Zoe made 6 3/4 cups of fruit salad for a picnic at the picnic they ate 1/3 of the fruit salad how much fruit salad did they eat

Answers

Answer 1

6 3/4 = 27/4

27/4 * 1/3 = 27/12

27/12 = 9/4

Answer: 9/4 cups

Answer 2
Final answer:

To find out how much fruit salad was eaten, convert the mixed number to an improper fraction and multiply by the fraction representing the amount eaten.

Explanation:

To calculate how much fruit salad was eaten, we need to find 1/3 of 6 3/4 cups. First, we convert the mixed number 6 3/4 to an improper fraction by multiplying the whole part (6) by the denominator (4) and adding the numerator (3) to it. This gives us 27/4 cups. Next, we multiply 27/4 by 1/3, which can be simplified to 9/4. So, they ate 9/4 cups of fruit salad.

Learn more about Calculating Amounts here:

https://brainly.com/question/35923484

#SPJ2


Related Questions

1. $10 coupon on a $50.00 dinner

Answers

Answer: It would make the meal $40.00 and with tax it would be $42.80

Step-by-step explanation: 50 - 10 = 40

                                              40 / 0.07 = 2.8

                                              40 + 2.8 = 42.8

Answer:

Step-by-step explanation:

A fruit stand sells 6 oranges for $3.00 and 3 grapefruit for $2.40. Sherry buys 10 oranges and 11 grapefruit. How much does Sherry spend on the fruit?

Answers

Answer:

Step-by-step explanation:

FIRST FOR ORANGES SHE BOUGHT 10 SO 10 TIMES 3 IS 30 AND THEN 11 TIMES 2.40 IS 26.40. 30 PLUS 26.40 IS 56.40 THATS YOUR AWNSER

Sam’s dry cleaning store has 3 employees who fold the clothes. Each employee can fold 45 shirts every hour. Assuming a level aggregate program how many more employees will Sam has to hire or fire to meet a demand of 1600 shirts per day if everyone works an 8 hour shift? Hire 5 more employees Hire 2 more employees Fire 1 employee Hire 17 more employees Fire 2 employee

Answers

Answer:

Hire 2 more employees.

Step-by-step explanation:

Multiply 45 by 8 to find out how many shirts 1 employee can fold for one day, one employee can fold 360 shirts in one day, then multiply that by 3 to see how many shirts they can fold a day with only the three employees. They can fold 1080 shirts in one day.

1600-1080= 520. Subtracting the demand by how many his store already can fold shows how many more he needs.

1 employee isn't enough because they can only fold 360 shirts a day so he would need to hire 2 employees because they can fold 720 shirts which meets the demand of shirts that need to be folded.

Which graph represents the function f(x) = 2/(x - 1) + 4x

Answers

I attached a screenshot of the graph, but you may also look for the graph by going to Desmos.com

If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a ≤ M(b − a). Use this property to estimate the value of the integral. π/6 5 tan(2x) dx π/8

Answers

Answer:

The final integration in the given limits will be 89.876

The boundary of a lamina consists of the semicircles y = 1 − x2 and y = 16 − x2 together with the portions of the x-axis that join them. Find the center of mass of the lamina if the density at any point is inversely proportional to its distance from the origin.

Answers

The center of mass of the lamina is located at the point (0, (39/12) (1 / ln(4))).

To find the center of mass of the given lamina, we need to calculate the moment about the x-axis and the y-axis, and then divide them by the total mass of the lamina.

Given information:

- The boundary of the lamina consists of the semicircles y = sqrt(1 - x^2) and y = sqrt(16 - x^2), and the portions of the x-axis that join them.

- The density at any point is inversely proportional to its distance from the origin.

Find the total mass of the lamina.

Let the density function be [tex]\[ \rho(x, y) = \frac{k}{\sqrt{x^2 + y^2}} \][/tex], where k is a constant.

The total mass, M, is given by the double integral of the density function over the region of the lamina.

M = ∫∫ ρ(x, y) dA

To evaluate this integral, we need to express the lamina in polar coordinates.

The semicircles can be represented as:

0 ≤ r ≤ 1, 0 ≤ θ ≤ π

0 ≤ r ≤ 4, π ≤ θ ≤ 2π

The total mass can be calculated as:

[tex]\[ M = \int_{0}^{\pi} \int_{0}^{1} \frac{k}{r} r \, dr \, d\theta + \int_{\pi}^{2\pi} \int_{0}^{4} \frac{k}{r} r \, dr \, d\theta \]\[ M = k \left( \pi \ln(1) + 2\pi \ln(4) \right) \]\[ M = 2\pi k \ln(4) \][/tex]

Calculate the moment about the x-axis.

The moment about the x-axis, Mx, is given by:

[tex]\[ M_x = \int_{0}^{\pi} \int_{0}^{1} \frac{k}{r} r^2 \sin(\theta) \, dr \, d\theta + \int_{\pi}^{2\pi} \int_{0}^{4} \frac{k}{r} r^2 \sin(\theta) \, dr \, d\theta \]\[ M_x = k \left( \frac{\pi}{2} + \frac{32\pi}{3} \right) \]\[ M_x = \frac{39\pi}{6} k \][/tex]

Calculate the moment about the y-axis.

The moment about the y-axis, My, is given by:

My = ∫∫ x ρ(x, y) dA

In polar coordinates:

[tex]\[ M_y = \int_{0}^{\pi} \int_{0}^{1} \frac{k}{r} r^2 \cos(\theta) \, dr \, d\theta + \int_{\pi}^{2\pi} \int_{0}^{4} \frac{k}{r} r^2 \cos(\theta) \, dr \, d\theta \][/tex]

My = 0 (due to symmetry)

Find the coordinates of the center of mass.

The coordinates of the center of mass (x_cm, y_cm) are given by:

x_cm = My / M

y_cm = Mx / M

Substituting the values, we get:

x_cm = 0 / (2πk ln(4)) = 0

y_cm = (39π/6) k / (2πk ln(4)) = (39/12) (1 / ln(4))

Therefore, the center of mass of the lamina is located at the point (0, (39/12) (1 / ln(4))).

Complete question:

The boundary of a lamina consists of the semicircles y=sqrt(1 − x^2) and y= sqrt(16 − x^2) together with the portions of the x-axis that join them. Find the center of mass of the lamina if the density at any point is inversely proportional to its distance from the origin.

The center of mass of the lamina is at the origin (0, 0)

To find the center of mass of the lamina, we first need to find the mass and the moments about the  x- and  y-axes.

The mass  M of the lamina can be calculated by integrating the density function over the lamina. Since the density at any point is inversely proportional to its distance from the origin, we can express the density[tex]\( \delta \) as \( \delta(x, y) = \frac{k}{\sqrt{x^2 + y^2}} \)[/tex], where  k is a constant.

Let's denote [tex]\( \delta(x, y) \) as \( \frac{k}{\sqrt{x^2 + y^2}} \)[/tex]. Then the mass M  is given by the double integral of [tex]\( \delta(x, y) \)[/tex] over the region  R bounded by the semicircles and the portions of the x-axis:

[tex]\[ M = \iint_R \delta(x, y) \, dA \][/tex]

Where  dA  represents the differential area element.

To find the moments about the  x- and  y -axes, we calculate:

[tex]\[ M_x = \iint_R y \delta(x, y) \, dA \]\[ M_y = \iint_R x \delta(x, y) \, dA \][/tex]

Then, the coordinates [tex]\( (\bar{x}, \bar{y}) \)[/tex] of the center of mass are given by:

[tex]\[ \bar{x} = \frac{M_y}{M} \]\[ \bar{y} = \frac{M_x}{M} \][/tex]

Now, let's proceed to find [tex]\( M \), \( M_x \), and \( M_y \)[/tex]

First, let's express the density [tex]\( \delta(x, y) \)[/tex] in terms of k:

[tex]\[ \delta(x, y) = \frac{k}{\sqrt{x^2 + y^2}} \][/tex]

Now, we'll find the mass  M by integrating [tex]\( \delta(x, y) \)[/tex] over the region  R :

[tex]\[ M = \iint_R \frac{k}{\sqrt{x^2 + y^2}} \, dA \][/tex]

Since the region  R  is symmetric about the  x-axis, we can integrate over the upper half and double the result:

[tex]\[ M = 2 \iint_{R_1} \frac{k}{\sqrt{x^2 + y^2}} \, dA \][/tex]

Now, we'll switch to polar coordinates [tex]\( (r, \theta) \)[/tex]. In polar coordinates, the region [tex]\( R_1 \)[/tex]is described by [tex]\( 0 \leq \theta \leq \pi \) and \( 1 \leq r \leq 4 \).[/tex]

So, the integral becomes:

[tex]\[ M = 2 \int_{0}^{\pi} \int_{1}^{4} \frac{k}{r} \cdot r \, dr \, d\theta \]\[ = 2k \int_{0}^{\pi} \int_{1}^{4} 1 \, dr \, d\theta \]\[ = 2k \int_{0}^{\pi} (4 - 1) \, d\theta \]\[ = 2k \int_{0}^{\pi} 3 \, d\theta \]\[ = 6k \pi \][/tex]

For [tex]\( M_x \)[/tex], we integrate [tex]\( x \delta(x, y) \)[/tex] over the region R :

[tex]\[ M_x = \iint_R x \cdot \frac{k}{\sqrt{x^2 + y^2}} \, dA \]\[ = 2 \int_{0}^{\pi} \int_{1}^{4} r \cos(\theta) \cdot \frac{k}{r} \cdot r \, dr \, d\theta \]\[ = 2k \int_{0}^{\pi} \int_{1}^{4} \cos(\theta) \cdot r \, dr \, d\theta \]\[ = 2k \int_{0}^{\pi} \left[ \frac{1}{2} r^2 \cos(\theta) \right]_{1}^{4} \, d\theta \][/tex]

[tex]\[ = 2k \int_{0}^{\pi} \left( 8 \cos(\theta) - \frac{1}{2} \cos(\theta) \right) \, d\theta \]\[ = 2k \int_{0}^{\pi} \left( \frac{15}{2} \cos(\theta) \right) \, d\theta \]\[ = 2k \left[ \frac{15}{2} \sin(\theta) \right]_{0}^{\pi} \]\[ = 2k \cdot 0 \]\[ = 0 \][/tex]

Now, for[tex]\( M_y \)[/tex], we integrate [tex]\( y \delta(x, y) \)[/tex]over the region  R :

[tex]\[ M_y = \iint_R y \cdot \frac{k}{\sqrt{x^2 + y^2}} \, dA \\\[ = 2 \int_{0}^{\pi} \int_{1}^{4} r \sin(\theta) \cdot \frac{k}{r} \cdot r \, dr \, d\theta \\\[ = 2k \int_{0}^{\pi} \int_{1}^{4} \sin(\theta) \cdot r \, dr \, d\theta \\\[ = 2k \int_{0}^{\pi} \left[ \frac{1}{2} r^2 \sin(\theta) \right]_{1}^{4} \, d\theta \\[/tex]

[tex]\[ = 2k \int_{0}^{\pi} \left( 8 \sin(\theta) - \frac{1}{2} \sin(\theta) \right) \, d\theta \\\[ = 2k \int_{0}^{\pi} \left( \frac{15}{2} \sin(\theta) \right) \, d\theta \\\[ = 2k \left[ -\frac{15}{2} \cos(\theta) \right]_{0}^{\pi} \\\[ = 2k \cdot 0 \\\[ = 0 \][/tex]

Now, we have [tex]\( M = 6k \pi \), \( M_x = 0 \), and \( M_y = 0 \).[/tex]

Finally, we can find the coordinates of the center of mass [tex]\( (\bar{x}, \bar{y}) \):[/tex]

[tex]\[ \bar{x} = \frac{M_y}{M} = \frac{0}{6k \pi} = 0 \]\[ \bar{y} = \frac{M_x}{M} = \frac{0}{6k \pi} = 0 \][/tex]

So, the center of mass of the lamina is at the origin (0, 0) .

what’s the sum of interior angles of a 45-gon?

Answers

Answer:

Step-by-step explanation:

As each exterior angle is 45o , number of angles or sides of the polygon is 360o45o=8 . Further as each exterior angle is 45o , each interior angle is 180o−45o=135o .

The sum of the interior angles of a 45-gon is 7740 degrees.

To calculate the sum of interior angles of a 45-gon, or any polygon, we can use the formula (n - 2) *180 degrees, where n is the number of sides in the polygon. For a 45-gon, we substitute n with 45:

(45 - 2) * 180 = 43 * 180 = 7740

Therefore, the sum of the interior angles of a 45-gon is 7740 degrees.

Which sentence can represent the inequality One-half x + three-fourths greater-than-or-equal-to 5 and one-fourth?
The sum of half of a number and three-fourths is at least five and one quarter.
Half the sum of a number and three-fourths is not more than five and one quarter.
The sum of half of a number and three-fourths is at most five and one quarter.
Half the sum of a number and three-fourths is not less than five and one quarter.

Answers

Answer:

  The sum of half of a number and three-fourths is at least five and one quarter

Step-by-step explanation:

It's all about making sense of an English sentence.

  "half the sum ..." is different from "the sum of half ..."

And ...

  "at least" and "not less than" mean the same (≥)

  "not more than" and "at most" mean the same (≤)

_____

Since all of the expressions are written out in words, it is a matter of matching the ideas expressed. That's a problem in reading comprehension, not math.

__

"One-half x + three-fourths [is] greater-than-or-equal-to 5 and one-fourth"

  means the same as ...

"The sum of half of a number and three-fourths is at least five and one quarter"

Final answer:

The correct sentence for the inequality one-half x + three-fourths ≥ 5 and one-fourth is 'The sum of half of a number and three-fourths is at least five and one quarter'.

Explanation:

The correct representation of the inequality one-half x + three-fourths ≥ 5 and one-fourth (0.5x + 0.75 ≥ 5.25) in a sentence is The sum of half of a number and three-fourths is at least five and one quarter. This means that when you take half of a certain number (which we call x), add three-fourths to it, the result should be no less than five and one quarter. The other options either incorrectly suggest that the inequality is an equation, or misrepresent the inequality by suggesting the sum is 'at most' or not more or less than the given value, which changes the meaning of the original inequality.

What is the best estimate of the difference between 48 and 21

Answers

Answer: 27?

Step-by-step explanation:

Answer

The best estimate for 48 and 21 is 50 and 20.  50-20= 30 so 30 is ur answer

Step-by-step explanation:

what is 1/6 more than 2/6

Answers

3/6 or 1/2

could please check out my questions? thx!

The average sales per customer at a home improvement store during the past year is $75 with a standard deviation of $12. The probability that the average sales per customer from a sample of 36 customers, taken at random from this population, exceeds $78 is:

Answers

Answer:

0.0668

Step-by-step explanation:

Assuming the distribution is normally distributed with a mean of $75,

with a standard deviation of $12.

We can find the z-score of 78 using;

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]

[tex]\implies z=\frac{78-75}{\frac{12}{36} } =1.5[/tex]

Using our normal distribution table, we obtain the area that corresponds to 0.25 to be 0.9332

This is the area corresponding to the probability that, the average is less or equal to 78.

Subtract from 1 to get the complement.

P(x>78)=1-0.9332=0.0668

The probability that the average sales per customer from a sample of 36 customers, taken at random from this population, exceeds $78 is 0.0668.

Calculation of the probability:

Since The average sales per customer at a home improvement store during the past year is $75 with a standard deviation of $12.

Here  we need to find out the z score

= [tex]78-75\div 12\div 36[/tex]

= 1.5

Here we considered normal distribution table, we obtain the area that corresponds to 0.25 to be 0.9332

So,  the average is less or equal to 78.

Now

Subtract from 1 to get the complement.

So,

P(x>78)=1-0.9332

=0.0668

Learn more about probability here: https://brainly.com/question/24613748

Arc Length and Radians question- please help! Will mark brainliest! Is 20pts!

The answer is shown but please give me an explanation so I can show my work!

Answers

Given:

Given that the radius of the merry - go - round is 5 feet.

The arc length of AB is 4.5 feet.

We need to determine the measure of the minor arc AB.

Measure of the minor arc AB:

The measure of the minor arc AB can be determined using the formula,

[tex]Arc \ length=(\frac{\theta}{360})2 \pi r[/tex]

Substituting arc length = 4.5 and r = 5, we get;

[tex]4.5=(\frac{\theta}{360})2 (3.14)(5)[/tex]

Multiplying the terms, we get;

[tex]4.5=(\frac{\theta}{360})31.4[/tex]

Dividing, we get;

[tex]4.5=0.087 \theta[/tex]

Dividing both sides of the equation by 0.087, we get;

[tex]51.7=\theta[/tex]

Rounding off to the nearest degree, we have;

[tex]52=\theta[/tex]

Thus, the measure of the minor arc AB is 52°

Answer:

52°

Step-by-step explanation:

Arc length = (theta/360) × 2pi × r

4.5 = (theta/360) × 2 × 3.14 × 5

theta/360 = 45/314

Theta = 51.59235669

40% of students in a school wore blue on a spirit Day. If two
students are randomly selected, what is the probability that both
students will not be wearing blue?

Answers

The probability that both students will not wear blue is 0.36, obtained by multiplying the probability of one student not wearing blue, 0.60, by itself.

To find the probability that both students will not be wearing blue, we first need to determine the probability that one student is not wearing blue, and then multiply that probability by itself for two students.

Step 1: Calculate the probability that one student is not wearing blue.

Given that 40% of students wore blue, the probability that one student is not wearing blue is 1 - 0.40 = 0.60.

Step 2: Multiply the probability for one student by itself for two students.

The probability that both students will not be wearing blue is (0.60) ×(0.60) = 0.36.

So, the probability that both students will not be wearing blue is 0.36.

Given a family with four ​children, find the probability of the event.

The oldest is a girl and the youngest is a boy​, given that there is at least one boy and at least one girl.

Answers

Answer:

28.57% probability that the oldest is a girl and the youngest is a boy​, given that there is at least one boy and at least one girl.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

These are all the possible outcomes: from youngest to oldest, b is boy and g is girl

b - b - b - g

b - b - g - b

b - b - g - g

b - g - b - b

b - g - b - g

b - g - g - b

b - g - g - g

g - b - b - b

g - b - b - g

g - b - g - b

g - b - g - g

g - g - b - b

g - g - b - g

g - g - g - b

The nuber of total outcomes is 14.

Desired outcomes:

Oldest(last) girl, youngest(first) boy

b - b - b - g

b - b - g - g

b - g - b - g

b - g - g - g

So 4 desired outcomes

Probability:

4/14 = 0.2857

28.57% probability that the oldest is a girl and the youngest is a boy​, given that there is at least one boy and at least one girl.

Final answer:

The probability that a family with four children will have the oldest being a girl and the youngest being a boy, given that there is at least one boy and one girl, is 1/4.

Explanation:

To solve this probability question, we need to consider all possible combinations of children while adhering to the given conditions: the oldest child must be a girl (G), the youngest must be a boy (B), and there must be at least one boy and at least one girl in the family.

The possible genders for the four children can be represented as a sequence of G (girl) and B (boy) like this: G---B. There are two positions in the middle that can be either a boy or a girl. Since each position can be filled independently with either a boy or a girl, there are 2 options for each of the middle children, giving us 2 x 2 = 4 combinations: GBGB, GBBB, GGBB, GGBG.

To calculate the probability of any single one of these combinations occurring, we need to remember that the probability of giving birth to a boy or a girl is equal, which means each event (birth of a child) has a probability of 1/2. Thus, the probability of each combination is (1/2)^4 since there are four independent events (births). However, since we have 4 combinations that meet the criteria, we multiply this probability by 4. So, the probability is 4 * (1/2)^4 = 1/4.

Therefore, the probability that a family with four children will have the oldest being a girl and the youngest being a boy, given that there is at least one boy and at least one girl, is 1/4.

help, will give brainliest

Answers

Answer:

10.0

Step-by-step explanation:

4.0+8.0=12.0-2.0=10.0

n monitoring lead in the air after the explosion at the battery factory, it is found that the amounts of lead over a 6 day period had a standard error of 1.91. Find the margin of error that corresponds to a 95% confidence interval. (Round to 2 decimal places)

Answers

Answer:

434.98

Step-by-step explanation:

During a chemical reaction, the function y=f(t) models the amount of a substance present, in grams, at time t seconds. At the start of the reaction (t=0) , there are 10 grams of the substance present. The function y=f(t) satisfies the differential equation dydt=−0.02y^2

Answers

The solution of the differential equation is:

[tex]y = \frac{1}{-0.1 + 0.02*t}[/tex]

How to solve the differential equation?

Here we need to solve:

[tex]\frac{dy}{dt} = -0.02*y^2[/tex]

This is a separable differential equation, we can rewrite this as:

[tex]\frac{dy}{y^2} = -0.02dt[/tex]

Now we integrate in both sides to get:

[tex]\int\limits\frac{dy}{y^2} = \int\limits-0.02dt\\\\-\frac{1}{y} = -0.02*t + C[/tex]

Where C is a constant of integration.

Solving for y, we get:

[tex]y = \frac{1}{-C + 0.02*t}[/tex]

And we know that for t = 0, there are 10 grams of substance, then:

[tex]10 = \frac{1}{-C + 0.02*0} = -\frac{1}{C} \\\\C = -1/10 = -0.1[/tex]

So the equation is:

[tex]y = \frac{1}{-0.1 + 0.02*t}[/tex]

If you want to learn more about differential equations, you can read:

https://brainly.com/question/18760518

Provided below are summary statistics for independent simple random samples from two populations. Use the nonpooled​ t-test and the nonpooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval.
X1 = 11, S1 = 5, n1 = 25, x2 = 10, S2 = 4, n2 = 20
A) What are the correct hypotheses for a​right-tailed test? α = 0.05
i. Compute the test statistic.
ii. Determine the​ P-value.
B) The 90​% confidence interval is from _______ to ________

Answers

Using the t-distribution, we have that:

a)

The null hypothesis is [tex]H_0: x_1 - x_2 \leq 0[/tex].The alternative hypothesis is [tex]H_1: x_1 - x_2 > 0[/tex]

i) The test statistic is t = 0.746.

ii) The p-value is of 0.2299.

b) The 90​% confidence interval is from -1.25 to 3.25.

Item a:

For a right-tailed test, we test if [tex]x_1[/tex] is greater than [tex]x_2[/tex], hence:

The null hypothesis is [tex]H_0: x_1 - x_2 \leq 0[/tex].The alternative hypothesis is [tex]H_1: x_1 - x_2 > 0[/tex]

The standard errors are:

[tex]S_{e1} = \frac{5}{\sqrt{25}} = 1[/tex]

[tex]S_{e2} = \frac{4}{\sqrt{20}} = 0.8944[/tex]

The distribution of the difference has mean and standard error given by:

[tex]\overline{x} = x_1 - x_2 = 11 - 10 = 1[/tex]

[tex]s = \sqrt{S_{e1}^2 + S_{e2}^2} = \sqrt{1^2 + 0.8944^2} = 1.34[/tex]

We have the standard deviation for the samples, hence, the t-distribution is used.

The test statistic is given by:

[tex]t = \frac{\overline{x} - \mu}{s}[/tex]

In which [tex]\mu = 0[/tex] is the value tested at the null hypothesis.

Hence:

[tex]t = \frac{\overline{x} - \mu}{s}[/tex]

[tex]t = \frac{1 - 0}{1.34}[/tex]

[tex]t = 0.746[/tex]

The test statistic is t = 0.746.

The p-value is found using a t-distribution calculator, with t = 0.746, 25 + 20 - 2 = 43 df and 0.05 significance level.

Using the calculator, it is of 0.2299.

Item b:

The critical value for a 90% confidence interval with 43 df is [tex]t = 1.6811[/tex].

The interval is:

[tex]\overline{x} \pm ts[/tex]

Hence:

[tex]\overline{x} - ts = 1 - 1.6811(1.34) = -1.25[/tex]

[tex]\overline{x} + ts = 1 + 1.6811(1.34) = 3.25[/tex]

The 90​% confidence interval is from -1.25 to 3.25.

A similar problem is given at https://brainly.com/question/25840856

Answer the question.
Sophie works as a computer programmer. she earns $28 per hour. If Sophie works 10 hours. how much money will she earn?

Answers

$280

10 * 28 = 280 hope this helps :)

The screening process for detecting a rare disease is not perfect. Researchers have developed a blood test that is considered fairly reliable. It gives a positive reaction in 94.5% of the people who have that disease. However, it erroneously gives a positive reaction in 1.5% of the people who do not have the disease. Consider the null hypothesis "the individual does not have the disease" to answer the following questions.
a. What is the probability of a Type I error?
b. What is the probability of a Type II error?

Answers

Answer:

a) Type 1 Error: 1.5%

b) Type 2 Error: 5.5%

Step-by-step explanation:

Probability of positive reaction when infact the person has disease = 94.5%

This means, the probability of negative reaction when infact the person has disease = 100- 94.5% = 5.5%

Probability of positive reaction when the person does not have the disease = 1.5%

This means,

Probability of negative reaction when the person does not have disease = 100% - 1.5% = 98.5%

Our Null Hypothesis is:

"The individuals does not have the disease"

Part a) Probability of Type 1 Error:

Type 1 error is defined as: Rejecting the null hypothesis when infact it is true. Therefore, in this case the Type 1 error will be:

Saying that the individual have the disease(positive reaction) when infact the individual does not have the disease. This means giving a positive reaction when the person does not have the disease.

From the above data, we can see that the probability of this event is 1.5%. Therefore, the probability of Type 1 error is 1.5%

Part b) Probability of Type 2 Error:

Type 2 error is defined as: Accepting the null hypothesis when infact it is false. Therefore, in this case the Type 2 error will be:

Saying that the individual does not have the disease(negative reaction) when infact the individual have the disease.

From the above data we can see that the probability of this event is 5.5%. Therefore, the probability of Type 2 error is 5.5%

Most individuals are aware of the fact that the average annual repair cost for an automobile depends on the age of the automobile. A researcher is interested in finding out whether the variance of the annual repair costs also increases with the age of the automobile. A sample of automobiles years old showed a sample standard deviation for annual repair costs of and a sample of automobiles years old showed a sample standard deviation for annual repair costs of . Let year old automobiles be represented by population . a. State the null and alternative versions of the research hypothesis that the variance in annual repair costs is larger for the older automobiles. b. Conduct the hypothesis test at a level of significance. Calculate the value of the test statistic (to 2 decimals).

Answers

Answer:

Step-by-step explanation:

Hello!

The researcher's objective is to test if the variance of the annual repair costs increases with the age of the automobile, i.e. the older the car, the more the repairs costs. The parameters of the study are the population variances of the annual repair costs of 4 years old cars and 2 years old cars.

X₁: Costs of annual repair of a 4 years old car.

Assuming X₁~N(μ₁;δ₁²)

A sample of 26 automobiles 4 years old showed a sample standard deviation for annual repair costs of $170

n₁= 26 and S₁= $170

X₂: Costs of annual repair of a 2 years old car.

Assuming X₂~N(μ₂;σ₂²)

A sample of 25 automobiles 2 years old showed a sample standard deviation for the annual repair cost of $100.

n₂= 25 and S₂= $100

a. State the null and alternative versions of the research hypothesis that the variance in annual repair costs is larger for older automobiles.

H₀: δ₁² ≤ σ₂²

H₁: δ₁² > σ₂²

b. At a .01 level of significance, what is your conclusion? What is the p-value? Discuss the reasonableness of your findings.

This is a variance ratio test and you have to use a Snedecor's F-statistic:

[tex]F= \frac{S^2_1}{S_2^2} * \frac{Sigma_1^2}{Sigma_2^2}~~F_{n_1-1;n_2-1}[/tex]

[tex]F_{H_0}= \frac{28900}{10000}*1= 2.89[/tex]

This test is one-tailed to the right and so is the p-value, you have to calculate it under a F₂₅;₂₄

P(F₂₅;₂₄≥2.89)= 1 - P(F₂₅;₂₄<2.89)= 1 - 0.994= 0.006

Using the p-value approach the decision rule is:

If p-value ≤ α, reject the null hypothesis.

If p-value > α, do not reject the null hypothesis.

α: 0.01

The p-value is less than the level of significance, the decision is to reject the null hypothesis.

Then using a 1% level, you can conclude that the population variance of the cost of annual repairs for 4 years old cars is greater than the population variance of the cost of annual repairs for 2 years old cars.

I hope this helps!

The mean per capita income is 16,44516,445 dollars per annum with a standard deviation of 397397 dollars per annum. What is the probability that the sample mean would differ from the true mean by greater than 3838 dollars if a sample of 208208 persons is randomly selected? Round your answer to four decimal places.

Answers

Final answer:

To calculate the probability that the sample mean would differ from the true mean by greater than $38, if a sample of 208 persons is randomly selected, we need to use the Central Limit Theorem. First, we determine the standard error of the mean (SEM) using the formula SEM = standard deviation / square root of sample size. Then, we calculate the Z-score using the formula Z = (sample mean - true mean) / SEM. Finally, we find the probability associated with the Z-score using a Z-table or calculator.

Explanation:

To calculate the probability that the sample mean would differ from the true mean by greater than $38, if a sample of 208 persons is randomly selected, we need to use the Central Limit Theorem.

According to the Central Limit Theorem, the distribution of sample means will be approximately normal regardless of the shape of the population distribution, as long as the sample size is large enough.

Since the sample size is greater than 30, we can assume that the distribution of sample means will be approximately normal.

To calculate the probability, we first need to determine the standard error of the mean (SEM), which is the standard deviation divided by the square root of the sample size. In this case, the SEM = $397 / √208.

Next, we calculate the Z-score using the formula Z = (sample mean - true mean) / SEM = ($38 - 0) / ($397 / √208). Finally, we can use a Z-table or calculator to find the probability associated with the Z-score.

In this case, it is the probability that Z is greater than the calculated Z-score. Hence, the probability that the sample mean would differ from the true mean by greater than $38 is the probability that Z is greater than the calculated Z-score.

Daniel makes 16 more muffins than kris.
Daniel makes 34 muffins. How many muffins does kris make?
Solve the equation problem choose yes or no

Answers

Kris makes 18 muffins

(20-(-16))=20+16=36 I need the answer to this question please!

Answers

Answer:

3.75

Step-by-step explanation:

Hope this helps

A survey of high school girls classified them by two attributes: whether or not they participated in sports and whether or not they had one or more older brothers. Use the following data to test the null hypothesis that these two attributes of classification are independent:

Answers

Answer:

From hypothesis, there is sufficient evidence to conclude that there is significant difference in two proportions.

Step-by-step explanation:

sample proportion for 1=12/20=0.6

sample proportion for 2=13/40=0.325

pooled proportion=25/60=0.4167

Test statistic:

z=(0.6-0.325)/sqrt(0.4167*(1-0.4167)*((1/20)+(1/40)))

z=2.037

p-value=2*P(z>2.037)=0.0417

As,p-value<0.05,we reject the null hypothesis.

There is sufficient evidence to conclude that there is significant difference in two proportions.

Victor has $40 in a savings account. The interest rate is 5%, compounded annually.
To the nearest cent, how much interest will he earn in 3 years?

Answers

Answer:

$6.31

Step-by-step explanation:

We are going to use the compound simple interest formula for this problem:

[tex]A=P(1+\frac{r}{n} )^{nt}[/tex]

P = initial balance

r = interest rate (decimal)

n = number of times compounded annually

t = time

Our first step is to change 5% into its decimal form:

5% -> [tex]\frac{5}{100}[/tex] -> 0.05

Next, plug in the values:

[tex]A=40(1+\frac{0.05}{1})^{1(3)}[/tex]

[tex]A=46.31[/tex]

Lastly, subtract 40 (our original value) from 46.31:

[tex]46.31-40=6.31[/tex]

Victor earned $6.31 in interest after 3 years.

3•(7+10)=G+30 use the distributive property to solve

Answers

Answer: G=21

Step-by-step explanation:

Solve for G by simplifying both sides of the equation, then isolating the variable.

A watch cost $48 more than a clock. The cost for the clock is 4/7 the cost of the watch. You'll find the total cost of the two items

Answers

Final answer:

To find the total cost of the watch and the clock, set up equations based on the given relationships, solve for the individual costs, and then add them together. The total cost amounts to $176.

Explanation:

The student is asking to find the total cost of two items - a watch and a clock. The clock costs 4/7 of what the watch costs, and the watch costs $48 more than the clock. Let's denote the cost of the clock as c and the cost of the watch as w. The problem gives us two equations: w = c + $48 and c = (4/7)w. Now, we can solve these equations to find the individual costs of the clock and the watch, then sum them to find the total cost.

Step-by-step Solution

Substitute the value of c from the second equation into the first equation: w = (4/7)w + $48.

Multiply both sides of the equation by 7 to eliminate the fraction: 7w = 4w + $336.

Subtract 4w from both sides: 3w = $336.

Divide both sides by 3 to find the cost of the watch: w = $112.

Now that we have the cost of the watch, we can substitute it back into the equation c = (4/7)w to find the cost of the clock: c = (4/7) x $112 = $64.

The total cost of both items is the sum of the cost of the clock and the cost of the watch: w + c = $112 + $64 = $176.

Therefore, the total cost of the watch and the clock together is $176.

During a fundraiser, Ms. Dawson’s class raised $560, which is 25% more than Mr. Casey’s class raised. How much money did Mr. Casey's class raise?

Answers

Answer:

$420

Step-by-step explanation:

To work this out you would need to find the 25% decrease of 560. To do this you would first divide 25 by 100, which gives you 0.25. Then you would minus 0.25 from 1, which gives you 0.75. This is because when finding percentage decreases you would first have to convert it into a decimal. Then you would have to minus it from 1 , to make sure that it will be a 25% decrease not a 75% decrease. Then you would multiply 560 by 0.75, which gives you 420.

1) Divide 25 by 100.

[tex]25/100=0.25[/tex]

2) Minus 0.25 from 1.

[tex]1-0.25=0.75[/tex]

3) Multiply 560 by 0.75.

[tex]560*0.75=$420[/tex]

When the driver applies the brakes of a small-size truck traveling 10 mph, it skids 5 ft before stopping. How far will the truck skid if it is traveling 55 mph when the brakes are applied

Answers

Answer:

The truck will skid for 151 ft before stopping when the brakes are applied

Step-by-step explanation:

From the equations of motion, we will use

[tex]v^{2} = u^{2}-2aS[/tex]

We have to make sure that the parameters we are working with are in the same unit of length. Here, we will be converting from ft to miles

When the truck is travelling at 10 mph.

S = distance the truck skids = [tex]\frac{5ft}{5286ft/mile}= 0.00094697miles[/tex]

Final velocity of truck, v = 0 m/s (this is because the truck decelerates to a halt)

Initial velocity of truck u = 10 mph

Hence, we have

[tex]0^{2}=10^{2}-2a\times 0.00094697[/tex]

[tex]a= 52799.9miles/hr^{2}[/tex]

This is the deceleration of the truck

We will work based on the assumption that the car decelerates at the same rate each time the brakes are fully applied.

When the truck is travelling at u= 55 mph.

We will need to use the deceleration of the car to find the distance traveled when it skids.

[tex]0^{2}=55^{2}-2\times52799.98\times S[/tex]

[tex]S= 0.0286 miles\approx 151 ft[/tex]

∴The car skids for about 151 ft when it is travelling at 55 mph and the brakes are applied.

Other Questions
Can anyone explain this picture of the first camera if it was taken by a camera. Solve for x in the triangle round your answer to the nearest tenth Calculate the number of moles of sodium hydroxide in 8g of sodium hydroxide (NaOH). Na=23 O=16 H=1 Party labels provide useful information for performance voting, so voters can easily _________.a. vote for the in-party when the voter thinks the government is doing well and vote for the out-party when the voter thinks the government is doing badly.b. vote based solely on the performance of the voter's retirement account or other investmentc. vote in a national election based upon how the voter's municipal officials are performingd. vote at every available election opportunity Brian tied a 136-foot rope around the perimeter of his rectangular house. He knows that the length of the house is 10 feet less than twice the width. Find the dimensions of Brians house. help me please ...online claases got me crazy What mountain peak is noted with the black triangle Based upon market research, the Hawthorne Company has determined that consumers are willing to purchase 109 units of their portable media player each week when the price is set at $63.00 per unit. At a unit price of $12.80, consumers are willing to buy 360 units per week. (a) Determine the weekly demand equation for this product, assuming price, p, and quantity, x, are linearly related. p Estimate the size of a crowd at an airshow that occupies a rectangular space with dimensions of 500 feet by 750 feet (to the nearest whole number).Assume that each person occupies 9 square feet.A)10,417 peopleB)20,833 peopleC)41,667 peopleD)83,333 people A planet is discovered orbiting the star 51 Peg with a period of four days (0.01 years). 51 Peg has the same mass as the Sun. Mercury's orbital period is 0.24 years, and Venus's is 0.62 years. The average orbital radius of this planet is:a) less than Mercury's.b) between Mercury's and Venus's.c) greater than Venus's. Canine Supply Companys budgeted sales for January, February, and March are $120,000, $160,000, and $140,000, respectively. Based on past experience, ABC expects that 25% of a months sales will be collected in the month of sale, 65% in the following month, and 9% in the second month following the sale. Budgeted cash receipts for the month of March would be Suppose that the real return from operating factories in Canada rises relative to the real rate of return in the United States. Other things the same, a. this will only increase U.S. net capital outflow. b. this will increases U.S. net capital outflow and decrease Canadian net capital outflow. c. this will only increase Canadian net capital outflow. d. this will decreases U.S. net capital outflow and increase Canadian net capital outflow. What is 3 1/10 in decimal notation? Abraham just accepted a new job at consulting firm that pays $47,500 during the first year, with an annual increase of 7% per year beginning in the second year. What can Abraham expect to earn in his fifth anniversary with the consulting firm? Round your answer to the nearest dollar Todd plans to swim 18 laps in the pool.Each Lap is 50 yards.So far Todd has swam 738 yards. What percentage of the total has Todd completed? A.18% B.82% c.62% D77% It has been announced that 64% of all teenagers say they have a television in their bedroom. These findings came from a simple random sample of 1,000 teens. The standard error estimated from this sample was 1.5% 1. Which of the following is the best estimate of the 85% confidence interval for the proportion of teenagers who say that they have a TV set in their bedroom ? A. 59.5% to 68.5%. C. 62.5% to 65.5%B. 61% to 67% D. 64% to 100% A disk 8.04 cm in radius rotates at a constant rate of 1 220 rev/min about its central axis. (a) Determine its angular speed. rad/s (b) Determine the tangential speed at a point 3.02 cm from its center. m/s (c) Determine the radial acceleration of a point on the rim. magnitude km/s2 direction (d) Determine the total distance a point on the rim moves in 2.02 s. m Calculate the molarity of a solution, given that its volume is 820 mL and that it contains 7.4 g of ammonium chloride, NH,CI. Help please !! Its geometry What is the radius and diameter of the following circle?13 cmRadius =cmDiameter =