You're a newly appointed Engineer in APE Chemical Sdn Bhd. and your first task is to design a 0.35m vessel to be used to store saturated vapor ethanol at 480°C and 6000 kPa. For these conditions, analyze (6) The molar volume of the saturated vapor ethanol. . (15 marks) (6) The mass of the saturated vapor ethanol in the vessel

Answers

Answer 1

Answer:

molar volume of vapor ethanol is [tex]V = 1.043 \times 10^{-3} m^3/mol[/tex]

mass of ethanol is 15430.22 g

Explanation:

By using ideal gas equation

PV = nRT

Where P is pressure , R is gas constant

so, volume is

[tex]V = \frac{RT}{P} = \frac{8.314\times (480+273)}{6000\times 10^3}[/tex]

[tex]V = 1.043 \times 10^{-3} m^3/mol[/tex]

molar volume of vapor ethanol is

[tex]V = 1.043 \times 10^{-3} m^3/mol[/tex]

b)

volume of vessel is given [tex]0.35 m^3[/tex]

therefore total moles of ethanol in given vessel will be

[tex]n =\frac{V_{vessel}}{V}[/tex]

[tex]n =\frac{0.35}{1.043\times10^{-3}}[/tex]

n = 335.44 mol

we know that

mole is given as [/tex]n = \frac{mass}{moleculae weight}[/tex]

weight of ethanol is 46 g/mol

n\times 46 = mass

[tex]335.44\times 46 = 15430.22 g[/tex]

mass of ethanol is 15430.22 g


Related Questions

1.00 kg of ice at -10 °C is heated using a Bunsen burner flame until all the ice melts and the temperature reaches 95 °C. A) How much energy in kJ is required to effect this transformation?

Answers

Answer : The energy required is, 574.2055 KJ

Solution :

The conversions involved in this process are :

[tex](1):H_2O(s)(-10^oC)\rightarrow H_2O(s)(0^oC)\\\\(2):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(3):H_2O(l)(0^oC)\rightarrow H_2O(l)(95^oC)[/tex]

Now we have to calculate the enthalpy change or energy.

[tex]\Delta H=[m\times c_{p,s}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})][/tex]

where,

[tex]\Delta H[/tex] = energy required = ?

m = mass of ice = 1 kg  = 1000 g

[tex]c_{p,s}[/tex] = specific heat of solid water = [tex]2.09J/g^oC[/tex]

[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]4.18J/g^oC[/tex]

n = number of moles of ice = [tex]\frac{\text{Mass of ice}}{\text{Molar mass of ice}}=\frac{1000g}{18g/mole}=55.55mole[/tex]

[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole

Now put all the given values in the above expression, we get

[tex]\Delta H=[1000g\times 4.18J/gK\times (0-(-10))^oC]+55.55mole\times 6010J/mole+[1000g\times 2.09J/gK\times (95-0)^oC][/tex]

[tex]\Delta H=574205.5J=574.2055kJ[/tex]     (1 KJ = 1000 J)

Therefore, the energy required is, 574.2055 KJ

Which of the following is a property of a mixture? It consists of a single element or compound. Components that are mixed can be in different states of matter. It is very difficult to separate the components. The proportion of the particles that make it up cannot be altered.

Answers

Answer:

Components that are mixed can be in different states of matter.

Explanation:

A mixture is often described as an impure substance. It has the following properties:

Constituents retain their identities i.e the physical properties of mixtures are retained. Their composition is indefinite i.e they consist of two or more elements and/or compounds in any proportion by mass. They can easily be seperated by physical methods.

There are two types of mixture; homogenous mixtures have their constituents existing in one phase.

Heterogenous mixtures have constituents in different phases. The phases are the different states of matter.

One of the properties of a mixture is that; Components that are mixed can be in different states of matter.

Definition;

A mixture put simply can be defined as an impure substance which is made up of different constituents with each constituent possessing its own unique properties.

Additionally, mixtures are subdivided into homogeneous and heterogeneous mixtures;

A homogeneous mixture has it's constituent substances in the same phase/state.

An heterogenous mixture on the other hand, has it's constituent substances in different states of matter.

Read more;

https://brainly.com/question/18827378

What is the concentration of Agt in a 1.2 x 10-4 solution of Ag2CO3? (To write your answer using scientific notation use 1.0E-1 instead of 1.0 x 10-1)

Answers

Answer:

2.4E-4

Explanation:

Hello,

By applying the following mass-mole relationship, the concentration could be computed as follows (assuming molarity as long as it isn't specified), since in the silver carbonate two silver molecules are present:

[tex][Ag]=1.2x10^{-4}\frac{molAg_2CO_3}{L} *\frac{2mol Ag}{1 mol Ag_2CO_3}=2.4x10^{-4}\frac{mol Ag}{L}[/tex]

Best regards.

The vapour pressure of pyridine is 50.0kPa at 365.7K and the
normal boiling point is 388.4 K. What is theenthalpy of
vaporization of pyridine?

Answers

Final answer:

The enthalpy of vaporization for pyridine can be calculated using the Clausius-Clapeyron equation. Given that the vapor pressure of pyridine is 50.0 kPa at 365.7 K, and its boiling point is 388.4K, we can substitute these values into the equation to find the enthalpy of vaporization.

Explanation:

The question is asking for the enthalpy of vaporization of pyridine. We first need to apply the Clausius-Clapeyron equation which is

ln(P2/P1) = -ΔHvap/R *(1/T1 - 1/T2), where P2 is the vapor pressure at the boiling point (1.00 atm or 101.3 kPa), P1 is the given vapor pressure (50.0 kPa), ΔHvap is the enthalpy of vaporization which we want to find, R is the gas constant (8.314 J/K.mol), T1 is 365.7 K, and T2 is the boiling point (388.4 K). By rearranging and substituting the values into the equation, one can solve for ΔHvap to find its value. Remember always to convert the pressure units into the same, in this case we used kilopascal.

Learn more about Enthalpy of Vaporization here:

https://brainly.com/question/32361849

#SPJ3

The partial pressure of CO2 gas above the liquid in a carbonated drink is 0.71 atm. Assuming that the Henry's law constant for CO2 in the drink is that same as that in water, 3.7 x 10-2 mol/L atm, calculate the solubility of carbon dioxide in this drink. Give your answer to 3 decimal places.

Answers

Answer: The molar solubility of carbon dioxide gas is 0.003 M

Explanation:

Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.

To calculate the molar solubility, we use the equation given by Henry's law, which is:

[tex]C_{CO_2}=K_H\times p_{liquid}[/tex]

where,

[tex]K_H[/tex] = Henry's constant = [tex]3.7\times 10^{-2}mol/L.atm[/tex]

[tex]p_{CO_2}[/tex] = partial pressure of carbonated drink = 0.71 atm

Putting values in above equation, we get:

[tex]C_{CO_2}=3.7\times 10^{-2}mol/L.atm\times 0.71atm\\\\C_{CO_2}=2.637\times 10^{-2}mol/L=0.003M[/tex]

Hence, the molar solubility of carbon dioxide gas is 0.003 M

Answer: The molar solubility of carbon dioxide is [tex]2.63\times 10^{-2}M[/tex]

Explanation:

To calculate the molar solubility, we use the equation given by Henry's law, which is:

[tex]C_{CO_2}=K_H\times p_{CO_2}[/tex]

where,

[tex]K_H[/tex] = Henry's constant = [tex]3.7\times 10^{-2}mol/L.atm[/tex]

[tex]C_{CO_2}[/tex] = molar solubility of carbon dioxide gas = ?

[tex]p_{CO_2}[/tex]  = partial pressure of carbon dioxide gas = 0.71 atm

Putting values in above equation, we get:

[tex]C_{CO_2}=3.7\times 10^{-2}mol/L.atm\times 0.71atm\\\\C_{CO_2}=2.63\times 10^{-2}M[/tex]

Hence, the molar solubility of carbon dioxide is [tex]2.63\times 10^{-2}M[/tex]

This experiment involves the reaction of Ba(OH)2 with H2SO4. Which of the following gives the balanced chemical reaction used in the experiment?

Ba(OH)2 (aq) + H2SO4(aq) → H2Ba(s) + SO4(OH)2(l)

Ba(OH)2 (aq) + H2SO4(aq) → BaSO4(s) + H2O(l)

BaSO4(s) + 2 H2O(l) → Ba(OH)2 (aq) + H2SO4(aq)

Ba(OH)2 (aq) + H2SO4(aq) → BaSO4(s) + 2 H2O(l)

Answers

Answer:

Ba(OH)2 (aq) + H2SO4(aq) → BaSO4(s) + 2 H2O(l)

That's the right one.

Explanation:

You should see that this equation is balanced, not as

Ba(OH)2 (aq) + H2SO4(aq) → BaSO4(s) + H2O(l)

(on reactive we have 4 H, on products, we have only 2)

Ba(OH)2 (aq) + H2SO4(aq) → H2Ba(s) + SO4(OH)2(l)

(this is impossible, it's a nonsense)

BaSO4(s) + 2 H2O(l) → Ba(OH)2 (aq) + H2SO4(aq)

(it is the same with the right one but is the other way around. The statement says, reaction of Ba(OH)2 with H2SO4, not BaSO4 with water. Also, it is not a chemical balance.

Describe in detail how to accurately prepare 250.00 mL of a 2.25 M HCl solution from a 12.0 M HCl solution?

Answers

Answer:

Take 46.9 ml of the 12 M solution using a graduated cylinder and pour the liquid in a 250-ml volumetric flask. Add water until the mark.

Explanation:

To prepare this solution, you have to take a volume of the 12 M HCl solution and add water to 250 ml. What volume should you take?

The number of moles of HCl present in the volume you take from the concentrated solution will be the same as the number of moles in the final solution since you are only adding water. Then:

number of moles of HCl in the taken volume = number of moles in the final solution.

number of moles of HCl = concentration (in molarity) * volume

Then:

Ci * Vi = Cf * Vf

Where

Ci = the concentration of the solution from which you take the volume to prepare the more diluted solution.

Vi = the volume of the concentrated solution you have to take.

Cf = Concentration of the final solution

Vf = volume of the final solution

Replacing with the data:

12.0 M * Vi = 250.00 ml * 2.25M

Vi = 46.9 ml

According to this reaction, ____ serves as the base. CH3OH + HI --> CH3OH2 +I-

A : CH3OH2+

B : HI

C : CH3OH

D : I-

Answers

Answer:

C : CH₃OH

Explanation:

According to the concept of Bronsted - Lowry -

An acid is a substance , that can give a proton .

A base is a substance , that can take a proton .

According to the reaction given in the question ,

CH₃OH   +   HI   -->    CH₃OH₂⁺   +  I⁻

From , the above reaction ,

It is visible that , the reactant CH₃OH accepts a proton and forms CH₃OH₂⁺  , thereby acting as a base ,

And ,  HI act as an acid , as is losses a proton and becomes  I⁻ .

Hence ,

In the above reaction ,  CH₃OH act as a base .

Compute (4.29×1015)⋅(1.96×10−4).

Express your answer to three digits.

Answers

Answer:

(4.29×10¹⁵)⋅(1.96×10⁻⁴) = 8.40 × 10¹¹, has three significant digits.

Explanation:

To solve: (4.29×10¹⁵)⋅(1.96×10⁻⁴)

According to the product rule of exponents, when exponents having the same base are multiplied, the base is kept the same and the powers are added.

Therefore,

(4.29×10¹⁵)⋅(1.96×10⁻⁴) = (4.29 × 1.96) · 10⁽¹⁵⁻⁴⁾ = 8.40 × 10¹¹

The number, 8.40 × 10¹¹ has three significant digits.

Final answer:

To calculate the product of (4.29×1015) and (1.96×10−4), multiply the significant figures to get 8.4084, then add the exponents to get 1011, and combine them to express the product in scientific notation as 8.41×1011, rounded to three digits.

Explanation:

To compute the product of (4.29×1015) and (1.96×10−4), you multiply the significant figures and then add the exponents of 10. First, multiply the significant figures:

4.29 × 1.96 = 8.4084.

Next, add the exponents:

1015 × 10−4 = 1015−4 = 1011.

Combine the significant figure product with the exponent sum to express the answer in scientific notation:

8.4084 × 1011 → 8.41×1011 (rounded to three digits).

If the density of alcohol is 0.79 g/mL, what is the mass in grams of 1.0 L of alcohol?

Answers

Answer: The mass of alcohol is 790 grams.

Explanation:

To calculate the mass of alcohol, we use the equation:

[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]

Volume of alcohol = 1.0 L = 1000 mL    (Conversion factor:  1 L = 1000 mL)

Density of alcohol = 0.79 g/mL

Putting values in above equation, we get:

[tex]0.79g/mL=\frac{\text{Mass of alcohol}}{1000mL}\\\\\text{Mass of alcohol}=790g[/tex]

Hence, the mass of alcohol is 790 grams.

Final answer:

The mass of 1.0 L of alcohol is 790 grams.

Explanation:

To calculate the mass in grams of 1.0 L of alcohol, you can use the density of alcohol.

The given density is 0.79 g/mL.

This means that for every 1 mL of alcohol, there is a mass of 0.79 grams.

Since 1 L is equal to 1000 mL, you can multiply the density by the volume to find the mass: 0.79 g/mL × 1000 mL = 790 grams of alcohol.

Write a balanced equation for the neutralization of potassium hydroxide by phosphoric acid. Use the smallest possible integer coefficients. Submit Answer & Next

Answers

Explanation:

Neutralization reaction -

The reaction of an acid and base to yield a salt and water , is a type of neutralization reaction .

The reaction of  potassium hydroxide and phosphoric acid  is a type of neutralization reaction ,

Hence , the reaction is as follows -

KOH (aq) + H₃PO₄ (aq) ----> K₃PO₄ (aq) + 3H₂O (l)

The reaction after balancing the atoms on the reactant side and on the product side is -

3 KOH (aq) + H₃PO₄ (aq) ----> K₃PO₄ (aq) + 3H₂O (l)

A chemist adds 0.45 L of a 1.08 * 10M zinc oxalate (ZnC,0) solution to a reaction flask. Calculate the mass in milligrams of incolate the chemist has added to the flask. Be sure your answer has the correct number of significant digits.

Answers

Answer: The mass of zinc oxalate, the chemist has added is [tex]7.6\times 10^5mg[/tex]

Explanation:

To calculate the mass of solute, we use the equation used to calculate the molarity of solution:

[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}}{\text{Molar mass of solute}\times \text{Volume of solution (in L)}}[/tex]

We are given:

Molarity of solution = [tex]1.08\times 10M=10.8M[/tex]

Molar mass of zinc oxalate = 155.4 g

/mol

Volume of solution = 0.45 L

Putting values in above equation, we get:

[tex]10.8M=\frac{\text{Mass of zinc oxalate}}{155.4g/mol\times 0.45L}\\\\\text{Mass of zinc oxalate}=(10.8mol/L\times 155.4g/mol\times 0.45L)=7.6\times 10^2g[/tex]

To convert the calculated mass into milligrams, we use the conversion factor:

1 g = 1000 mg

So, [tex]7.6\times 10^2g\times \frac{1000mg}{1g}=7.6\times 10^5mg[/tex]

Hence, the mass of zinc oxalate, the chemist has added is [tex]7.6\times 10^5mg[/tex]

A solution contains 0.45 M hydrofluoric acid (HF; KA = 6.8 X 10−4). Write the dissociation reaction. Determine the degree of ionization and the pH of the solution

Answers

Answer:

Degree of ionization = 0.0377

pH of the solution = 1.769

Explanation:

Initial concentration of HF = 0.45 M

[tex]K_a = 6.8 \times 10^{-4}[/tex]

                     [tex]HF \leftrightharpoons  H^+ + F^-[/tex]

Initial        0.45                             0          0

At equi      0.45 - x                      x           x

Equilibrium constant = [tex]\frac{[H^+][F^-]}{HF}[/tex]

                   [tex]6.8 \times 10^{-4}= \frac{[x][x]}{0.45 - x}[/tex]

           [tex]x^2 + 6.8 \times 10^{-4} x -  6.8 \times 10^{-4} \times 4.5 = 0[/tex]

x = 0.017 M

x = Cα

α = Degree of ionization

C = Concentration

Degree of ionization = [tex]\frac{0.017}{0.45} = 0.0377[/tex]

[tex]pH = -log[H^+][/tex]

[H^+]=0.017 M

[tex]pH = -log[0.017][/tex]

             = 1.769

Final answer:

The acid dissociation reaction for hydrofluoric acid in water is [tex]HF (aq) + H_2O (l)[/tex] ⇌ [tex]H_3O^+ (aq) + F- (aq)[/tex]. The concentration of a 0.1 L solution containing 0.05 g of HF is 0.025 M. To find the pH for such a solution using the given Ka, the ICE table method can be utilized.

Explanation:

To answer your questions regarding hydrofluoric acid (HF) and its properties, we can proceed as follows:

a) Write out the acid dissociation reaction for hydrofluoric acid. Label the conjugate acid/base pairs.

Hydrofluoric acid dissociates in water as follows:

[tex]HF (aq) + H_2O (l)[/tex] ⇌ [tex]H_3O^+ (aq) + F- (aq)[/tex]

In this reaction, HF is the conjugate acid and F- is the conjugate base.

b) What is the concentration (M) of a solution containing 0.05 g of HF in 0.1 L H2O?

The molecular weight of HF is approximately 20.01 g/mol. To find the molarity, first convert grams to moles:

0.05 g HF × (1 mol HF/20.01 g HF) = 0.0025 mol HF

Then, divide the moles of HF by the volume of the solution in liters:

0.0025 mol HF / 0.1 L = 0.025 M

c) Using the given Ka value, calculate the pH of the solution from part b

Since HF is a weak acid, and given that Ka = 7.2 × [tex]10^-^4[/tex], you can use the ICE table method to find the concentration of H3O+ and then calculate the pH.

The activation energy, Ea, for the reaction 2 N2O5 (g) LaTeX: \longrightarrow ⟶ 4 NO2 (g) + O2 (g) is 22 kJ/mol. What is the rate constant at 84.8°C if the rate constant is 1.868 sec-1 at 16.6°C? Enter to 3 decimal places. LaTeX: \ln\frac{k2}{k1}=\frac{Ea}{R}\left(\frac{1}{T1}\:-\frac{1}{T2}\right)

Answers

Answer:

The rate constant [tex]k_{2}[/tex] at 84.8°C is [tex]k_{2}=6.423sec^{-1}[/tex]

Explanation:

Taking the Arrhenius equation we have:

[tex]ln\frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}(\frac{1}{T_{1}}-\frac{1}{T_{2}})[/tex]

Where [tex]k_{2}[/tex] is the rate constant at a temperature 2, [tex]k_{1}[/tex] is the rate constant at a temperature 1; [tex]T_{1}[/tex] is the temperature 1, [tex]T_{2}[/tex] is the temperature 2, R is the gas constant and [tex]E_{a}[/tex] is the activation energy.

Now, we need to solve the equation for [tex]k_{2}[/tex], so we have:

[tex]ln\frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}(\frac{1}{T_{1}}-\frac{1}{T_{2}})[/tex]

[tex]ln({k_{2})-ln(k_{1})=\frac{E_{a}}{R}(\frac{1}{T_{1}}-\frac{1}{T_{2}})[/tex]

[tex]ln(k_{2})=E_{a}(\frac{1}{T_{1}}-\frac{1}{T_{2}})+ln(k_{1})[/tex]

Then we need to make sure that we are working with the same units, so:

[tex]R=8.314\frac{J}{mol.K}[/tex]

[tex]T_{1}=16.6^{o}C+273.15=289.75K[/tex]

[tex]T_{2}=84.4^{o}C+273.15=357.95K[/tex]

And now we can replace the values into the equation:

[tex]ln(k_{2})=\frac{22000\frac{J}{mol}}{8.314\frac{J}{mol.K}}(\frac{1}{289.75K}-\frac{1}{357.95K})+ln(1.868sec^{-1})[/tex]

[tex]ln(k_{2})=2646.139K(0.003451K^{-1}-0.002794K^{-1})+0.6249[/tex]

[tex]ln(k_{2})=2.363sec^{-1}[/tex]

To solve the ln we have to apply e in both sides of the equation, so we have:

[tex]e^{ln(k_{2})}=e^{2.363}sec^{-1}[/tex]

[tex]k_{2}=6.423sec^{-1}[/tex]

Answer:

10.37 s-1

Explanation:

From

k= A e-^Ea/RT

Given

Ea=22KJmol-1

T=16.6+273= 289.6K

k= 1.868 sec-1

R= 8.314JK-1mol-1

A???

Hence

A= k/e^-Ea/RT

A= 1.868/e-(22000/8.314×289.6)

A= 1.7 ×10^4

Substitute into to find k at 84.8°C

k= 1.7×10^4× e-(22000/8.314×357.8)

k=10.37 s-1

Based upon the information provided in the class, which of the following bond types is the strongest? Question options:

A) hydrogen bond

B) Ion - Dipole

C) Dipole - Dipole

D) Ion - Induced Dipole

E) Dipole - Induced Dipole

Answers

Answer: A hydrogen bonding is interaction between lone pair and hydrogen atom. An Ion-Dipole interaction is the interaction between an ion formed and a dipole. Dipole forms because of the electronegativity difference between two atom participating in the bond formation, and an ion is formed when an atom gains or lose electron. This ion-dipole interaction is strongest interaction.

Therefore, The right choice is (B)

List some of the important biological functions of carbohydrates

Answers

Answer:

Carbohydrates are the biological molecules having a general emperical formula [tex]C_{m} (H_{2} O)_{n}[/tex].  

There are various important biological functions of carbohydrates. Carbohydrates serve as structural components, component of coenzymes, and backbone of RNA. Carbohydrates provide and store energy, and also plays important role in blood clotting, development, immune system, and preventing pathogenesis.

Examining a chemical system before and after a reaction reveals the a. net chemical change. b. reaction mechanism. c. intermediates. d. activated complex

Answers

Answer: Option (a) is the correct answer.

Explanation:

A chemical change is defined as the change which brings difference in the composition of reacting species.

Therefore, during a chemical change there will always be formation of new compounds.

For example, [tex]2Na + Cl_{2} \rightarrow 2NaCl[/tex] is a chemical change as new substance formed is NaCl.

So basically, a chemical reaction equation or system tells the overall change occuring in the system.

Mechanism of a reaction can only be determined theoretically and not just by examining a chemical system.

Intermediates cannot be isolated as they are very reactive species. Hence, they cannot be determined by examining a chemical system.

Activated complex are the intermediate substances which are formed during the reaction and they cannot be isolated. Hence, they cannot be determined by examining a chemical system.

Thus, we can conclude that examining a chemical system before and after a reaction reveals the net chemical change.

A chemist prepares a solution of potassium permanganate (KMnO4) by measuring out 3.8 umol of potassium permanganate into a 100 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium permanganate solution. Round your answer to 2 significant digits. x 5 ? Explanation Check

Answers

Answer:

3,8×10⁻⁵ mol/L of potassium permanganate solution

Explanation:

To calculate concentration in mol/L you must convert the 3,8 umol to moles and 100 mL to liters, knowing 1 umol are 1×10⁻⁶mol and 1L are 1000 mL.

3,8 umol × (1×10⁻⁶mol / 1 umol ) = 3,8×10⁻⁶mol of potassium permanganate.

100 mL × ( 1L / 1000 mL) = 0,100 L

Thus, concentration in mol/L is:

3,8×10⁻⁶mol / 0,100 L = 3,8×10⁻⁵ mol/L of potassium permanganate solution

I hope it helps!

Final answer:

The concentration of the potassium permanganate solution is 3.8 x 10⁻⁵ M when rounded to two significant digits.

Explanation:

The concentration of a solution is calculated by dividing the number of moles of the solute by the volume of the solution in liters. To calculate the concentration of potassium permanganate (KMnO₄) in the chemist's solution, you need to use the equation:

C = n / V

where C is the molarity (concentration) in moles per liter (mol/L), n is the number of moles of KMnO₄, and V is the volume of the solution in liters.

In this case, the student already has 3.8 μmol (or 3.8 x 10⁻⁶ mol) of KMnO₄ and the total volume is 100 mL, which is equivalent to 0.1 L. Therefore, the molarity (C) of the solution is:

C = 3.8 x 10⁻⁶ mol / 0.1 L = 3.8 x 10⁻⁵ M

Thus, the concentration of the potassium permanganate solution is 3.8 x 10⁻⁵ M, which can be rounded to two significant digits as 3.8 x 10⁻⁵ M.

Tritium H) is an isotope of hydrogen that is sometimes used to make the hands of watches glow in the dark. The half-life of tritium is 123 years. If you start with 1 milligram of trition and wait 49 years, approximately how much of the original tritium remains? O a.6.25 Ob.3.12% O c.25 O d. 506 O e 12.5%

Answers

Answer:

Percentage of the isotope left is 75.87 %.

Explanation:

Initial mass of the isotope = 1 mg

Time taken by the sample, t = [tex]t_{\frac{1}{2}}=123 years[/tex]

Formula used :

[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]

where,

[tex]N_o[/tex] = initial mass of isotope

N = mass of the parent isotope left after the time, (t)

[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope

[tex]\lambda[/tex] = rate constant

[tex]\lambda =\frac{0.693}{123 year}=0.005635 year^{-1}[/tex]

[tex]N=N_o\times e^{-\lambda \times t}[/tex]

Now put all the given values in this formula, we get

[tex]N=1 mg\times e^{-0.005634 year^{-1}\times 49 years}[/tex]

[tex]N=0.7587 mg[/tex]

Percentage of the isotope left:

[tex]\frac{N}{N_o}\times 100[/tex]

=[tex]\frac{0.7587 mg}{1 mg}\times 100[/tex]

Percentage of the isotope left is 75.87 %.

pre: 772/2900 Convert 9.23 um to inches. Given that: 1in = 2.54cm. 9.23 um = about us careen privacy policy terms of use

Answers

Answer:

9.23 μm = 0.000363 in

Explanation:

In order to convert 9.23 μm into inches, we need to keep in mind two conversion factors:

1 in = 2.54 cm1 cm = 10000 μm

Now we proceed to calculate, keeping in the denominator the unit we want to convert, and in the numerator the unit that we wish to convert to:

[tex]9.23um*\frac{1cm}{10000um}*\frac{1in}{2.54cm}  =0.0363 in[/tex]

Thus 9.23 μm are equal to 0.000363 inches.

A dark-adapted human eye at the peak of its sensitivity (510 nm) can perceive a flash when 3.5 x 1015 J of energy enter the iris. How many photons is this? (In fact only 10% of these are absorbed by the retina.)

Answers

Answer:

In 3.5 x 10^(15) J of energy there are 9*10^(33) photons.

Explanation:

To solve this problem, we need two equations.

The equation of light velocity, wich is a relation between wavelenght and frecuency.

                                                      c=λν            (1)

where:

c: speed of light =  3 × 10^8 [m/s] ν: frecuency [1/s]λ: wavelenght of wave [m]

The Photoelectric Effect equation, that refers to the energy absorbed or emanate by ONE photon.

                                                             E = hν            (2)

where:

h : Planck´s constant = 6,626*10^{-34} [J.s]ν: frecuency of radiation [s]Ef: energy of one photon [J]

The first we do is to calculate the frecuency of the flash using equation (1). The wavelenght of the flash is 510 nm = 510 * 10^(-9) m

c=λν........................ ν= c/λ = 3 × 10^8 [m/s]/  510 * 10^(-9) m  = 5,88 * 10^(14) 1/s

Note: small wavelenghts always have big frequencies

Now, we use the photoelectric effect equation to calculate the amount of energy that ONE  photon can abosrb.

 E = hν  ..................... E = 6,626*10^{-34} [J.s] * 5,88 * 10^(14) 1/s =3,9 * 10^(-19) J

To know the number of photons, we just have to divide the TOTAL amount of energy between the energy of ONE photon. So:

# photons = 3.5 x 10^(15) J / 3,9 * 10^(-19) J = 9*10^(33) photons.

What is the sum of the coefficient when the following equation is balanced:

__ H2SO4 + __ NaOH → __ H2O + __ Na2SO4

a. 4
b. 5
c. 6
d. no right answer

Answers

Answer:

The sum of the coefficient is: 1 + 2 +2 + 1 = 6 ( option c)

Explanation:

First we will balance on both sides Na

On the right side we have 2x Na but on the left side we have only 1x Na. So we have to multiply NaOH on the left side by 2.

This will give us:

H2SO4 + 2 NaOH → H2O + Na2SO4

Now we have on both sides 2x Na

We see that on the left side we have 4x H ( 2x H of H2SO4 and 2x H of NaOH), but on the right side we only have 2x H. So, we have to multiply H2O on the right side by 2.

This will give us:

H2SO4 + 2 NaOH → 2 H2O + Na2SO4

Now we have on both sides 2x Na and 4x H.

Also the number of O is on both sides equal, due to this. ( Both sides have 6x O).

Finally, we have this reaction:   H2SO4 + 2 NaOH → 2 H2O + Na2SO4

The sum of the coefficient is: 1 + 2 +2 + 1 = 6 ( option c)

Final answer:

The sum of the coefficients when the equation H2SO4 + NaOH → H2O + Na2SO4 is balanced is 6. The balanced equation is 1 H2SO4 + 2 NaOH → 2 H2O + 1 Na2SO4.

Explanation:

The sum of the coefficients when the chemical equation H2SO4 + NaOH → H2O + Na2SO4 is balanced is the total of the numbers that are used to balance the equation.

To balance the equation, we need to ensure that there is the same number of each type of atom on both the reactant and product sides of the equation. In this case, we balance the equation as follows: 1 H2SO4 (aq) + 2 NaOH (aq) → 2 H2O (l) + 1 Na2SO4 (aq). So, the coefficients in the balanced equation are 1, 2, 2, and 1 respectively.

Adding these coefficients, we get:

1 (for H2SO4) + 2 (for NaOH) + 2 (for H2O) + 1 (for Na2SO4) = 6.

The answer is option c: 6.

Two mercury manometers, one open-end and the other sealed-end, are attached to an air duct. The reading on the open-end manometer is 25 [mm] and that on the sealed-end manometer is 800 [mm]. Determine the absolute pressure in the duct, the gauge pressure in the duct, and the atmospheric pressure, all in (mm Hg).

Answers

Answer:

Pressure in duct = 799.75 mmHg

Atmospheric pressure = 774.75 mmHg

Gauge pressure = 24.99 mmHg

Explanation:

First of all, it is needed to set a pressure balance (taking in account that diameter of manometer is constant) in the interface between the air of the duct and the fluid mercury.

From the balance in the sealed-end manometer, we have the pressure of air duct as:

[tex]P = \rho g h_1[/tex]

We have that ρ is density of mercury and g is the gravity

[tex]\rho = 13600 kg/m^{3}[/tex]

[tex]g = 9.8 m/s^{2}[/tex]

So, replace in the equation:

[tex]P = (13600 kg/m^{3} )(9.8 m/s^{2})(800 mmHg)(\frac{1 mHg}{1000 mmHg})[/tex]

[tex]P = 106624.0 \frac{kg}{s^{2}} = 106624.0 Pa[/tex]

Transforming from Pa to mmHg

[tex]P =  106624.0 Pa (\frac{760 mmHg}{101325 Pa}) = 799.7 mmHg[/tex]

From the balance in the open-end manometer, we have the pressure of air duct as:

[tex]P = \rho g h_2 + P_atm[/tex]

Isolate [tex]P_atm[/tex]:

[tex]P_atm = P - \rho g h_2[/tex]

Calculating:

[tex]P_atm = 799.75 mmHg - (13600 kg/m^{3} )(9.8 m/s^{2})(25 mmHg)(\frac{1 mHg}{1000 mmHg})(\frac{760 mmHg}{101325 Pa} )[/tex]

[tex]P_atm = 774.75 mmHg[/tex]

Finally, gauge pressure is the difference between duct pressure and atmospheric pressure, so:

[tex]P_gau = P - Patm[/tex]

[tex]P_gau = 799.75 mmHg - 774.75 mmHg[/tex]

[tex]P_gau = 24.99 mmHg[/tex]

End.

Refer to the following unbalanced equation: CO2 H20 C6H14 O2>CO2 + H2O What mass of oxygen (O2) is required to react completely with 10.4 g of C6H14? D. 36.7 g Selected Answer: D. 36.7 g Correct Answer:

Answers

Answer: The mass of oxygen gas required is 36.7 grams.

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]      .....(1)

Given mass of hexane = 10.4 g

Molar mass of hexane = 86.18 g/mol

Putting values in equation 1, we get:

[tex]\text{Moles of hexane}=\frac{10.4g}{86.18g/mol}=0.12mol[/tex]

The chemical equation for the combustion of hexane follows:

[tex]2C_6H_{14}+19O_2\rightarrow 12CO_2+14H_2O[/tex]

By stoichiometry of the reaction:

2 moles of hexane reacts with 19 moles of oxygen gas

So, 0.12 moles of hexane will react with = [tex]\frac{19}{2}\times 0.12=1.14mol[/tex] of oxygen gas.

Now, calculating the mass of oxygen gas by using equation 1, we get:

Molar mass of oxygen gas = 32 g/mol

Moles of oxygen gas = 1.14 moles

Putting values in equation 1, we get:

[tex]1.14mol=\frac{\text{Mass of oxygen gas}}{32g/mol}\\\\\text{Mass of oxygen gas}=36.7g[/tex]

Hence, the mass of oxygen gas required is 36.7 grams.

Be sure to answer all parts. Caffeine occurs naturally in coffee and tea, and is present in many soft drinks. The formula of caffeine is C,H1N402. Calculate the formula mass and molar mass of caffeine. Formula mass = amu Molar mass = g/mol

Answers

Answer: The formula mass of caffeine is 97 amu and molar mass of caffeine is 194 g/mol

Explanation:

Formula mass is defined as the sum of the mass of all the atoms each multiplied its atomic masses that are present in the empirical formula of a compound. It is expressed in amu.

Molar mass is defined as the sum of the mass of all the atoms each multiplied its atomic masses that are present in the molecular formula of a compound. It is expressed in g/mol.

Empirical formula is defined as the formula in which atoms in a compound are present in simplest whole number ratios.

The molecular formula of caffeine is [tex]C_8H_{10}N_4O_2[/tex]

Dividing each number of atoms by '2', we will get the empirical formula of caffeine. The empirical formula of caffeine is [tex]C_4H_5N_2O[/tex]

We know that:

Atomic mass of carbon = 12 amu

Atomic mass of hydrogen = 1 amu

Atomic mass of nitrogen = 14 amu

Atomic mass of oxygen = 16 amu

Formula mass of caffeine = [tex](4\times 12)+(5\times 1)+(2\times 14)+(1\times 16)]=97amu[/tex]

Molar mass of caffeine = [tex](8\times 12)+(10\times 1)+(4\times 14)+(2\times 16)]=194g/mol[/tex]

Hence, the formula mass of caffeine is 97 amu and molar mass of caffeine is 194 g/mol

How do you determine the environmental impact of human activities?

Answers

Answer:

Environment refers to everything that surrounds an individual and interacts between them. The factors that control the environment can be biotic and abiotic.

Humans have greatly affected the environment. Some of the ways in which the environment is affected by humans are as follows-

(1) Humans have constructed industries and factories that have released a huge amount of toxic gases into the atmosphere.

(2) These harmful gases have increased the earth's global temperature. As a result of which the global warming effect has increased.

(3) The waste materials eliminated from these industries mix with the rivers and streams and pollute the water. It degrades water quality.

(4) The fossil fuels are exhausted at a very high rate.

(5) The spilling of the oils in the oceans has affected the marine species drastically.

(6) Due to the extensive mining at different places, soil fertility has decreased considerably.

(7) Cutting down trees for settlement purposes and other infrastructures.

Final answer:

The environmental impact of human activities can be measured using the Ecological Footprint model, which calculates the resources consumed and waste generated by our actions. The Precautionary Principle is critical when understanding environmental effects is limited, advocating for caution. Reducing our carbon footprint through simple tasks like walking instead of driving can greatly contribute to environmental health.

Explanation:

To determine the environmental impact of human activities, one can use the Ecological Footprint model developed by William Rees and Mathis Wackernagel. This model measures the amount of biologically productive land and water area required to produce the resources a person, population, or activity consumes and to absorb the waste they generate, given prevailing technology and resource management practices.

Appraising the ways in which human intervention has altered the environment often leads to a blurred line between 'natural' and human-influenced ecosystems. One principle to consider when the effects of an activity on the environment are not well understood is the Precautionary Principle. This suggests that in the absence of clear data, we must assume that harm to the environment could occur and therefore proceed cautiously with any such activities.

Individual choices, like walking instead of driving, can lead to reducing one's overall carbon footprint. This collective effort is critical as it can mitigate some of the negative impacts humans have on the environment, including air pollution, which is significantly attributed to human activity such as transport and industrial processes. Moreover, adjusting consumption patterns and holding corporations accountable for environmental degradation are also key steps towards sustainability.


write a reaction to describe the behavior of the following substances in water. please include all phases.
NF3 (gas)
CH2CH2 (g)

Answers

3NF3 + 5H2O → HNO3 + 2NO + 9HF

Nitrogen fluoride reacts with water to produce nitric acid, nitric oxide, and hydrogen fluoride. The reaction slowly takes place in a boiling solution.

CH2CH2 + H2O → CH3CH2OH

Ethylene is a hydrocarbon with water that creates ethanol and ethanol is an alcohol

List the substances Ar, Cl2, CH4, and CH3COOH, in order of increasing strength of intermolecular attractions. List the substances , , , and , in order of increasing strength of intermolecular attractions. CH4 < Ar< CH3COOH < Cl2 CH3COOH < Cl2 < Ar < CH4 Ar < Cl2 < CH4 < CH3COOH Cl2 < CH3COOH < Ar < CH4 CH4 < Ar < Cl2 < CH3COOH

Answers

Final answer:

The substances Ar, Cl2, CH4, and CH3COOH can be ranked in increasing order of strength of intermolecular attractions as CH4 < Ar < Cl2 < CH3COOH.

Explanation:

The intermolecular forces in the given substances can be ranked from weakest to strongest as follows:

Ar - Argon: The intermolecular force in Argon is London dispersion force, which is the weakest type of intermolecular force.Cl2 - Chlorine: Chlorine is a diatomic molecule and the intermolecular force here is also London dispersion force.CH4 - Methane: Methane has a tetrahedral molecular shape and the only intermolecular force present is London dispersion force.CH3COOH - Acetic Acid: Acetic acid contains a polar functional group -COOH which allows it to form dipole-dipole interactions, making it the substance with the strongest intermolecular attractions.

Be sure to answer all parts. Calculate the number of g of O, that will react with 9.98 mol of CzHg. Enter your answer in scientific notation. The balanced equation is: C3H2(g) + 502(g) → 3C02(g) + 4H2O(g). * 10 (select) A go,

Answers

Answer: The mass of oxygen reacted is [tex]1.60\times 10^{3}g[/tex]

Explanation:

We are given:

Moles of propane = 9.98 mol  

For the given chemical equation:

[tex]C_3H_8(g)+5O2(g)\rightarrow 3CO_2(g)+4H_2O(g)[/tex]

By Stoichiometry of the reaction:

1 mole of propane reacts with 5 moles of oxygen.

So, 9.98 moles of propane will react with = [tex]\frac{5}{1}\times 9.98=49.9mol[/tex] of oxygen.

To calculate the mass of carbon dioxide, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Moles of oxygen = 49.9 moles  

Molar mass of oxygen gas = 32 g/mol

Putting values in above equation:

[tex]49.9mol=\frac{\text{Mass of oxygen}}{32g/mol}\\\\\text{Mass of oxygen}=(49.9mol\times 32g/mol)=1596.8g=1.60\times 10^{3}g[/tex]

Hence, the mass of oxygen reacted is [tex]1.60\times 10^{3}g[/tex]

Calculate the wavelength in nm of ultraviolet light with frequency of 5.5 x 10¹⁵ Hz.

Answers

Answer: Wavelength of ultraviolet light is 54 nm.

Explanation:

Electromagnetic wave is defined as the wave which is associated with both electrical and magnetic component associated with them. They can travel in vacuum as well and travel with the speed of light.

The relationship between wavelength and frequency of the wave follows the equation:

[tex]\nu=\frac{c}{\lambda}[/tex]

where,

[tex]\nu[/tex] = frequency of the wave  =[tex]5.5\times 10^{15}Hz[/tex]

c = speed of light  =[tex]3\times 10^8ms^{-1}[/tex]

[tex]\lambda [/tex] = wavelength of the wave  

Putting in the values we get:

[tex]5.5\times 10^{15}s^{-1}=\frac{3\times 10^8ms^{-1}}{\lambda}[/tex]

[tex]\lambda=0.54\times 10^{-7}m[/tex]

[tex]1nm=10^{-9}m[/tex]

[tex]\lambda=54nm[/tex]

Thus wavelength of ultraviolet light is 54 nm.

Other Questions
Your friend, Suzie Whitson, has designed a new type of outdoor toy that helps children learn basic concepts such as colors, numbers, and shapes. Suzies product will target two groups: day care centers in warm climates and home school programs. Her company is Jiffy Jet and costs for last month follow: Factory rent $ 3,030 Company advertising 1,060 Wages paid to assembly workers 31,400 Depreciation for salespersons vehicles 2,140 Screws 595 Utilities for factory 825 Assembly supervisors salary 3,640 Sandpaper 125 Presidents salary 5,050 Plastic tubing 4,080 Paint 240 Sales commissions 1,330 Factory insurance 1,010 Depreciation on cutting machines 2,120 Wages paid to painters 8,000 Assume that Suzie Whitson has decided to begin production of her outdoor childrens toy. Required: 1 and 2. Identify each of the preceding costs as either a product or a period cost. If the cost is a product cost, decide whether it is for direct materials (DM), direct labor (DL), or manufacturing overhead (MOH) and also identify each of the preceding costs as variable or fixed cost. Which dynasty ruled China during the period depicted on this map? A the Han dynasty B the Ming dynasty C the Qin dynasty D the Yuan dynasty Explain who the old man calls mother and what he calls my mothers gate Gamiel and Aliyah go out to eat and Gamiel does not leave a tip for the waiter. If Aliyah explains his behavior by saying that he is cheap, she is making a(n) __________ attribution. If Aliyah explains his behavior by saying the service was terrible, she is making a __________ attribution. a. temporary; permanent b. personal; situational c. unstable; stable d. uncontrollable; controllable Lourdes is making a frame in the shape of a parallelogram. She adds diagonal braces to strengthen the frame. Parallelogram A B C D is shown. Diagonals are drawn from point A to point C and from point D to point B and intersect at point E. The length of D E is (3 y + 6) centimeters, the length of E B is (5 y minus 10) centimeters, and the length of E C is (2 y + 4) centimeters. How long is the brace that connects points B and D? 8 cm 16 cm 30 cm 60 cm What happened as a result of the October War in 1973? a. OPEC was formed as an oil cartel in Austria. b. Russia increased its production of oil, averting an energy crisis. c. OPEC increased the price of its oil by about 400 percent. d. Ayatollah Khomeini led the Iranian revolution to increase its output of oil stocks. Excerpt from The Rainbow, Chapter X (excerpt) D. H. Lawrence Gudrun and Ursula were co-mates. The second child, with her long, sleepy body and her endless chain of fancies, would have nothing to do with realities. She was not for them, she was for her own fancies. Ursula was the one for realities. So Gudrun left all such to her elder sister, and trusted in her implicitly, indifferently. Ursula had a great tenderness for her co-mate sister. It was no good trying to make Gudrun responsible. She floated along like a fish in the sea, perfect within the medium of her own difference and being. Other existence did not trouble her. Only she believed in Ursula, and trusted to Ursula. From this passage, what can be understood to be implicitly stated? A)Gudrun and Ursula don't see eye to eye. B)Gudrun is likable, while Ursula is unlikable. C)Gudrun is a daydreamer; Ursula is practical. Eliminate D)Gudrun and Ursula don't understand one another. What threats did African Americanscontinue to face in the South, and what measuresdid Congress take to deal with these threats? what is the value of 6*7-3^2*9+4^3please show work will give 5 stars and brainliest Intercultural communication is best described as __________. Group of answer choices communication between persons of different cultures all that a social group has produced and developed the transmission of culture from one generation to another processes that modify a persons culture through contact with other cultures" 3. If a car accelerates from rest at a constant 5.5 m/s, how long will it take for the car to reach avelocity of 28 m/s? What are the monomers of nucleic acids called? a. amino acidsb. monosaccharides c. carbon d. nucleotides 88.6 as a mixed number 1. do you (all) study it2. i don't study it3. we are studying it4. they are studying it simplify 3x + 6 x 2 - 5 x - x2 Economics is all of the following except _______. IS. a social science B. a subject that studies choices C. a subject that arises because we want more than we can get D. a subject that tells countries what goods they must trade To convert from liters/second to cubic gallons/minute, multiply the number of liters/second by 15.850 0 0.0353 00.2642 0 60 The actual sites of gas exchange within the lungs areA) bronchioles. B) pleural spaces. C) terminal bronchioles. D) interlobular septa. E) alveoli. ____________ is a hardware or software tool for recording keystrokes on a target system.KeyboardKeyScannerKeyloggerRootKit Because time is of the essence, volunteers should be interviewed: A. Every week with as many persons who have volunteered. B. At 10-minute intervals. C. In small groups. D. By job type.