 2.5 kg

Initial speed of block, u₂ = 0

We need to find the speed of the block after the bullet embeds itself in the block. Let it is given by V. On applying the conservation of linear momentum as :

[tex]m_1u_1+m_2u_2=(m_1+m_2)V[/tex]

[tex]V=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}[/tex]

[tex]V=\dfrac{0.093\ kg\times 100\ m/s+0}{(0.093\ kg+2.5\ kg)}[/tex]

V = 3.58 m/s

So, the speed of the bullet is 3.58 m/s. Hence, this is the required solution.

A spring has a natural length of 28 cm. If a 27-N force is required to keep it stretched to a length of 32 cm, how much work W is required to stretch it from 28 cm to 30 cm? (Round your answer to two decimal places.) W = 13.5 Incorrect: Your answer is incorrect. J

Answers

Answer:

0.14 J

Explanation:

Use the force to calculate the spring constant.

F = k Δx

27 N = k (0.32 m − 0.28 m)

k = 675 N/m

Work is the change in energy:

W = PE

W = ½ k (Δx)²

W = ½ (675 N/m) (0.30 m − 0.28 m)²

W = 0.135 Nm

W = 0.135 J

Rounding to two decimal places, W = 0.14 J.

Your answer was correct, but it was in units of Ncm, and you needed to answer in units of J.

Final answer:

The work done to stretch the spring from 28 cm to 30 cm is 39.00 Joules, computed using the principles of Hooke's Law and the concept of work done.

Explanation:

In this problem, we are dealing with the concept of work done on a spring, which falls under Physics principles. Hooke's Law states that the force to compress or extend a spring by a distance x from its natural length is proportional to x. It can be written as F = kx, where F is the force, k is the spring constant, and x is the distance.

In this case, the force (F) is 27 N, and the length of stretch (x) is 32 cm - 28 cm = 4 cm. We can find the spring constant (k) using the formula k = F / x = 27 N / 4 cm = 6.75 N/cm.

The work done (W) to stretch the spring from 28 cm to 30 cm is the area under the force/displacement graph from '28 cm' to '30 cm'. Since the force is linear with displacement for a spring, this area can be found using the formula for the area of a trapezoid: W = ½ (F1 + F2) x d. F1 is the initial force (k*28 cm), F2 is the final force (k*30 cm), and d is the displacement (30 cm - 28 cm). Substituting the values, W = ½ [(6.75 N/cm*28 cm)+(6.75 N/cm*30 cm)]*(2 cm) = 39.00 J.

Learn more about Work Done here:

https://brainly.com/question/35917320

#SPJ2

A Galilean telescope with two lenses spaced 30 cm apart has an objective of 50 cm focal length. (i) What is the focal length of the eyepiece? (ii) What is the magnification of the telescope? Assume the object to be very far away. (iii) What must be the separation between the two lenses when the subject being viewed is 30 m away? Assume the viewing is done with a relaxed eye.

Answers

Answer:

i think 7

Explanation:

1/32nd of a radioactive element's atoms remain in a lunar rock sample. How many half lives old is the rock?

A. 1

B. 2

C. 3

D. 4

E. 5

Answers

Answer:

E. 5

Explanation:

N₀ = initial total number of radioactive elements number

N = Number of atoms of radioactive element after "n" half lives = N₀ /32

n = number of half lives

Number of atoms of radioactive element after "n" half lives is given as

[tex]N = N_{o}\left ( \frac{1}{2} \right )^{n}[/tex]

inserting the values

[tex]\frac{N_{0}}{32} = N_{o}\left ( \frac{1}{2} \right )^{n}[/tex]

[tex]\frac{1}{32} = \left ( \frac{1}{2} \right )^{n}[/tex]

n = 5

This exercise uses the radioactive decay model. After 3 days a sample of radon-222 has decayed to 58% of its original amount. (a) What is the half-life of radon-222? (Round your answer to two decimal places.) days (b) How long will it take the sample to decay to 15% of its original amount? (Round your answer to two decimal places.) days

Answers

Final answer:

The half-life of radon-222 is 3.82 days.

It take approximately 9.34 days for the sample to decay to 15% of its original amount.

Explanation:

To answer the student's question regarding the half-life of radon-222, we turn to the information provided which states that radon-222 (Rn-222) has a half-life of 3.823 days. Considering this data:

(a) The half-life of radon-222 is 3.82 days.

(b) To determine how long it will take for the sample to decay to 15% of its original amount, we can utilize the radioactive decay formula:

N(t)=N_0(1/2)^(t/T)

Where:

N(t) = remaining quantity after time t

N_0 = initial quantity

T = half-life of the substance

t = time elapsed

For radon-222, substituting N(t)/N_0 = 0.15 and T = 3.823 days into the formula and solving for t, we can generate an accurate answer. The calculation would reveal that it takes approximately 9.34 days for the sample to decay to 15% of its original amount.

If a 2 inch diameter rod is subjected to a centric tensile axial load of 15.71 kip, what is the average normal stress (ksi) to three significant figures?

Answers

Answer:

The average normal stress is 5 ksi.

Explanation:

Given that,

Diameter = 2 inch

Load = 15.71 kip

We need to calculate the average normal stress

Using formula of stress

Average normal stress [tex]\sigma =\dfrac{F}{A}[/tex]

Where, F = load

A = area

Put the value into the formula

[tex]\sigma=\dfrac{15.71}{\pi\times(\dfrac{2}{2})^2}[/tex]

[tex]\sigma = 5\ kip/inc^2[/tex]

[tex]\sigma=5\ ksi[/tex]

Hence, The average normal stress is 5 ksi.

A 20 m high filled water tank develops a 0.50 cm hole in the vertical wall near the base. With what speed does the water shoot out of the hole? a) 30 m/s
b)15 m/s
c) 25m/s
d) 20 m/s

Answers

Answer:

The speed of the water shoot out of the hole is 20 m/s.

(d) is correct option.

Explanation:

Given that,

Height = 20 m

We need to calculate the velocity

Using formula Bernoulli equation

[tex]\dfrac{1}{2}\rho v_{1}^2+\rho gh_{1}=\dfrac{1}{2}\rho v_{2}^2+\rho gh_{2}[/tex]

Where,

v₁= initial velocity

v₂=final velocity

h₁=total height

h₂=height of the hole from the base

Put the value into the formula

[tex]v_{1}^2=2g(h_{2}-h_{1})[/tex]

[tex]v_{1}=\sqrt{2g(h_{2}-h_{1})}[/tex]

[tex]v_{1}=\sqrt{2\times9.8\times(20-0.005)}[/tex]

[tex]v_{1}=19.7\ m/s= approximate\ 20\ m/s[/tex]

Hence, The speed of the water shoot out of the hole is 20 m/s.

Why do we use the two-body problem to solve interplanetary trajectories, instead of including all of the appropriate gravitational forces that actually apply?

Answers

Answer:

ur mom

hsheu7shrbrjxbfbbrndnifidfjf

Rank these temperatures from hottest to coldest: 32° F,32° C, and 32 K 320 F> 32° C>32 K 32°C 32° F 32 K 32° F 32 K 32° c 32° F 32° c 32 K 32° C 32° F 32 K All are the same temperature

Answers

Answer:

32 C > 32 F > 32 K

Explanation:

32 F, 32 C, 32 K

Let T1 = 32 F

T2 = 32 C

T3 = 32 K

Convert all the temperatures in degree C

The relation between F and C is given by

(F - 32) / 9 = C / 100

so, (32 - 32) / 9 = C / 100

C = 0

So, T1 = 32 F = 0 C

The relation between c and K is given by

C = K - 273 = 32 - 273 = - 241

So, T3 = 32 K = - 241 C

So, T 1 = 0 C, T2 = 32 c, T3 = - 241 C

Thus, T2 > T1 > T3

32C > 32 F > 32 K

A billiard ball moving at 6.00 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 5.21 m/s at an angle of 29.7° with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck ball's velocity after the collision.

Answers

Answer:

Velocity is 3.11 m/s at an angle of -56° with respect to the original line of motion.

Explanation:

Let line of action be horizontal axis , mass of ball be m and unknown velocity be v.

Here momentum is conserved.

Initial momentum =Final momentum

Initial momentum = m x 6i + m x 0i = 6m i

Final momentum = m x (5.21cos 29.7 i + 5.21sin 29.7 j) + m x v = 4.26 m i + 2.58 m j + m v

4.26 m i + 2.58 m j + m v = 6m i

v = 1.74 i - 2.58 j

Magnitude of velocity [tex]=\sqrt{1.74^2+(-2.58)^2}=3.11m/s[/tex]

Direction,

         [tex]\theta =tan^{-1}\left ( \frac{-2.58}{1.74}\right )=--56^0[/tex]

Velocity is 3.11 m/s at an angle of -56° with respect to the original line of motion.

The maximum potential energy of a spring system (mass 15 kg, spring constant 850 N/m) is 6.5 J. a) What is the amplitude of the oscillation? b) What is the maximum speed? c) Setting φ = 0, write the equation for the potential energy as a function of time.

Answers

Answer:

a) 0.124 m

b) 0.93 ms⁻¹

c) 0.5 k A² cos ² ( ωt )  

Explanation:

1) Potential energy = U = 0.5 k A² , where A is the amplitude and k = 850 N/m is the spring constant.

0.5 ( 850) (A² ) = 6.5

⇒ A = 0.124 m = Amplitude.

b) From energy conservation,  0.5 m v² =  6.5

⇒ speed = v = 0.93 ms⁻¹

c) If x = A cos ωt ,

Potential energy = 0.5 k A² = 0.5 k A² cos ² ( ωt )  

A 5601 turn, 9.1 cm long solenoid carries a current of 18.2 Amperes. What is the magnetic field inside this solenoid?

Answers

Answer:

Magnetic field = 1.41 T

Explanation:

Magnetic field of solenoid, B = μnI

μ = 4π x 10⁻⁷N/A²

Number of turns per meter, [tex]n=\frac{N}{L}=\frac{5601}{9.1\times 10^{-2}}=6.15\times 10^4turns/m[/tex]

Current, i = 18.2 A

B = μnI = 4π x 10⁻⁷ x 6.15 x 10⁴ x 18.2 = 1.41 T

Magnetic field = 1.41 T

(a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/ s?

Answers

Answer:

1.4719 m per sec

Explanation:

Hello

Kinetic energy is the energy associated with the movement of objects. Although there are many forms of kinetic energy  

the formula to use is

[tex]E=\frac{mv^{2} }{2}[/tex]

where m is the mass of the object and v the velocity

lets see the kinetic energy of the sprinter running

[tex]E=\frac{65 Kg*10(\frac{m}{s} ^)){2} }{2} \\\\E=\frac{65 *100 }{2} \\E=3250 Joules\\\\[/tex]

Now, the elephant must have the same kinetic energy

[tex]E=\frac{m*v_{2} ^{2} }{2} \\\\E*2=m*v_{2} ^{2}\\ \frac{2E}{m} =v_{2} ^{2} \\\sqrt{\frac{2E}{m} } =v_{2}  \\\\\\v_{2} =\sqrt{\frac{2*3250}{3000} }\\ \\v_{2} =1.4719 \frac{m}{s} \\\\[/tex]

it works only the positive root, so the elephant must to  walk  to 1.4719 m/s to have the same kinetic energy.

Have a great day

Final answer:

A 3000-kg elephant needs to move at a speed of approximately 1.183 m/s to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s.

Explanation:

The subject of the question falls into the category of physics, specifically dealing with the concept of kinetic energy and motion. Kinetic energy is given by the equation KE = 1/2 m v², where m is the mass and v is the velocity of the object. In this case, we want the elephant and the sprinter to have the same kinetic energy.

To find the velocity at which the elephant must move, we set the kinetic energy of the elephant (1/2 * 3000 kg * v²) equal to the kinetic energy of the sprinter (1/2 * 65.0 kg * (10.0 m/s)²) and solve for v (velocity of the elephant).

This gives us v = sqrt((1/2 * 65 kg * (10 m/s)²) / (1/2 * 3000 kg)) = 1.183 m/s. Therefore, a 3000-kg elephant must move at a speed of approximately 1.183 m/s to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s.

Learn more about Kinetic Energy here:

https://brainly.com/question/26472013

#SPJ11

Which of the following statements is representative of the second law of thermodynamics? Heat represents a form of energy that can be used by most organisms to do work. Conversion of energy from one form to another is always accompanied by some gain of free energy. Cells require a constant input of energy to maintain their high level of organization. Without an input of energy, organisms would tend toward decreasing entropy. Every energy transformation by a cell decreases the entropy of the universe.

Answers

Answer: Cells require a constant input of energy to maintain their high level of organization.

Explanation:

According to the second principle of thermodynamics:

"The amount of entropy in the universe tends to increase over time ".

That is, in any cyclic process, entropy will increase, or remain the same.

So, in this context, entropy is a thermodynamic quantity defined as a criterion to predict the evolution or transformation of thermodynamic systems. In addition, it is used to measure the degree of organization of a system.  

In other words: Entropy is the measure of the disorder of a system and is a function of state.

Now, in the specific case of cells, in order to maintain their high level of organization, which goes against the natural tendency to disorder, a constant input of energy is necessary to maintain that level.

The Second Law of Thermodynamics explains how energy transfers result in some energy being lost in unusable forms, such as heat energy.

The Second Law of Thermodynamics states that in every energy transfer, some amount of energy is lost in a form that is unusable, often in the form of heat energy. This principle explains why energy transfers are never completely efficient, leading to increased disorder or entropy in the universe.

In introductory physics laboratories, a typical Cavendish balance for measuring the gravitational constant G uses lead spheres with masses of 1.60 kg and 16.0 g whose centers are separated by about 4.00 cm. Calculate the gravitational force between these spheres, treating each as a particle located at the center of the sphere.

Answers

Answer:

[tex]1.0672\times 10^{-9}N[/tex]

Explanation:

[tex]G[/tex] = Gravitational constant = 6.67 x 10⁻¹¹

[tex]F[/tex]  = Gravitational force between these spheres

[tex]m_{1}[/tex] = mass of first sphere = 1.60 kg

[tex]m_{2}[/tex]  = mass of second sphere = 16 g = 0.016 kg

[tex]r[/tex]  = distance between the centers of the sphere = 4 cm = 0.04 m

Gravitational force between these spheres is given as

[tex]F = \frac{Gm_{1}m_{2}}{r^{2}}[/tex]

[tex]F = \frac{(6.67\times 10^{-11})(1.60)(0.016)}{0.04^{2}}[/tex]

[tex]F = 1.0672\times 10^{-9}N[/tex]

A sample of chloroform is found to contain 12.0 g of carbon, 106.4 g of chlorine, and 1.01 g of hydrogen. If a second sample of chloroform is found to contain 30.0 g of carbon, what is the total mass of chloroform in the second sample?

Answers

Final answer:

To find the total mass of chloroform in the second sample, the mass of carbon is scaled proportionally to find the corresponding masses of hydrogen and chlorine. By summing these, the total mass of chloroform is calculated to be 298.525 grams.

Explanation:

To determine the total mass of chloroform in the second sample, we must first understand that chloroform has a known molecular formula of CHCl3. Given that the first sample contains 12.0 g of carbon, 106.4 g of chlorine, and 1.01 g of hydrogen, we can deduce the mass ratios of the elements within chloroform. Using the molecular mass of chloroform, which is 119.37 g/mol, we can calculate the masses of hydrogen and chlorine in the second sample based on the given mass of carbon.

For the second sample: If 12.0 g of carbon is accompanied by 1.01 g of hydrogen and 106.4 g of chlorine, then 30.0 g of carbon should be accompanied by:

Hydrogen: (1.01 g H / 12.0 g C) × 30.0 g C = 2.525 g HChlorine: (106.4 g Cl / 12.0 g C) × 30.0 g C = 266.0 g Cl

Thus, the total mass of chloroform in the second sample would be the sum of the masses of carbon, hydrogen, and chlorine: 30.0 g C + 2.525 g H + 266.0 g Cl = 298.525 g of chloroform.

What is the work of the force F (6.0N)(4.0N)j(-2.0N)k when the object moves from an initial point with coordinates (1.5 m, 3.0m, -4.5 m) to a final point with coordinates (4.0m, -2.5 m, -3.0m)? (Answer: C) (d) 35.J (a) 35J (b) 10J (c) - 10J (e) Can not tell since the path along which the object moves is not identified.

Answers

Answer:

option (c) - 10 j

Explanation:

F = (6 i + 4 j - 2 k) N

r1 = (1.5, 3, -4.5) m = (1.5 i + 3j - 4.5 k) m

r2 = (4, -2.5, - 3) m = (4 i - 2.5 j - 3 k) m

displacement, r = r2 - r1 = ( 2.5 i - 5.5 j + 1.5 k) m

Work done is defined as the dot product of force vector and teh displacement vector.

[tex]W = \overrightarrow{F}.\overrightarrow{r}[/tex]

W = (6 i + 4 j - 2 k) . ( 2.5 i - 5.5 j + 1.5 k)

W = 15 - 22 - 3 = - 10 J

A series circuit consists of a 50-Hz ac source, a 40-Ω resistor, a 0.30-H inductor, and a 60-μF capacitor. The rms current in the circuit is measured to be 1.6 A. What is the power factor of the circuit?

Answers

Answer:

0.7

Explanation:

f = 50 hz, R = 40 ohm, L = 0.3 h, C = 60 uC = 60 x 10^-6 c

XL = 2 x 3.14 x f x L = 2 x 3.14 x 50 x 0.3 = 94.2 ohm

Xc = 1 / ( 2 x 3.14 x 50 x 60 x 10^-6) = 53.078 ohm

Impedance is Z.

Z^2 = R^2 + ( XL - Xc)^2

Z^2 = 40^2 + (94.2 - 53.078)^2

Z^2 = 1600 + 1691.019

Z = 57.37 ohm

The power factor is given by

CosФ = r / Z = 40 / 57.37 = 0.697 = 0.7

Final answer:

The power factor of a circuit is the ratio of real power to apparent power and is calculated by the cosine of the phase angle between voltage and current. With the information given, we cannot calculate the power factor of the RLC series circuit because the rms voltage of the source is required but not provided.

Explanation:

The power factor of a circuit represents the cosine of the phase angle between the voltage and the current in an AC circuit. In an RLC circuit, like the one described, the power factor can be calculated by dividing the real power (measured in watts) by the apparent power (volt-amps). To find the power factor, we need to first calculate the impedance (Z) of the circuit using the formula Z = √(R² + (XL - XC)²), where XL is the inductive reactance and XC is the capacitive reactance.

Inductive reactance (XL) is given by XL = 2πfL, and capacitive reactance (XC) by XC = 1/(2πfC). Since we know that f = 50 Hz, L = 0.30 H,  and C = 60 μF, we can calculate XL and XC. Substituting R for the resistance in the circuit, we can find the impedance. After finding the impedance, we can calculate the real power (P) using P = I²R, where I is the rms current.

From the real power and the apparent power, which is IZ, we can find the power factor by calculating P/(IZ). However, we need the actual values of all elements, including the voltage, to complete these calculations. With the information provided in the question, we can't calculate the power factor because the rms voltage of the source isn't given.

Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the track is a turn with a radius of approximately 57.0 m57.0 m . If the track is completely flat and the race car is traveling at a constant 31.5 m/s31.5 m/s (about 7.0×101 mph7.0×101 mph ) around the turn, what is the race car's centripetal (radial) acceleration?

Answers

Answer:

Centripetal acceleration of the car is 17.4 m/s²

Explanation:

It is given that,

Radius of the track, r = 57 m

Speed of car, v = 31.5 m/s

We need to find the centripetal acceleration of the race car. The formula for the centripetal acceleration is given by :

[tex]a=\dfrac{v^2}{r}[/tex]

[tex]a=\dfrac{(31.5\ m/s)^2}{57\ m}[/tex]

[tex]a=17.4\ m/s^2[/tex]

So, the centripetal acceleration of the race car is 17.4 m/s². Hence, this is the required solution.

A potter's wheel, with rotational inertia 49 kg·m2, is spinning freely at 40 rpm. The potter drops a lump of clay onto the wheel, where it sticks a distance 1.2 m from the rotational axis. If the subsequent angular speed of the wheel and clay is 32 rpm what is the mass of the clay?

Answers

Answer:

8.5 kg

Explanation:

Angular momentum is conserved.

I₁ ω₁ = I₂ ω₂

I ω₀ = (I + mr²) ω

(49 kg m²) (40 rpm) = (49 kg m² + m (1.2 m)²) (32 rpm)

61.25 kg m² = 49 kg m² + (1.44 m²) m

m = 8.5 kg

The mass of the clay is 8.5 kg.

BRAIN BURNER! You observe a hockey puck of mass 0.13 kg, traveling across the ice at speed 17.4 m/sec. The interaction of the puck and the ice results in a frictional force on the puck, f = 0.15 N. Calculate: the stopping distance for this puck. Type in the numeric part of your answer to the nearest 0.1 m of stopping distance. E.g., if your answer works out to be 2.337 m, then type 2.3 in the answer box. Note: this brain burner calculation puts together

Answers

The distance at which the puck of mass 0.13 kg, traveling across the ice at speed 17.4 m/sec will stop is 131.2 meters.

Given to us

Mass of the puck, m = 0.13kg

The velocity of the ice, u = 17.4 m/sec

Friction force, f = 0.15 N

What is the final velocity of the puck?

We know we want to stop the puck, therefore, the final velocity of the puck will be 0.

v = 0

What is the deceleration of the puck?

We know that according to the first law of motion,

Force = mass x acceleration

F = m x a

Substitute the value,

[tex]0.15 = 0.13 \times a[/tex]

[tex]a = 1.1538\rm\ m/s^2[/tex]

As we know that the final velocity of the puck will be 0, therefore, there will be a deceleration in the puck.

a = -1.1538 m/s².

Thus, the acceleration of the ice puck is -1.1538 m/s².

What is the stopping distance for this puck?

We know that according to the third equation of the motion,

[tex]v^2-u^2 = 2as[/tex]

substitute the values,

[tex]0^2-(17.4)^2 = 2(-1.1538)s[/tex]

s = 131.2012 = 131.2 meters

Hence, the distance at which the puck of mass 0.13 kg, traveling across the ice at speed 17.4 m/sec will stop is 131.2 meters.

Learn more about Equation of Motion:

https://brainly.com/question/5955789

Final answer:

The stopping distance of a hockey puck  is 131.1 m after rounding to the nearest tenth of a meter.

Explanation:

To calculate the stopping distance of a hockey puck, we first need to determine the deceleration caused by the frictional force.

The formula for deceleration due to friction is a = f/m, where a is the acceleration (deceleration, in this case, as it's negative), f is the frictional force, and m is the mass of the puck. Given that the frictional force f is 0.15 N and the mass m of the puck is 0.13 kg, we can calculate the deceleration as follows:

a = f/m = 0.15 N / 0.13 kg ≈ 1.15 m/s2

Now, to find the stopping distance we can use the formula d = v2 / (2×a), where d is the stopping distance, v is the initial speed, and a is the deceleration. Plugging in the initial speed v = 17.4 m/s and the deceleration a = 1.15 m/s2, we get:

d = (17.4 m/s)2 / (2 × 1.15 m/s2) ≈ 131.06 m

To round to the nearest 0.1 m, the stopping distance of the puck is 131.1 m.

n ice skater has a moment of inertia of 5.0 kg-m2 when her arms are outstretched. At this time she is spinning at 3.0 revolutions per second (rps). If she pulls in her arms and decreases her moment of inertia to 2.0 kg-m2, how much work will she have to do to pull her arms in?

Answers

Answer:

2440.24 J

Explanation:

Moment of inertia, I1 = 5 kg m^2

frequency, f1 = 3 rps

ω1 = 2 x π x f1 = 2 x π x 3 = 6 π rad/s

Moment of inertia, I2 = 2 kg m^2

Let the new frequency is f2.

ω2 = 2 x π x f2

here no external torque is applied, so the angular momentum remains constant.

I1 x ω1 = I2 x ω2

5 x 6 π = 2 x 2 x π x f2

f2 = 7.5 rps

ω2 = 2 x π x 7.5 = 15 π

Initial kinetic energy, K1 = 1/2 x I1 x ω1^2 = 0.5 x 5 x (6 π)² = 887.36 J

Final kinetic energy, K2 = 1/2 x I2 x ω2^2 = 0.5 x 3 x (15 π)² = 3327.6 J

Work done, W = Change in kinetic energy = 3327.6 - 887.36 = 2440.24 J

How much heat is required to convert 0.3 kilogram of ice at 0°C to water at the same temperature? A. 334,584 J B. 167,292 J C. 100,375 J D. 450,759 J

Answers

Answer:

Option C is the correct answer.

Explanation:

Heat required to melt solid in to liquid is calculated using the formula

            H = mL, where m is the mass and L is the latent heat of fusion.

Latent heat of fusion for water = 333.55 J/g

Mass of ice = 0.3 kg = 300 g

Heat required to convert 0.3 kilogram of ice at 0°C to water at the same temperature

          H = mL = 300 x 333.55 = 100,375 J

Option C is the correct answer.

Determine the COP. for this thermodynamic refrigerator

Answers

Answer:

Explanation:

The efficiency of a refrigerator is defined in the terms of coefficient of performance (COP).

The ratio of amount of heat in cold reservoir to the work done is termed as the COP.

COP = QL / W

COP = T2 / (T1 - T2)

Where, T1 be the temperature of hot reservoir, T2 be the temperature of cold reservoir.

Other Questions
If an electric field is defined as E = Q/r2 what would be the equivalent gravitation field equation? Which of the following is a polynomial function in factored form with zeros at -6, -2, and 3? Name the site of production of the following hormone:a. Glucagon b. Cortisol c. Calcitonind. TSH e. GHRH f. Insulin g. Oxytocin The study of plate boundaries and the frequency of past earthquakes in order to forecast earthquakes is known asThe study of plate boundaries and the frequency of past earthquakes in order to forecast earthquakes is known aspaleoseismology.dilatancy.moment magnitude.paleontology.geodesy. If the perturbation is a constant potential, how many terms are needed for an exact solution? a)Infinite b)One c)It depends on the nature of the system. d)Zero e)Two How many grams of Fe3O4 are required to react completely with 69.76 grams of H2? Help me thank youFind the value of y.m1 = 3y 6a: 32b: 13c: 28d: 26 ____ cookies are cookies placed on your hard drive by a company other than the one associated with the Web page that you are viewingtypically a Web advertising company. Please help me I just want to finish this so I can go to sleep.Which functions could be represented by the graph? Check all that apply. f(x) = | x + 0.14|f(x) = |x| + 1.3f(x) = |x 7|f(x) = |x + 12|f(x) = |x| 17f(x) = |x 23| f 23.2 grams of an aqueous solution of nickel(II) iodide, NiI2, contains 5.47 grams of nickel(II) iodide, what is the percentage by mass of nickel(II) iodide in the solution? Astro Co. sold 20,500 units of its only product and incurred a $67,750 loss (ignoring taxes) for the current year as shown here. During a planning session for year 2018s activities, the production manager notes that variable costs can be reduced 40% by installing a machine that automates several operations. To obtain these savings, the company must increase its annual fixed costs by $155,000. The maximum output capacity of the company is 40,000 units per year. ASTRO COMPANY Contribution Margin Income Statement For Year Ended December 31, 2017 Sales $ 779,000 Variable costs 584,250 Contribution margin 194,750 Fixed costs 262,500 Net loss $ (67,750 ) Required: 1. Compute the break-even point in dollar sales for year 2017. (Round your answers to 2 decimal places.) A flower 3 in. tall grows an average of 1.5 in. each month. Which equation models the flowers height h after x months?3 = x + 1.5h = 3x + 1.5h = 1.5x + 31.5 = x + 3 If you add 10 J of heat to a system so that the final temperature of the system is 200K, what is the change in entropy of the system? a)-0.05 J/K b)-0.30 J/k c)-1 J/K d)-9 J/K e)-2000 J/K Which enzyme breaks the hydrogen bonds during replication? 5 friends are going on a 3 kilometer hike. Each person is going to lead the group for an equal distance of their hike. How many kilometers should each person lead? Common stock value: Constant growth The common stock of Barr Labs Inc., trades for $120 per share. Investors expect the company to pay a(n) $1.37 dividend next year, and they expect that dividend to grow at a constant rate forever. If investors require a(n) 15.8% return on this stock, what is the dividend growth rate that they are anticipating? Please help me I don't know how to do these at all. TIME REMAINING59:48e SunWhich phrases from the passages best support the themethat racism can be subtle? Select three options."a common background""their own communities""some elements"ning majority ofalong better, takethe community,8. I want you toejudice simplye people ofcongly, as I say, thatat our Negro familiesvn communities- gesture): This,"all the energy of the dead""You had a caller" . A 2150-kg truck is traveling along a straight, level road at a constant speed of 55.0 km/h when the driver removes his foot from the accelerator. After 21.0 s, the truck's speed is 33.0 km/h. What is the magnitude of the average net force acting on the truck during the 21.0 s interval? If 20 is added to the number, the absolute value of the result is 6.