You watch distant Sally Homemaker driving nails into a front porch at a regular rate of 1 stroke per second. You hear the sound of the blows exactly synchronized with the blows you see. And then you hear one more blow after you see the hammering stop. Calculate the distance of Sally from you.

Answers

Answer 1

Answer:

343m

Explanation:

From the question Sally hits one blow every second

However, the sound is delayed by that same amount of time (1 sec)

If the speed of sound is 343m/s

Speed = Distance/Time

Speed = 343m/s

Time = 1s

Distance = Speed x Time

= 343 x 1 = 343m


Related Questions

A 66.0−kg short-track ice skater is racing at a speed of 10.0 m/s when he falls down and slides across the ice into a padded wall that brings him to rest. Assuming that he doesn't lose any speed during the fall or while sliding across the ice, how much work is done by the wall while stopping the ice skater?

Answers

Answer:

3300J

Explanation:

Work done is the energy that is lost by the skater

Formula for workdone = 1/2*mV^2

m = 66kg

V = 10m/s

Work done = 1/2 * 66 * 10^2

= 3300J

The work done by the wall to stop a 66.0-kg ice skater moving at 10.0 m/s is calculated using the work-energy theorem and is found to be 3300 joules.

The student is asking how much work is done by the wall to stop a 66.0-kg ice skater who is moving at a speed of 10.0 m/s. To solve this, we can use the work-energy theorem, which states that the work done on an object is equal to the change in its kinetic energy. Since the skater is coming to rest, the final kinetic energy is 0. The initial kinetic energy can be calculated using the equation KE = 0.5 × m × v^2, where m is the mass and v is the velocity. After plugging in the values, we get KE = 0.5 × 66.0 kg × (10.0 m/s)^2 = 3300 J. Therefore, the padded wall does 3300 joules of work to bring the skater to rest.

During heavy exercise, the body pumps 2.00 L of blood per minute to the surface, where it is cooled by 2.00ºC . What is the rate of heat transfer from this forced convection alone, assuming blood has the same specific heat as water and its density is 1050 kg/m

Answers

Answer:

-293 W

Explanation:

mass = density * volume = 1050 kg/m^3   *  0.002 m^3/min = 2.1 kg/min

Heat transferred = mass * specific heat capacity * change in temperature

                            = mcΔT

                            = 2.1 kg/min * 4186 J/kg-°C * -2 °C

                            = -17 581.2 kJ/min

                            = -17 581.2 kJ/60s

                            = -293 J/s

                            =  -293 W

The negative sign shows us that the heat is being given off the blood

A football is kicked straight up from a height of 5 feet with an initial speed of 55 feet per second. The formula h equals negative 16 t squared plus 55 t plus 5 describes the​ ball's height above the​ ground, h, in​ feet, t seconds after it was kicked. How long will it take for the football to hit the​ ground?

Answers

Answer:

3.53 second

Explanation:

The formula for the height is

[tex]h=-16t^{2}+55t+5[/tex]

When it hits the ground, the height is zero.

So, put h = 0 in the above equation

[tex]0=-16t^{2}+55t+5[/tex]

[tex]16t^{2}-55t-5=0[/tex]

[tex]t=\frac{+55\pm \sqrt{55^{2}+4\times 5\times 16}}{2\times 16}[/tex]

[tex]t=\frac{+55\pm 57.84}{2\times 16}[/tex]

Take positive sign

t = 3.53 second.

Thus, the time taken to hit the ground is 3.53 second.

A rubber ball and a lump of putty have equal mass. They are thrown with equal speed against a wall. The ball bounces back with nearly the same speed with which it hit. The putty sticks to the wall. Which objects experiences the greater momentum change?

Answers

Answer:

The rubber ball

Explanation:

In order to understand this, let's begin with the fact that momentum it's a vector quantity that has mass, sense, direction and a numerical value.

Now, we have the ball and the putty, in both hands. Both of them, has the same mass, let's say they have a mass of 20 g each.

In this point, you throw both balls against the wall, and they have a speed of 10 m/s (I'm assuming these values); from the moment that you let go the balls, they are both have a momentum, and as they have the same speed and mass, the momentum it's the same for both of them.

Now, they hit the wall. The putty sticked to the wall, so it's movement finished. At this point it's momentum becomes zero. Even though it still has mass, but it's not moving, so momentum equals zero here. However, inthe ball bounces back to you, at this point, the ball even with a reduced speed, it still has a momentum, so, it's greater than the one that the putty has because it becomes zero. Therefore, the ball has a greater change in momentum.

A person exerts a horizontal force of 190 n in the test apparatus shown in the figure. Find the horizontal force that his flexor muscle exerts on his forearm.

Answers

Answer:

Check explanation.

Explanation:

From the question, we know that The person exerted 190N, force on the flexor is unknown. Since, we don't have access to our diagram, we have to make one or two assumption; (1) that ba= 0.3 m, ac= 0.05.

Therefore, the horizontal force that his flexor muscle exerts on his forearm,F(flexor) = (190N) × (0.3m) / 0.05m.

The horizontal force that his flexor muscle exerts on his forearm,F(flexor) = 57 Nm/ 0.05 m.

The horizontal force that his flexor muscle exerts on his forearm,F(flexor) = 1140N.

Final answer:

Using principles of physics, specifically equilibrium, we know the force exerted by muscles can be greater than the load they support, especially when the load is distant from the joint. In the case of a 190 N horizontal force, the exact force of the flexor muscle can't be calculated without more information, but it's likely larger than 190 N.

Explanation:

To answer the student's question, we must refer to concepts in physics, specifically the principle of equilibrium and the analysis of free-body diagrams. Given that the student is trying to find the force that a person's flexor muscle exerts horizontally when the person exerts a horizontal force of 190 N.

As mentioned in the provided information, forces and tensions in muscles and joints can be quite substantial. In this scenario, the flexor muscle in the forearm is acting against the applied force to maintain balance or equilibrium. This can be seen in the free-body diagram where forces are broken down into their x- and y-components.

It's important to note that the force exerted by muscles can be far greater than the load they support, especially when the load is a considerable distance from the joint, as stated in the provided text snippet. This may be relevant when analyzing the muscle force in this scenario.

Unfortunately, without more specific details about the angles involved and the exact configuration of the arm and forearm in the test apparatus, we can't calculate the exact force exerted by the flexor muscle. However, we can say that it's likely to be substantially larger than the 190 N applied force, considering the principles discussed above.

Learn more about the Force exerted by muscles here:

https://brainly.com/question/22177536

#SPJ11

A wire of length 25.0 cm carrying a current of 4.21 mA is to be formed into a circular coil and placed in a uniform magnetic field B with arrow of magnitude 5.55 mT. Suppose the torque on the coil from the field is maximized.

Answers

Answer:

1.162 x 10^-7 Nm

Explanation:

length of wire, l = 25 cm

l = 2 π r

where, r is the radius of circular loop

25 = 2 x 3.14 x r

r = 3.98 cm

Magnetic field, B = 5.55 mT = 5.55 x 10^-3 T

Current, i = 4.121 mA = 4.21 x 10^-3 A

Torque, τ = i x A x B

τ = 4.21 x 10^-3 x 3.14 x 0.0398 x 0.0398 x 5.55 x 10^-3

τ = 1.162 x 10^-7  Nm

Thus, the maximum torque in the coil is 1.162 x 10^-7 Nm.

Two pendulums have identical periods. One has a slightly larger amplitude than the other, but both swing through small angles compared to vertical. Which of the following must be true of the pendulum that has the larger amplitude?
Check all that apply.
a) It has more mass than the other one.
b) It is longer than the other one.
c) It moves faster at the lowest point in its swing than the other one.
d) It has slightly more energy than the other one.

Answers

Answer:

It moves faster at the lowest point in its swing than the other one.

Final answer:

The pendulum with the larger amplitude has slightly more energy than the one with the smaller amplitude. However, the mass, length, and speed of the pendulum at the lowest point do not necessarily differ between the two.

Explanation:

The pendulum with the larger amplitude must have more energy than the one with the smaller amplitude. The amplitude of the pendulum is directly related to the maximum displacement from the equilibrium position. The greater the amplitude, the greater the potential energy stored in the pendulum. Therefore, option d) It has slightly more energy than the other one is true for the pendulum with the larger amplitude.

However, the mass and length of the pendulum do not affect the amplitude of the pendulum. Therefore, options a) It has more mass than the other one and b) It is longer than the other one are not necessarily true.

Regarding the motion of the pendulum at the lowest point in its swing, both pendulums have the same period or time taken to complete one oscillation. This means that both pendulums have the same time to travel from the highest point to the lowest point. Therefore, option c) It moves faster at the lowest point in its swing than the other one is not true as both pendulums have the same speed at the lowest point in their swing.

a 74.9 kg person sits at rest on an icy pond holding a 2.44 kg physics book. he throws the physics book west at 8.25 m/s. what is his recoil velocity? PLEASE HELP ME

Answers

Answer:

His recoil velocity is 0.269 m/s to the East

Explanation:

This question is easily solved by using the law of conservation of linear momentum.

The formula for the momentum is

[tex]Mo = mv[/tex]

, where m is the mass and v its speed.

The person + the book are at rest which means their momentum is  

[tex]Mo_0=0[/tex]

After the book is released, they both start to move and their combined momentum is

[tex]Mo_f=m_pv_p+m_bv_b[/tex]

Where [tex]m_p, v_p[/tex] are the mass and speed of the person respectively and [tex]m_b, v_b[/tex] are the mass and speed of the book

Knowing that

[tex]m_p=74.9 Kg, m_b=2.44 Kg, v_b=-8.25m/s[/tex] (positive speed is assumed to the right or East), and the total momentum is zero:

[tex]m_pv_p+m_bv_b=0[/tex] =>

[tex]v_p=-\frac{m_bv_b}{m_p} =-\frac{2.44 (-8.25)}{74.9}[/tex]

[tex]v_p=0.269 m/s[/tex]

Since the sign of [tex]v_p[/tex] is positive, it's directed to the East

The recoil velocity of the person after throwing the book is approximately 0.27 m/s to the east, which is the opposite direction of the thrown book.

The recoil velocity of a person after throwing an object can be found by using the principle of conservation of momentum. According to this principle, the total momentum before an event is equal to the total momentum afterwards, assuming no external forces act on the system. In this case, the person and the book together form a closed system with no external forces since they are on an icy pond, which we can consider frictionless.

The initial momentum of the system is zero because the person is at rest. After the person throws the book, the momentum of the book is mass of the book multiplied by velocity of the book. To find the recoil velocity of the person, we use the formula:

m1×u1 + m2×u2 = m1×v1 + m2×v2,

where m1 and m2 are the masses of the person and book, u1 and u2 are their initial velocities (which are zero), and v1 and v2 are their final velocities. The final velocity of the person (v1) is what we are looking for:

(74.9 kg)(0 m/s) + (2.44 kg)(0 m/s) = (74.9 kg)v1 + (2.44 kg)(-8.25 m/s),

v1 = -(2.44 kg)(-8.25 m/s) / 74.9 kg,

v1 = 0.27 m/s to the east (opposite direction to the book).


Wearing a seat belt protects you from possible harm by a certain force. Which force?


Explain the difference between weight and mass.


What force causes objects to move in a circular path?


Answers

Answer:

push

Explanation:

it pushes you back when you lean forward really fast

The difference between mass and weight is that mass is the amount of matter in a material, while weight is a measure of how the force of gravity acts upon that mass. Mass is the measure of the amount of matter in a body. ... Weight usually is denoted by W. Weight is mass multiplied by the acceleration of gravity (g).

GRAVITY

THE UNBALANCED FORCE THAT CAUSES OBJECTS TO MOVE IN A CIRCULAR PATH IS CALLED A CENTRIPETAL FORCE. GRAVITY PROVIDES THE CENTRIPETAL FORCE THAT KEEPS OBJECTS IN ORBIT. THE WORD CENTRIPETAL MEANS "TOWARD THE CENTER."

A manufacturer claims to have built a home stereo speaker that is 4 feet tall but uses an average of only 30 watts of power. A sample of 40 speakers from the manufacturer found that they used an average of 32 watts of power. The appropriate hypotheses to test the manufacturer’s claim are?

Answers

Answer:

Original claim is H_o: M = 30

Alternate claim is H_a: M > 30.

Explanation:

Given data:

4 ft tall speaker consume 30 watt power

a group of 40 speaker consume average power of 32 watt

calculation:

A home installed 4 ft tall  speaker that use 30 watt Power

40 speakers used 32 watt Power

Original claim is H_o: M = 30

Alternate claim is H_a: M > 30.

An Object is moving due south at 16 m/s, when a force accelerates it at 4m/s in a southerly direction. How long will it take for the object to reach a velocity of 48 m/s south. Please help me out.

Answers

Answer:

Time taken to accelerate to 48 m/s =  8 seconds

Explanation:

Initially the object is moving south at = [tex]16 m/s[/tex]

So, initial velocity of the object = [tex]16 m/s[/tex]

Acceleration caused by the force = 4 [tex]m/s^2[/tex]

Final velocity towards south = [tex]48 m/s[/tex]

Using equation of motions:

[tex]v_f=v_i+at[/tex]

where

[tex]v_f\rightarrow[/tex] final velocity

[tex]v_i\rightarrow[/tex] initial velocity

[tex]a\rightarrow[/tex] acceleration

[tex]t\rightarrow[/tex] time

Plugging in values.

[tex]48=16+(4)t[/tex]

[tex]48=16+4t[/tex]

Subtracting both sides by 16

[tex]48-16=16+4t-16[/tex]

[tex]32=4t[/tex]

Dividing both side by 4.

[tex]\frac{32}{4}=\frac{4t}{4}[/tex]

[tex]8=t[/tex]

∴ [tex]t=8[/tex]

Time taken to accelerate to 48 m/s =  8 seconds

What are the characteristics of the atmospheres of venus

Answers

Answer:

Explanation:

The atmosphere is mainly composed of Carbon Dioxide (96%), 3.5% nitrogen, and less than 1% is composed of carbon monoxide, argon, sulfur dioxide and water vapor.Venus's atmosphere is very hot and denseThe Venusian atmosphere is crossed by occasional electrical phenomena of remarkable energyThe presence of a dense atmosphere and particularly strong winds causes the surface temperature to be approximately 710-740 K throughout the planetThe atmospheric pressure on the surface reaches the value of 90 atmospheres.

Who was Georges Lemaitre and how did he contribute to the Big Bang theory?
(15 points)

Answers

Final answer:

Georges Lemaître, a Belgian cosmologist, proposed the initial concept of the Big Bang, predicting the universe's expansion and Hubble's Law before they were empirically observed. His ideas on the universe starting from a 'primeval atom' and his work on particle interactions in the early universe laid the foundations of modern cosmology.

Explanation:

Georges Lemaître was a Belgian priest and cosmologist who made significant contributions to the Big Bang theory. Born in 1894, Lemaître studied theology as well as mathematics and physics. He was instrumental in exploring the concept of the expanding universe and was the first to propose a concrete model of the Big Bang. This model suggested that the universe started as a single 'primeval atom', which eventually fragmented into smaller pieces, leading to the formation of the current atoms in the universe through a process akin to nuclear fission. Lemaître's work predated and anticipated the empirical findings that became known as Hubble's Law, which observed that galaxies are moving away from each other, implying that the universe is expanding. His insights laid the groundwork for the understanding of the universe's beginnings and its initial hot, dense state.

Additionally, Lemaître, alongside collaborators such as George Gamow, further developed the Big Bang theory. They predicted that as the universe expands and cools, the interactions among particles would lead to the formation of protons, neutrons, and eventually the nuclei of light elements such as deuterium, helium, and lithium. This theoretical framework is bolstered by measurements such as the cosmic microwave background radiation and the abundance of deuterium, supporting the Big Bang theory as a robust model of the universe's inception.

Consider a merry-go-round that has the form of a disc with radius 5.5 m and mass 155 kg. If five children, each of mass 20 kg, sit on the outer edge of the merry-go-round, what is the total moment of inertia?

Answers

Answer:

[tex]I=5369.375[/tex]

Explanation:

Given:

mass of merry go round, [tex]M=155\ kg[/tex]radius of merry go round, [tex]r=5.5\ m[/tex]mass of child, [tex]m=20\ kg[/tex]

Considering merry-go-round as a disk, its moment of inertia is given as:

[tex]I_d=\frac{1}{2} M.r^2[/tex]

[tex]I_d=0.5\times 155\times 5.5^2[/tex]

[tex]I_d=2344.375\ kg.m^2[/tex]

Considering children as point masses, their moment of inertia is given as:

[tex]I_C=5(m.r^2)[/tex]

since there are 5 children

[tex]I_C=5\times20\times 5.5^2[/tex]

[tex]I_C=3025\ kg.m^2[/tex]

Now, total moment of inertia:

[tex]I=I_C+I_d[/tex]

[tex]I=3025+2344.375[/tex]

[tex]I=5369.375[/tex]

A 2100-kg pile driver is used to drive a steel I-beam into the ground. The pile driver falls 5.00 m before coming into contact with the top of the beam. Then it drives the beam 12.0 cm farther into the ground as it comes to rest. Using energy considerations, calculate the average force the beam exerts on the pile driver while the pile driver is brought to rest. a) m=2100 kg b) Xi=5.00m c) Xf=12.0 cm =.12m

Answers

Answer:

   f = 878,080 N

Explanation:

mass of pile driver (m) = 2100 kg

distance of pile driver to steel beam (s) = 5 m

depth of steel driven (d) = 12 cm = 0.12 m

acceleration due to gravity (g0 = 9.8 m/s^{2}

calculate the average force exerted on the pile driver by the beam.

from work done = force x distance work done = change in potential energy of the pile driverequating the two equations above we have

               force x distance = m x g x (s - d)

              f x 0.12 = 2100 x 9.8 x (5- (-0.12))

              d = - 0.12 because the steel beam went down at we are taking its  

              initial position to be an origin point which is 0

              f = ( 2100 x 9.8 x (5- (-0.12)) ) ÷ 0.12

                   f = 878,080 N

Final answer:

The average force that the pile driver exerted on the steel beam can be calculated using energy considerations, specifically by using the principle of conservation of energy. The potential energy of the pile driver is converted into the work done to drive the beam into the ground. This results in an average force of approximately 857,500 Newtons.

Explanation:

To solve this problem, we can first consider the principle of conservation of energy. The energy of the pile driver, when it starts falling, is purely potential energy, and when it has driven the steel beam into the ground, it's all been converted to work done against the resistance of the ground.

Firstly, calculate the potential energy of the pile driver as it begins to fall. The formula for potential energy (P.E.) is mass (m) times the acceleration due to gravity (g), which is about 9.8 m/s², times the height (h, the distance fallen): P.E. = m * g * h = 2100 kg * 9.8 m/s² * 5m = 102,900 Joules.

Secondly, the work done (W) in driving the steel beam into the ground can be calculated using this energy. Since this work was done to overcome the force of the beam as it went into the ground, we can also write W = F * d, where F is the average force and d is the distance it drove the beam down (0.12m).

Lastly, solve for the average force (F) by rearranging the equation to F = W / d = 102,900 Joules / 0.12 m = approx. 857,500 Newtons. Assuming all the energy was used in driving the steel beam into the ground, the pile driver would have had to exert an average force of around 857,500 N.

Learn more about Conservation of Energy here:

https://brainly.com/question/35373077

#SPJ6

Star-forming clouds appear dark in visible-light photos because the light of stars behind them is absorbed by __________.

Answers

Answer:

Interstellar Dust

Explanation:

In the solar system Interstellar dust is a type of cosmic dust and unlike Interstellar gas they have large dust particles enabling them to block visible light. Unlike smoke and fog, they contain large number of closely packed clumps of atoms and molecules

Answer:

interstellar dust

Explanation:

Dust particles interact with light through scattering and absorption. Reducing the amount of starlight received

The colour of the sky during the day is blue, because the blue light  is scattered by atmosphere particles.  The increased path length causes the change of colour of sun light . This is due to dust grains in the atmosphere, a similar process happens with interstellar dust

** You pull a rope oriented at a 37° angle above the horizontal. The other end of the rope is attached to the front of the first of two wagons that have the same 30-kg mass. The rope exerts a force of magnitude T1 on the first wagon. The wagons are connected by a second horizontal rope that exerts a force of magnitude T2 on the second wagon. Determine the magnitudes of T1 and T2 if the acceleration of the wagons is 2.0 m⁄s2.

Answers

Answer:

T2= 60 N and T1= 150,25 N

Explanation:

a free body diagram has to be done

The magnitude of the forces T1 and T2 if the acceleration is 2m/s² is 60N and 150.26N respectively.

Find the free body diagram attached. According to newton's second law;

[tex]\sum F_x = ma_x[/tex]

∑Fx is the sum of applied force in the horizontal direction

m is the mass of the object

ax is the acceleration of the object

For the body of mass 30kg

∑T = ma

T2 = ma

T2 = 30 * 2

T2 = 60N

For the sum of force acting on the second body;

T1 cos θ - T2 = ma

T1 cos 37 - 60 = 30(2)

T1 cos 37 = 120

T1 = 120/cos37

T1 = 120/0.7986

T1 = 150.26N

This shows that the magnitude of the forces T1 and T2 if the acceleration is 2m/s² is 60N and 150.26N respectively.

Learn more here: https://brainly.com/question/1141170

How does a coal-fired power plant use the energy in coal to produce electricity?

Answers

Final answer:

Coal-fired power plants produce electricity by burning coal to boil water into steam, which drives a turbine connected to a generator. The efficiency of energy conversion is low, with significant heat loss to the environment and a large CO2 emission as one of the main environmental impacts.

Explanation:

A coal-fired power plant converts the energy stored in coal into electricity through a multi-step process. First, coal is mined and processed to be suitable for burning. When coal is combusted in the plant, it heats water to turn it into steam. The steam at high pressure then drives a turbine, which is connected to a generator. As the turbine blades turn, they rotate the generator, which converts the kinetic energy into electricity. This process involves significant heat transfer to the surroundings, which is an inherent part of energy production from combustion.

During the energy conversion process, the efficiency of coal power stations is quite low, with only about 42% of the energy being used for electricity generation and the rest being lost as heat transfer to the environment. The chemical reaction during the combustion of coal is C + O2 → CO2, and a significant amount of CO2 is emitted into the atmosphere. This contributes to the warming of our planet, and coal power plants are known for being the least efficient and most CO2-emitting fossil fuel energy sources.

IE is the energy required to remove an electron from an atom. As atomic radius increases, the valence electrons get farther from the nucleus. How do you think an atom’s size will affect its ability to hold on to its valence electrons? Why?

Answers

Answer:

The bigger the atom the lesser the ability of the atom to hold on to its valence electrons.

Explanation:

Atomic radius can be looked at as the distance between the nucleus and the outermost energy level. As an atom gets bigger, the outer shell gets further and further from the positive nucleus. this means that electrons that are in the outer energy level become less held (attracted) by the nucleus because of distance and shielding of the attractive forces by the electrons in the lower energy levels. This means that as an atom becomes bigger, its ability to hold on to its outer electrons lessens.

As an atom gets larger, it is unable to hold its valence electrons due to decreased electrostatic attraction between the nucleus and the valence electron.

An atom is composed of a nucleus that houses positive charges and an electron which is negatively charged and are found in orbits. Electrostatic attraction between the positively charged nucleus and electrons in orbits keep the atom together.

However, as an atom gets larger, the valence electrons are farther away from the nucleus. As the distance between the nucleus and the outermost electrons increases, the electrostatic interaction between electron and the nucleus is decreased according to Coulomb's law. Repulsion (screening) between inner and valence electrons further keep the valence electrons away from the attractive forces of the nucleus.

Therefore, as an atom gets larger, it is unable to hold its valence electrons due to decreased electrostatic attraction between the nucleus and the valence electrons.

Learn more: https://brainly.com/question/506926

How many σ bonds and π bonds does the co2 molecule have?

Answers

Answer:

2 [tex]\sigma[/tex] bonds and 2 [tex]\pi[/tex] bonds

Explanation:

If we consider the the bonding in the [tex]CO_{2}[/tex] molecule:

[tex]O = 1s^{2}\ 2s^{2}\ 2p^{4}[/tex]

[tex]C = 1s^{2}\ 2s^{2}\ 2p^{2}[/tex]

Thus carbon forms double bonds with oxygen:

O = C = O

Now,

We know that double bond comprises of a [tex]\sigma\ bond[/tex] and a [tex]\pi \ bond[/tex]

Since, in the [tex]CO_{2}[/tex], there are 2 double bonds thus there are 2 [tex]\sigma[/tex] bonds and 2 [tex]\pi[/tex] bonds in the molecules.

"The CO₂ molecule has 2 σƒ (sigma) bonds and 2 π (pi) bonds.

To determine the number of sigma and pi bonds in CO₂, we need to consider its Lewis structure. Carbon dioxide has a linear molecular geometry with carbon at the center and two oxygen atoms double-bonded to it.

In CO₂:

- The carbon atom forms two double bonds with the two oxygen atoms.

- Each double bond consists of one sigma bond and one pi bond.

Therefore, for each carbon-oxygen double bond, there is:

- One sigma bond (σƒ), which is the head-on overlap of atomic orbitals.

- One pi bond (π), which is the side-to-side overlap of p-orbitals.

Since there are two carbon-oxygen double bonds in CO₂, we have:

- A total of 2 sigma bonds from the double bonds.

- Additionally, each double bond includes a sigma bond from the overlap of the sp hybrid orbital of carbon with the sp2 hybrid orbital of oxygen, contributing another 2 sigma bonds.

In summary, CO₂ has 4 sigma bonds in total:

- 2 sigma bonds from the sp-sp² hybrid orbital overlaps.

- 2 sigma bonds from the head-on overlap of p-orbitals that form part of the double bonds.

And CO₂ has 2 pi bonds in total:

- 2 pi bonds from the side-to-side overlap of p-orbitals in the double bonds.

Thus, the final count is 4 σƒ bonds and 2π bonds in the CO₂ molecule. However, it is important to note that the question specifically asks for the number of sigma and pi bonds, and the correct answer should reflect the number of each type of bond individually, not the total number of bonds. Therefore, the correct answer is 2σ bonds and 2π bonds.

A management system that includes fire suppression will likely lead to
I. large quantities of biomass accumulating on the forest floor.
II. an increase in the likelihood of uncontrolled natural fires.
III. an increase in fire-dependent species.

Answers

Answer:

I and II

Explanation:

A management system that includes fire suppression will likely lead to

I. large quantities of biomass accumulating on the forest floor.

II. an increase in the likelihood of uncontrolled natural fires.

Biomass is the total quantity of weight of flora and fauna in a given area or volume. The recent fire in the Amazon rain forest is an example of uncontrolled natural forest fires.

Determine the magnitude of the gravitational force Mars would exert on man if he was on the surface of Mars. The mass of the man is 68.0 kg . The mass of the Mars is 6.42×1023kg and its radius is 3396 km

Answers

Final answer:

The gravitational force that Mars would exert on a man with a mass of 68.0 kg standing on its surface is approximately 252.28 N (Newtons).

Explanation:

To calculate the gravitational force (Weight) that Mars would exert on a man standing on its surface, we can use the formula for the weight which is 'W = mg', where 'm' is the mass of the man and 'g' is the acceleration due to gravity. However, on Mars, the value of 'g' (acceleration due to gravity) is different than on Earth. On Mars, 'g' is approximately 3.71 m/s².

Therefore, by substituting the given and calculated values into the formula we get:
W = mg = 68.0 kg x 3.71 m/s² = 252.28 N.
So, the gravitational force that Mars would exert on the person would be approximately 252.28 N (Newtons).

Learn more about Gravitational Force here:

https://brainly.com/question/32609171

#SPJ12

A person is standing on a spring bathroom scale on the floor of an elevator which is moving up and slowing down at the rate of 3 m/s 2 . The acceleration of gravity is 9.8 m/s 2 . If the person’s mass is 93.3 kg, what does the scale read? Answer in units of n.

Answers

Answer:

[tex]F_N=1194.24\ N[/tex]

Explanation:

Given that,

The elevator is moving up and slowing down at the rate of, [tex]a=3\ m/s^2[/tex]

The acceleration due to gravity, [tex]g=9.8\ m/s^2[/tex]

Mass of the person, m = 93.3 kg

To find,

The reading of the scale.

Solution,

As the elevator is moving down with some acceleration. The net force acting on it is given by :

[tex]F_N=ma+mg[/tex]

[tex]F_N=m(a+g)[/tex]

[tex]F_N=93.3(3+9.8)[/tex]

[tex]F_N=1194.24\ N[/tex]

So, the scale will read 1194.24 N.

We wrap a light, nonstretching cable around a 8.00 kg solid cylinder with diameter of 30.0 cm. The cylinder rotates with negligible friction about a stationary horizontal axis. We tie the free end of the cable to a 13.0 kg block and release the block from rest. As the block falls, the cable unwinds without stretching or slipping. How far will the mass have to descend to give the cylinder 510 J of kinetic energy?

Answers

Answer:

h = 16.67m

Explanation:

If the kinetic energy of the cylinder is 510J:

[tex]Kc=510=1/2*Ic*\omega c^2[/tex]

[tex]\omega c=\sqrt{510*2/Ic}[/tex]

Where the inertia is given by:

[tex]Ic=1/2*m_c*R_c^2=1/2*(8)*(0.15)^2=0.0225kg.m^2[/tex]

Replacing this value:

[tex]\omega c=106.46rad/s[/tex]

Speed of the block will therefore be:

[tex]V_b=\omega_c*R_c=106.46*0.15=15.969m/s[/tex]

By conservation of energy:

Eo = Ef

Eo = 0

[tex]Ef = 510+1/2*m_b*V_b^2-m_b*g*h[/tex]

So,

[tex]0 = 510+1/2*m_b*V_b^2-m_b*g*h[/tex]

Solving for h we get:

h=16.67m

The mass would have to descend from a height of 13.01 meters.

Given the following data:

Kinetic energy = 510 Joules.Mass of cylinder = 8.00 kg.Diameter = 30.0 cm.Mass of block = 13.00 kg.

How to calculate the height.

First of all, we would determine the moment of inertia for the solid cylinder by using this formula:

[tex]I=\frac{1}{2} mr^2\\\\I=\frac{1}{2} \times 8 \times 0.15^2\\\\I=4 \times 0.0225[/tex]

I = 0.09 [tex]Kgm^2[/tex]

Next, we would determine its angular velocity by using this formula:

[tex]K.E =\frac{1}{2} I\omega^2\\\\\omega=\sqrt{\frac{2K.E}{I} } \\\\\omega=\sqrt{\frac{2 \times 510}{0.09} }\\\\\omega=\sqrt{11,333.33} \\\\\omega=106.46\;rad/s.[/tex]

For the speed:

[tex]V=r \omega\\\\V= 0.15 \times 106.46[/tex]

V = 15.97 m/s.

Now, we would calculate the height by applying the law of conservation of energy:

[tex]P.E = K.E\\\\mgh = \frac{1}{2} mv^2\\\\2gh=v^2\\\\h=\frac{v^2}{2g} \\\\h=\frac{15.97^2}{2\times 9.8} \\\\h=\frac{255}{19.6}[/tex]

h = 13.01 meters.

Read more on moment of inertia here: https://brainly.com/question/3406242

When light of wavelength 345 nm falls on a potassium surface, electrons are emitted that have a maximum kinetic energy of 1.67 eV. What is the work function of potassium? The speed of light is 3 × 108 m/s and Planck’s constant is 6.63 × 10−34 J · s.

Answers

Answer:

[tex]W=1.93eV[/tex]

Explanation:

The maximum kinetic energy of an ejected electron in the photoelectric effect is given by:

[tex]K_{max}=h\nu-W(1)[/tex]

Here h is the Planck's constant, [tex]\nu[/tex] the frequency of the light and W the work function of the element.

The frequency is equal to the speed of light, divided by the wavelength:

[tex]\nu=\frac{c}{\lambda}(2)[/tex]

Recall that [tex]1nm=10^{-9}m[/tex]. Replacing (2) in (1) and solving for W:

[tex]W=\frac{hc}{\lambda}-K_{max}\\W=\frac{(4.14*10^{-15}eV\cdot s)(3*10^8\frac{m}{s})}{345*10^{-9}m}-1.67eV\\W=1.93eV[/tex]

A person in a car during a sudden stop can experience potentially serious chest injuries if the combined force exerted by the seat belt and shoulder strap exceeds 16,000 N. Assume the mass of the passenger is 80 kg and the initial speed of the car is 16 m/s. Describe what it would take to avoid injury.

Answers

Answer:

minimum time interval to stop = 0.08 seconds

minimum stopping distance  = 0.64 m

Explanation:

maximum force (F) = 16,000 N

mass (m) = 80 kg

initial velocity (U) =  16 m/s

what it would take for the passenger to avoid in this case refers to how long it would take the vehicle to come to a full stop and the stopping distance it would also take to come to a full stop. Therefore we are to find the time (t) and the distance (s)

from the impulse momentum equation,

impulse = change in momentum

Ft = m(V-U)   (V-U is the change in velocity Δv)

where V is the final velocity = 0

and t = time

16000 x t = 80 (0 - 16)

16000t = -1,280 (he negative sign tell us there is a decrease in momentum, so we would not be using it further)

t = 0.08 seconds   ( this is also the difference between the initial time when the vehicle started to come to a stop and the final time when it came to a full stop)

assuming the acceleration is constant, the stopping distance (s) would be given by the kinetic relation

change in distance (Δs) = \frac{(ΔV) x (Δt)}{2}

(Δ refers to change, that is final value - initial value)

Δs =  \frac{16 x 0.08}{2}

Δs = 0.64 m

An object is solid throughout. When the object is completely submerged in ethyl alcohol, its apparent weight is 16.5 N. When completely submerged in water, its apparent weight is 13.3 N. What is the volume of the object?

Answers

Answer:

V = 1.7 x 10^{-3} m^{3}

Explanation:

apparent weight in ethyl alcohol = 16.5 N

apparent weight in water = 13.3 N

apparent weight = mg - ρgV

where

m = mass

g = acceleration due to gravity = 9.8 m/s^{2}

ρ = density

V = volume

for ethyl alcohol   16.5 = mg - ρ₁gV  .....equation 1for water               13.3 = mg - ρ₂gV  .......equation 2

    we can solve the two equations above as simultaneous equations by subtracting equation 2 from equation 1

we have

16.5 - 13.3 = (mg - mg) - ρ₁gV - (-ρ₂gV)

3.2 = gV(ρ₂ - ρ₁)

V = \frac{3.2}{g(ρ₂-ρ₁)}

where

ρ₂ = density of water = 1000 kg/m^{3}

ρ₁ = density of ethyl alcohol = 806 kg/m^{3}

V = \frac{3.2}{9.8(1000 - 806)}

V = 1.7 x 10^{-3} m^{3}

Final answer:

The volume of the object can be found using Archimedes' principle and the given apparent weights in water and ethyl alcohol. The volume is computed from these values using the densities of the two fluids, yielding a volume of about 0.013 cubic meters.

Explanation:

To answer the question about the object's volume when it's submerged in ethyl alcohol and water, we'll need to use Archimedes' principle. This principle tells us that the apparent weight loss of the object in a liquid equals the weight of the fluid displaced by the object. In this case, the difference in apparent weights given for the object when in water and when in ethyl alcohol represents the weight of the fluids displaced.

We have to remember that weight can be calculated as the product of volume, density, and gravity. If you rearrange this equation, you get the volume as the quotient of weight and the product of density and gravity. Note that gravity cancels out in this problem since it remains constant for both fluids.

If we denote the volume of the object as V, the density of water as ρ_water (approximated to 1000 kg/m^3), the density of ethyl alcohol as ρ_alcohol (approximated to 789 kg/m^3), and the weight of the object in water and ethyl alcohol as W_water and W_alcohol respectively, we can write two equations:

V = W_water / ρ_waterV = W_alcohol / ρ_alcohol

We have the weights as the apparent weights from the problem, which are W_water = 13.3 N and W_alcohol = 16.5 N. If you solve these two equations, you should obtain the volume of the object, which should be around 0.013 m^3. This is the answer for the volume of the solid object.

Learn more about Fluid Mechanics here:

https://brainly.com/question/29627077

#SPJ3

A disk-shaped merry-go-round of radius 2.63 m and mass 155 kg rotates freely with an angular speed of 0.718 rev/s. A 59.4 kg person running tangential to the rim of the merry-go-round at 3.34 m/s jumps onto its rim and holds on. Before jumping on the merry-go-round, the person was moving in the same direction as the merry-go-round's rim. (a) Does the kinetic energy of the system increase, decrease, or stay the same when the person jumps on the merry-go-round? stay the same increase decrease (b) Calculate the initial and final kinetic energies for this system.Ki = kJKf = kJ

Answers

Answer:

The kinetic energy of the system decrease

Ki = 5.78 KJ

Kf = 4.55 KJ

Explanation:

For answer this question we will use the law of the conservation of the angular momentum so,

Li = Lf

Where Li is the inicial momentum of all the system, and Lf is the final momentum of the system.

also, the angular momentum L can be calculated in two ways

L = IW

where I is the momentum of inertia and the W is the Angular velocity.

or,

L = MVD

where M is the mass, V is the lineal velocity and the D is the lever arm.

Therefore,

Li = Ld ( merry-go-round) + Lp ( person )

Lf = Ls

Where Ld is the angular momentum of the merry go round, Lp is the angular momentum of the person and Ls is the angular momentum of the sistem (merry-go-round +  person)

so,

[tex]L_d=I_dW_d[/tex]

Ld =  [tex]\frac{1}{2}M_dR^{2}W_d[/tex]

Ld = [tex]\frac{1}{2}(155) (2.63)^{2}(0.718*2\pi)[/tex]

Ld = 2418.43

and,

[tex]L_p=M_pV_pD[/tex]

Lp = (59.4)(3.34)(2.63)

Lp = 521.78

then,

Lf = Ls

L_d=I_sW_s

Lf = [tex](\frac{1}{2}(155)(2.63)^{2}+(59.4)(2.63^2))(W_s)[/tex]

[tex]Lf = 946.92W_s[/tex]

so, solving for Ws

Lf = Li

[tex]946.92W_s = 521,78 + 2418.43[/tex]

Ws =  3.1 rad/s

Finally, the inicial and the final Kinetic energy

Ki = [tex]\frac{1}{2}I_d(W_d)^2 + \frac{1}{2}M_p(V_p)^2[/tex]

Ki = 5786.284 J = 5.78 KJ

Kf = [tex]\frac{1}{2}I_s(W_s)^2[/tex]

Kf =  4549.97 J = 4.55 KJ

Then, The kinetic energy of the system decrease because Kf < Ki

A pressure vessel at rest at the origin of an xy coordinate system explodes into three pieces that remain in the xy plane. Just after the explosion, one piece, of mass m, moves with velocity (−30 �/�)� and a second piece, also of mass m, moves with velocity (−30 �/�)�. The third piece has mass 3m. Just after the explosion, what is the velocity of the third piece? Use unit vector notation.

Answers

Answer:

v₃ = (10) i + (10) j

v₃ = 10√2

Explanation:

Given info

Before the explosion

ux = 0

uy = 0

After the explosion

v₁x = -30

v₁y = 0

v₂x = 0

v₂y = -30

We can use the Principle of Conservation of Momentum as follows

pi = pf

where

pix = M*ux = M*0 = 0

piy = M*uy = M*0 = 0

pfx = p₁x + p₂x + p₃x = (m*v₁x + m*v₂x + 3m*v₃x) = m*(-30) + m*(0) + 3m*v₃x

⇒   pfx = -30m + 3m*v₃x

if

pix = pfx     ⇒    0 = -30m + 3m*v₃x    ⇒  v₃x = 10

pfy = p₁y + p₂y + p₃y = (m*v₁y + m*v₂y + 3m*v₃y) = m*(0) + m*(-30) + 3m*v₃y

⇒   pfy = -30m + 3m*v₃y

if

piy = pfy     ⇒    0 = -30m + 3m*v₃y    ⇒  v₃y = 10

then we have

v₃ = (10) i + (10) j

and its module can be obtained as follows

v₃ = √(v₃x² + v₃y²) = √(10² + 10²) = 10√2

A uniform solid sphere has a moment of inertia I about an axis tangent to its surface. What is the moment of inertia of this sphere about an axis through its center?

a) 7/5 I
b) 3/5 I
c) 2/5 I
d) 1/7 I
e.2/7 I

Answers

Answer:

option E

Explanation:

given,

I is moment of inertia about an axis tangent to its surface.

moment of inertia about the center of mass

[tex]I_{CM} = \dfrac{2}{5}mR^2[/tex].....(1)

now, moment of inertia about tangent

[tex]I= \dfrac{2}{5}mR^2 + mR^2[/tex]

[tex]I= \dfrac{7}{5}mR^2[/tex]...........(2)

dividing equation (1)/(2)

[tex]\dfrac{I_{CM}}{I}= \dfrac{\dfrac{2}{5}mR^2}{\dfrac{7}{5}mR^2}[/tex]

[tex]\dfrac{I_{CM}}{I}=\dfrac{2}{7}[/tex]

[tex]I_{CM}=\dfrac{2}{7}I[/tex]

the correct answer is option E

Other Questions
In the life cycle theory of consumption, the motive to save is:A.To be able to open a business.B.To become wealthy.C.To leave a large endowment for one's children.D.To build a family dynasty.E.To afford to retire. Which of the following sentences is most clearly describing a symbol?A. The phrase "kill your darlings" means to delete unneeded writingfrom a storyB. The canary that Mrs. Witherby both neglects and cherishesrepresents her soul.C. Truth, justice and honor are all values that Superman embodies inhis quest for goodness.D. Whenever a death occurs in the movie, a discordant bit of musicplays in the background. A golf-course architect has sixsix linden trees, fourfour white birch trees, and threethree bald cypress trees to plant in a row along a fairway. In how many ways can the landscaper plant the trees in a row, assuming that the trees are evenly spaced? Two balls are thrown horizontally. Ball C is thrown with a force of 20 N, and ball D is thrown with a force of 40 N. Assuming all other factors are equal, ball D will fall toward the ground The slope of line b is zacWhat is the equation of D. simplified?B(2a, 2b)y-y = m(x - x)y-0=(220)(x-c)y=[0]x-(22b)y=(220 fer-(2 bezedy=(22]x- (226)O y=(,20 ]- (250)Ela, b)A(0, 0)Dac, 0)C(2c, 0) HR Industries (HRI) has a beta of 1.8, while LR Industries' (LRI) beta is 0.6. The risk-free rate is 5.5%, and the required rate of return on a stock with a beta of 1 is 12.5%. The expected rate of inflation built into rRF falls by 1.5 percentage points, the real risk-free rate remains constant, the required return on the market falls to 10.5%, and all betas remain constant. After all of these changes, what will be the difference (in percentage points) in the required returns for HRI and LRI? A. 3.8% B. 0.9% C. 1.5% D. 2.4% E. 3.5% Plato Industries' projected sales for the first six months of 2012 are given below: Jan. $250,000 April $300,000 Feb. $340,000 May $350,000 Mar. $280,000 June $380,000 20% of sales are collected in cash at time of sale, 50% are collected in the month following the sale, and the remaining 30% are collected in the second month following the sale. Cost of goods sold is 85% of sales. Purchases are made in the month prior to the sales, and payments for purchases are made in the month of the sale. Total other cash expenses are $70,000/month. The company's cash balance as of February 28, 2012 will be $10,000. Excess cash will be used to retire shortminusterm borrowing (if any). Plato has no short term borrowing as of February 28, 2012. Ignore any interest on shortminusterm borrowing. The company must have a minimum cash balance of $40,000 at the beginning of each month. What is Plato Industries' total cash receipts for April 2012? A. $326,000 B. $340,000 C. $302,000 D. $300,000 Italian fascist party leader during world war 2 Rose knew by the shrillness of her teachers voice that she was really in trouble and would probably be placed in after-school detention. Roses teacher used _____ to communicate dismay. If the following events are arranged in the order in which they occur for an animal hiding and holding still in response to seeing a predator, which is the fourth event in the series? A) information processing in the CNS B) signaling by an efferent PNS neuron C) activation of a sensory receptor In December 2000, currency was $340 billion, traveler's checks were $4 billion; checkable deposits owned by individuals and businesses were $450 billion, saving deposits were $1,900 billion, time deposits were $1,000 billion; and money market funds were $900 billion. What was the M1 in December 2000? You are a fraud investigator working with complex data sets. You decide to the split the data sets into case-specific groupings. This process is known as_______ . a. Stratification b. Deviation c. Data mining d. Soundex What was the mistake made by the organizers of the Soviet oil drilling competition? A) They used engineers estimate for the percentage of completion. B) They compared Soviet performance measures to Western European performance measures. C) They evaluated the teams based on number of meters drilled. D) They failed to integrate both managers and workers on the same teams. E) They set the bonus thresholds too low. Designated agency means the clients do not have the full level of fiduciary duties available to them that they would have if they were fully involved in seller agency or buyer agency. In this situation, the client gives up the fiduciary duty of undivided what?A. LoyaltyB. ConfidentialityC. AccountabilityD. Blind obedience Which situation has a unit rate of $7?ATrevor spent $49 on 2 theater tickets.BSally bought a pack of 5 t-shirts for $35.CBrandon bought 7 gallons of gas for $14.DGina bought nail polish for $5 and a pack of gum for $2. Drag each interval to a box to show if the function shown is increasing, decreasing, or neither over that interval.I NEED HELP ASAP Tech A says the first external component to install when assembling an engine is the intake manifold. Tech B says the exhaust manifolds should be installed after the intake manifold. Who is correct? What type of bonds are formed between these amino acids XYZ company uses "Continuous Review System (Q, ROP)" for an item. Lead-time is currently one week. The average demand during the week is 100 units with a standard deviation of 20 units. If the supplier increases lead-time to 4 weeks, what will be the standard deviation of lead-time demand? a.40 80 b.17.89 c.44.72 d.120 How do you calculate constant rate of change from a proportional graph given the coordinates (x, y)?Question 1 options:x/yy + xxyy/x