Zoey is reading a 100-page novel. If she averages reading 1 page in 1 minute, which is a reasonable estimate of the amount of time it will take her to read the novel? A) between 1 1/2 and 2 hours B) between 1 and 1/2 hours Eliminate C) between 2 and 3 hours D) between 0 and 1 hour

Answers

Answer 1

Answer:

The answer to your question is: letter A

Step-by-step explanation:

data

Book = 100 pages

Zoey reads 1 page per minute

Now we solve it using rule of three

     1 page  ------------------  1 min

 100 pages ----------------   x

x = 100x1/1 = 100 min will take Zoey to read the book

   60 min  ------------------   1 hour

 100 min ---------------------   x

x = 100/60 = 10/6

and convert it to a mix fraction = 1 2/3    = 1 hour 40 minutes

Then, the answer is letter A

 

Answer 2

Answer:

A

Step-by-step explanation:

well since she reads 1 page per minute and there are 100 pages then that means it takes 100 minutes.

100 minutes= 1 2/3 hours which is in between 1 1/2 and 2 so the answer would be A


Related Questions

help asap ( will give brainliest )​

Answers

Answer:

B

Step-by-step explanation:

the open circle at -9 indicates that x is "greater than" -9, whereas the filled circle at -5 indicates that x is " less than or equal" to -5

An independent-measures research study uses a total of 18 participants to compare two treatment conditions. If the results are used to construct a 90% confidence interval for the population mean difference, then the t values will be ±1.746.a) Trueb) False

Answers

Answer:

The answer is false

Step-by-step explanation:

In a sample above 30 obs  like this the confidence interval is defined as

X+- t* (s/sqrt(n)) where X is the mean t the tvalue for a given confidence level, n the size of sample and s standar deviation.

To find de appropiate value of t we must see the T table where rows are degrees of freedom and columns significance level

The significance is obtained:

significance = 1 - confidence level = 1 - 0.9 = 0.10

Degrees of freedom (df) for the inteval are

df = n - 1 = 18 - 1 = 17

So we must look for the value of a t with 17 values and significance of 0.10 which in t table is 1.740 not 1.746 ( thats the t for 16 df)

The statement is false because the critical t value for a 90% confidence interval depends on the degrees of freedom, which, for an independent measures study with 18 participants split into two groups, would be 16 (18 participants - 2 groups),

The statement regarding an independent-measures research study comparing two treatment conditions with 18 participants constructing a 90% confidence interval and having t values of ±1.746 is assessed as False. The critical t value is determined by the degrees of freedom, which in an independent-measures t-test, is generally calculated as the total number of participants minus the number of groups. With 18 participants divided into two groups, the degrees of freedom would be 16 (18 - 2), assuming equal group sizes. The exact t value for a 90% confidence interval would need to be looked up in a t distribution table or calculated using statistical software, and it would likely differ from ±1.746 for 16 degrees of freedom.

To accurately determine the critical t value, one would consult a t distribution table or statistical software tailored to the specific degrees of freedom for the study. It's important to note that confidence intervals, t-tests, and their interpretations are crucial in research for estimating the range within which the true population parameter lies and for assessing the significance of the findings, respectively.

The binomial coefficient Subscript n Baseline Upper C Subscript x gives the number of ways of picking a subset of x items out of n. Using this​ fact, how many ways are there to pick a committee of 4 from among all of the office​ employees?

Answers

Answer:

[tex]{n \choose 4}[/tex] where n s the total number of employees

Step-by-step explanation:

Since [tex]{n \choose x}[/tex] gives the number of ways you can pick a subset of x elements from n.

remember in order to calculate the combination number ( for example if you know the number of office employees) is

[tex]{n \choose 4}=\frac{n!}{4! (n-4)!}[/tex]

using that 4! =1*2*3*4  and same idea for n!

In a housing project there are 350 households in which English is spoken, 50 in which Spanish is spoken, and 100 in which the language is other than English or Spanish. If a psychologist approaches a house at random to conduct an interview, the chance that the language in that household will NOT be English?a- .002b- .14c- .3d- .43

Answers

Answer:   C. 0.3

Step-by-step explanation:

Given : Number of English speaking households =350

Number of Spanish speaking households =50     (1)

Number of households in which the language is other than English or Spanish=100      (2)

Total households participates in this survey =350+50+100=500

No. of households not speak English =100+50=150    (Add (1) and (2))

If a psychologist approaches a house at random to conduct an interview, the chance that the language in that household will NOT be English will be :_

[tex]\dfrac{\text{No. of households not speak English}}{\text{Total households}}\\\\=\dfrac{150}{500}\\\\=\dfrac{3}{10}=0.3[/tex]

Hence, the correct option is option (c).

Solve the Quadratics:

1) m^2+5m+6=0
2) 5p^2-125=0
3) 2x^2-4x-30=0
4) 6n^2-10n-16=3
5) 5v^2-2-v=-v

Answers

Answer:  1. {-2, -3}   2. {-5, 5}   3. {-3, 5}

Step-by-step explanation:

1) First, factor the equation by finding two numbers whose product is 6 and sum is 5.  Then apply the Zero Product Property by setting each product equal to zero and solving for m.

m² + 5m + 6 = 0

                 ∧

                1 + 6 = 7

                2 + 3 = 5   This works!

        (x + 2)(x + 3) = 0

x + 2 = 0      x + 3 = 0

     x = -2           x = -3

2) Factor out the GCF of 5. Notice the remaining factor is the difference of squares (because the middle term is missing and the first and last terms are perfect squares. Then apply the Zero Product Property by setting each product equal to zero and solving for p.

5p² - 125 = 0

5(p² - 25) = 0

5(p +5)(p - 5) = 0

5 ≠ 0    p+ 5 = 0         p - 5 = 0

                 p = -5              p = 5

3) Factor out the GCF of 2. Factor the equation by finding two numbers whose product is -15 and sum is -2.  Then apply the Zero Product Property by setting each product equal to zero and solving for x.

2x² - 4x - 30 = 0

2(x² - 2 - 15) = 0

              ∧

             1 - 15 = -14

             3 - 5 = -2    This works!

     (x + 3)(x - 5) = 0

x + 3 = 0     x - 5 = 0

     x = -3          x = 5

***************************************************

You are allowed a maximum of 3 questions.

Try #4 and #5 on your own.  If you still need help with them, please create a new question and post them.

Mrs. Canon and Mrs. Solace are both getting their nails done today. Mrs. Canon gets her nails done every 8 days. Mrs. Solace gets her nails done every 12 days. In how many days will they be at the nail salon on the same day again?

Answers

Answer:

  24 days

Step-by-step explanation:

The least common multiple (LCM) of 8 and 12 is 8·3 = 12·2 = 24.

The ladies will be at the nail salon on the same day again in 24 days.

_____

8 = 2³

12 = 2²·3

The LCM will have these factors to their highest powers: 2³·3 = 24.

__

The LCM is also the product divided by their greatest common factor (GCF). GCF(8, 12) = 4, so ...

  LCM(8, 12) = 8·12/4 = 24

Answer:

24

Step-by-step explanation:(LCM) 8,16,24

(LCM)12,24

LCM is 24 so the answer to the question is 24

Let 5 be the region that lies between the curves y=− xm ; y= − xn ; 0 < x < 1 where m and n are integers with 0 < n , m. (a) Sketch the region 5. (b) Find the coordinates of the centroid of 5. (c) Try to find values of m and n such that the centroid lie.

Answers

Answer:

(a) Please see the first figure attached

(b) The coordinates of the centroid are [tex]G(\frac{2}{3}, \frac{m+n}{3} )[/tex]

(c) due to the definition of the centroid of a triangle, this will always lie inside the triangle, therefore, for any value of [tex]m[/tex] and [tex]n[/tex], the centroid will lie

Step-by-step explanation:

Hi, let us first solve part (a). Since for any given values of [tex]n[/tex] and [tex]m[/tex] we will obtain two linear functions:

[tex]y=-mx[/tex] and

[tex]y=-nx[/tex]

with [tex]0\leq x\leq 1[/tex] we can assure that our region is going to be a triangle. To see this, please take a look at the plot I generated using Wolfram. In this case, I have used two specific values for m and n but keeping the condition [tex]0\leq n\leq m[/tex].

Now, for part (b) let me start remembering what the centroid is: the centroid of a triangle is the point where the three medians of the triangle meet. And a median of a triangle is a line segment from one vertex to the midpoint on the opposite side of the triangle (see the second figure where the medians are depicted in red and the centroid of the triangle, G is depicted in blue). For a given triangle [tex]\bigtriangleup \rm{ABC}[/tex], the coordinates of its centroid [tex]G[/tex] are given by:

[tex]G_x=\frac{A_x+B_x+C_x}{3}[/tex] and [tex]G_y=\frac{A_y+B_y+C_y}{3}[/tex]

Now let's apply this to our problem. Take a look at the first figure. The vertex A has clearly coordinates [tex](0,0)[/tex] for any value of [tex]m[/tex] and [tex]n[/tex] since the two lines have their intersection with y-axis in this point.

To obtain the coordinates of [tex]B[/tex] and [tex]C[/tex], let's use the given functions and the fact that the coordinate x is limited to 1. Then, we have:

For A:

[tex]y=-mx[/tex] then, when [tex]x=1[/tex], substituting in the formula [tex]y=-m[/tex]

For B and doing the same as for A:

[tex]y=-nx[/tex] then, when [tex]x=1[/tex], substituting in the formula [tex]y=-n[/tex]

Thus, the coordinates of the vertices of the triangle are: [tex]A(1, m)[/tex], [tex]B(1,3)[/tex] and [tex]C(0,0)[/tex] and the coordinates of the centroid are:

[tex]G_x=\frac{A_x+B_x+C_x}{3} = G_x=\frac{1+1+0}{3}\\G_x=\frac{2}{3}[/tex]

and

[tex]G_y=\frac{A_y+B_y+C_y}{3}=\frac{m+n+0}{3}\\G_y=\frac{m+n}{3}[/tex].

Summarizing: the coordinates of the centroid of the region are [tex]G(\frac{2}{3}, \frac{m+n}{3} )[/tex]

Now, for part (c), due to the definition of the centroid of a triangle, this will always lie inside the triangle, therefore, for any value of [tex]m[/tex] and [tex]n[/tex], the centroid will lie. Other important points of the triangle, like the orthocentre and circumcentre, can lie outside in obtuse triangles. In right triangles, the orthocentre always lies at the right-angled vertex.

PLZ HURRY IT'S URGENT!!

Which shows the phrase "the difference between a number and 10" as a variable expression?



x−10


10x−10


x + 10



−10x

Answers

Answer: x-10

Since you're finding the difference of a number, x, and 10, you would do x-10.

Final answer:

The variable expression for "the difference between a number and 10" is represented by x − 10, which implies the subtraction of 10 from a variable x.

Explanation:

The phrase "the difference between a number and 10" as a variable expression is represented by x − 10. When we discuss 'the difference' in mathematical terms, we are referring to the result of subtracting one number from another. Here, whatever the unknown number (represented by the variable x) is, we are subtracting 10 from it.

Addison painted her room. She had 505050 square meters to paint, and she painted at a constant rate. After 222 hours of painting, she had 353535 square meters left. Let yyy represent the area (in square meters) left to paint after xxx hours. Complete the equation for the relationship between the area and number of hours.

Answers

Answer:

y = 50 - 7.5x

Step-by-step explanation:

Given,

The original area for painting = 50 m²,

Let c meter per hour be the constant rate of painting,

So, after 2 hours, the area painted = 2c m²,

Thus, the area left to paint = 50 - 2c

According to the question,

50 - 2c = 35

2c = 15

⇒ c = 7.5

i.e. the constant rate of painting is 7.5 meters per hour,

Hence, the area left after x hours = 50 - 7.5x

If y represents the area left to paint after x hours,

Then,

y = 50 - 7.5x

Which is the required equation.

A cash register at a store contains $66 bills. There are 6 more $5 bills than $10 bills. The number of $1 dollar bills is three times more the number of $10 dollar bills. How many bills of each kind are there?

Answers

Answer: There are 8 $5 bills, 2 $10 bills, and 6 $1 bills.

Step-by-step explanation: If you have 6 more $5 bills than the number of $10 bills, that means you have at least 6 to start off with. This also means you have at least 1 $10 bill. If you have 1 $10 bill, then you have 3 $1 bills as well. Adding those bills up, you get $43. From here, you know you need $3 more. Meaning you have to add another $10 bill. Since you added another $10 bill, you have to equal out the $5 bills.

So if you know you have 2 $10 bills and 6 $1 bills, you can determine that you need 8 $5 bills to complete the set.

2 $10 = $20

8 $5 = $40

6 $1 = $6

$20 + $40 + $6 = $66

A seven digit numer that has a 0 in the ones place a 6 in the ten thousends place an 8 in the millions place and fives in each of the remaining places.What is the number

Answers

That number is 8,565,550.

Answer:

8,565,550.

Step-by-step explanation:

The number is 8,x6x,xx0   where  all the x's = 5 so the answer is:

8,565,550.

A certain one-day seminar consisted of a morning session and an afternoon session. If each of the 128 people attending the seminar attended at least one of the two sessions, how many of the people attended the morning session only?

Answers

Answer: 64 people attended to the morning session only.

Step-by-step explanation:

They told us that each one of the 128 people attended at least one of the two sessions of the one-day seminar. We don't know for sure to which one of the sessions they attended, we only know that every person attended at least one. The probability of one person going to the morning session is the same as the probability that they will go to the afternoon session: 50%. To get the number of persons that attended the morning session only, we simply have to perform the product between the probability and the total number of potential attendees to the seminar. Let N be the total number of attendes, M the number of persons going to the morning session only and P the probability of those persons actually going to that session:

[tex]M = N \times P = 128 \times 0.5 = 64[/tex]

So the total number of persons that attended the morning sessions only is 64.

In the past year, Ann watched 27 movies that she thought were very good. She watched 90 movies over the whole year. Of the movies she watched, what percentage did she think were very good?

Answers

Answer:

30%

Step-by-step explanation:

27 over 90 is equal to 0.3 in decimal form, turn that into percentage by multiplying by 100, and you get 30%

Based on an 8-hour day, the number of hours worked in a hospital food service department was 55,267/yr, and the total number of hours paid was 59,995/yr. The actual number of productive FTEs was:
a. 2.27b. 18.90c. 26.60d. 28.80

Answers

Final answer:

To find the actual number of productive FTEs, divide the total number of hours worked (55,267) by the number of hours worked per FTE. The answer is option a. 2.27.

Explanation:

To find the actual number of productive FTEs, we need to divide the total number of hours worked (55,267) by the number of hours worked per FTE. The number of hours worked per FTE can be calculated by dividing the total number of hours paid by the total number of productive FTEs. So, the equation becomes:

55,267 / (59,995 / x) = x

Multiplying both sides of the equation by (59,995 / x), we get:

55,267 = (59,995 / x) * x

Simplifying further:

55,267 = 59,995

Dividing both sides of the equation by 59,995, we get:

x = 55,267 / 59,995

x = 0.9213

Therefore, the actual number of productive FTEs is approximately 0.9213, which can be rounded to 0.92. Therefore, the answer is option a. 2.27.

Final answer:

The actual number of productive Full-Time Equivalents (FTEs) is calculated by dividing the total annual productive hours (55,267 hours/year) by the standard annual working hours for one full-time employee (2,080 hours/year), resulting in 26.57, which rounds to option c. 26.60.

Explanation:

To calculate the actual number of productive Full-Time Equivalents (FTEs) based on the hours worked in a hospital food service department, we use the given number of hours worked per year and divide it by the standard number of working hours in a year for one full-time employee.

First, let's establish the standard number of working hours in a year for one FTE, based on an 8-hour day:

1 workday = 8 hours1 workweek = 5 workdays (typically for full-time)1 workyear (excluding holidays/vacations) = 52 workweeksTotal working hours in a year = 8 hours/day × 5 days/week × 52 weeks/year = 2,080 hours/year

To find the actual number of productive FTEs, we divide the number of hours worked by the standard number of working hours in a year:

Productive Hours Worked: 55,267 hours/year

Standard Hours for 1 FTE: 2,080 hours/year

Actual number of productive FTEs = Productive Hours Worked / Standard Hours for 1 FTE

Actual number of productive FTEs = 55,267 hours/year / 2,080 hours/year

Actual number of productive FTEs = 26.57

Therefore, the nearest option to our result is c. 26.60.

For which values of λ does the system of equations (λ − 2)x + y = 0 x + (λ − 2)y = 0 have nontrivial solutions? (That is, solutions other than x = y = 0.) For each such λ find a nontrivial solution.

Answers

Answer:

λ=3,λ=1

Step-by-step explanation:

let (λ-2)=a

[tex]ax + y = 0\\x + ay = 0[/tex]

solve:

[tex]ax + y = 0\\ax + a^2y = 0\\y-a^2y=0\\a^2 = 1[/tex]

replace a:

[tex](\lambda-2)^2=1\\\lambda^2-4\lambda+4=1\\\lambda^2-4\lambda+3=0[/tex]

solve:

[tex]\lambda_1=2+\sqrt{4-3} =3\\\lambda_2=2-\sqrt{4-3}=1[/tex]

Nontrivial solutions in a system of equations are found when the determinant of the characteristic matrix is zero. For the given equations, the values of λ that lead to nontrivial solutions are λ = 2, with a nontrivial solution x = 1, y = -1.

Nontrivial solutions of the system of equations occur when the determinant of the characteristic matrix is zero. For the given equations, you need to find values of λ that make the determinant of the matrix zero. This means solving for λ where (λ-2)^2 = 0.

Thus, the values of λ that lead to nontrivial solutions are λ = 2. For λ = 2, a nontrivial solution would be x = 1, y = -1.

This process identifies when the system has solutions beyond the trivial one where x = y = 0.

For what values of b are the vectors \langle -46, b, 10 \rangle and \langle b, b^2, b \rangle orthogonal

Answers

Answer:

b = 6 or b = -6 (non-zero vectors)

b = 0 (zero vector)

Step-by-step explanation:

Two vectors [tex]\vec{a}=\langle a_1,a_2,a_3\rangle[/tex] and [tex]\vec{b}=\langle b_1,b_2,b_3\rangle[/tex] are orthogonal if their dot product is equal to 0, or in other words

[tex]a_1\cdot b_1+a_2\cdot b_2+a_3\cdot b_3=0[/tex]

In your case,

[tex]\vec{a}=\langle -46, b, 10\rangle\\ \\\vec{b}=\langle b,b^2,b\rangle[/tex]

Hence, if vectors a and b are orthogonal, then

[tex]-46\cdot b+b\cdot b^2+10\cdot b=0\\ \\-46b+b^3+10b=0\\ \\b^3-36b=0\\ \\b(b^2-36)=0\\ \\b(b-6)(b+6)=0\\ \\b=0\text{ or }b=6\text{ or }b=-6[/tex]

Note, then if b = 0, then [tex]\vec{b}=\langle 0,0,0\rangle[/tex] and zero-vector is orthogonal to any other vectors.

Thus, b = 6 or b = -6.

A ball is thrown in the air from a ledge. It's height in feet represented by f(x)=16(x^2-6x-7), where x is the number of seconds since the ball has been thrown. The height of the ball is 0 feet when it hits the ground. How many seconds does it take the ball to reach the ground?

Answers

Answer:

Step-by-step explanation:

Since we know that the height is 0, we can figure out how long it took the ball to reach the ground by setting [tex]f(x) = 0[/tex] and solving for [tex]x[/tex]:

[tex]f(x) = 16(x^{2} - 6x - 7)[/tex]

[tex]0 = 16(x^{2} - 6x - 7)[/tex]

[tex]0 = x^{2} - 6x - 7[/tex]

[tex]0 = (x - 7)(x + 1)[/tex]

[tex]x = -1, 7[/tex]

Because time can only be positive, the answer is 7 seconds.

Answer:

7 seconds.

Step-by-step explanation:

height h = 16(x^2-6x-7) = 0

x^2 - 6x - 7 = 0

(x - 7)(x + 1) = 0

x = 7 seconds (we ignore the negative).

An amusement park offers a yearly membership of $275 that allows for free parking and admission to the park. Members can also use the water park for an additional $5 per day. Nonmembers pay $6 for parking, $15 for admission, and $9 for the water park. a. Write and solve an equation to find the number of visits it would take for the total cost to be the same for a member and a nonmember if they both use the water park at each visit. b. Make a table for the costs of members and nonmembers after 3, 6, 9, 12 and 15 visits to the park. c. Plot these points on a coordinate graph and describe things you notice from the graph.

Answers

Answer: (6+15+9)=275+5x

X=11

Step-by-step explanation:

Supposing one car by visitor, then non members will always pay the 5 dollars per person parking

Non members will spend 30 dollars a visit

And members wil have an accumulated spend of 275 initial dollars plus 5 dollars a visit.

Then (6+15+9)=275+5x

X=11

They'll have spent the same after the 11th visit.

Chart and plot in picture.

Two angles are complementary. One angle measures 20 degrees more than the other angle. Find the measure of the LARGER angle. Just type in the answer. Do not type in a variable or the degree symbol.

Answers

Two complementary angles equal 90 degrees.

If one is 20, the larger one would be 90 - 20 = 70 degrees.

Item 5: Suppose an American worker can make 20 pairs of shoes or grow 100 apples per day. On the other hand, a Canadian worker can produce 10 pairs of shoes or grow 20 apples per day. The opportunity cost for Canada is ___.

Answers

Answer:

The opportunity cost for Canada will be comparatively high in the production of shoes.

Step-by-step explanation:

An American worker can make 20 pairs of shoes or grow 100 apples per day.

A Canadian worker can produce 10 pairs of shoes or grow 20 apples per day.

In easy words, opportunity cost is defined as the value of ones next best alternative.

The opportunity cost for Canada will be comparatively high in the production of shoes.

Help! Simplify (see photo) pls explain
If you don’t know pls don’t answer thanks

Answers

Answer:

[tex]-8 \sqrt{6}[/tex]

Step-by-step explanation:

[tex]4i\sqrt{-24} \\4i\sqrt{-1} *\sqrt{24} \\4i*i*\sqrt{4}*\sqrt{6}\\-4 * 2*\sqrt{6} \\-8 \sqrt{6}[/tex]

.

[tex]\sqrt{-1} =i \\i*i = -1[/tex]

Given that Ray B A bisects ∠DBC, which statement must be true? m∠ABD = m∠ABC AB ≅ BC B is the midpoint of DC. m∠DBC = 90°

Answers

Answer:

A.[tex]m\angle ABD=m\angle ABC[/tex]

Step-by-step explanation:

We are given that a  ray BA bisects angle DBC.

We have to find true statement .

Angle bisector property:When a ray bisect any angle then the angles  made by bisection of angle are equal.

When ray BA bisects angle DBC

Then, [tex]m\angle ABD=m\angle ABC[/tex]

By angle bisector property.

Therefore, option A is true.

Answer:A.[tex]m\angle ABD=m\angle ABC[/tex]

Answer:

A

Step-by-step explanation:

Because I said this was the answer. I know all.

Kim made 1 1/4 quarts of a fruit smoothie. She drank 1/5 of her smoothie. Her brothers drank the rest. They each had 1/3 quart. How many brothers does Kim have?

Answers

6/3 Quart It is a multi step problem

Answer:

3 brothers.

Step-by-step explanation:

You know that Kim made [tex]1\frac{1}{4}[/tex] quarts of a fruit smoothie.

Observation: [tex]1\frac{1}{4}[/tex] is the same as saying [tex]\frac{5}{4}[/tex] because, [tex]1\frac{1}{4} =1+\frac{1}{4} =\frac{4.1+1}{4} =\frac{5}{4}[/tex], then Kim made [tex]\frac{5}{4}[/tex] of a fruit smoothie.

Now, the problem says that Kim drank [tex]\frac{1}{5}[/tex] of her smoothie, this means:

[tex]\frac{5}{4} .\frac{1}{5}=\frac{1}{4}[/tex]

Kim drank [tex]\frac{1}{4}[/tex] quart of the smoothie, the rest of the smoothie is:

[tex]\frac{5}{4}- \frac{1}{4}=\frac{4}{4}[/tex]

Now to know how many brothers Kim has we have to divide the rest of the smoothie ([tex]\frac{4}{4}[/tex]) in [tex]\frac{1}{3}[/tex], this is:

[tex]\frac{4}{4} :\frac{1}{3} =\frac{12}{4} =3[/tex]

Then Kim has 3 brothers.

El costo por kilo de queso chihuahua, es de 78. el total de queso comprado el dia anterior fue de 195. que fraccion del total de queso chihuahua queda

Answers

Answer: [tex]\frac{3}{8}\ kg[/tex]

Step-by-step explanation:

The table attached is part of the exercise (Without the table the question was incomplete).

We know that the cost of 1 kilogram of Chihuahua cheese is 78 and the Chihuhua cheese bought the day before cost 195.

The first step is to calculate the amount of cheese bought with 195:

[tex]\frac{195}{78}=\frac{5}{2}\ kg[/tex]

Now, we need to add the fractions provided in the table (This table shows the amount of cheese that was used in that day). Then:

[tex]\frac{1}{2}\ kg+\frac{7}{8}\ kg+\frac{3}{4}\ kg=\frac{17}{8}\ kg[/tex]

Finally, in order to find what fraction of Chihuahua cheese is left, we must subtract [tex]\frac{5}{2}\ kg[/tex] and [tex]\frac{17}{8}\ kg[/tex]:

[tex]\frac{5}{2}\ kg-\frac{17}{8}\ kg=\frac{3}{8}\ kg[/tex]

Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 800 L of a dye solution with a concentration of 1 g/L. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 8 L/min, the well-stirred solution flowing out at the same rate. Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value. (Round your answer to one decimal place.)

Answers

Answer:

t = 100 ln 100

Step-by-step explanation:

D(t) : The amount of dye (in g) at time t (in min)

D(0) = 800 L * 1 g/L = 800 g

the change in D is:

[tex]\frac{dD(t)}{dt} =D_{in}- D_{out} \\D_{in}: 0*8\ g/min \\D_{out}: \frac{D(t)}{800} *8\ g/min \\\frac{dD(t)}{dt} = -\frac{1}{100}D(t)[/tex]

[tex]\frac{dD(t)}{D(t)} =-\frac{1}{100}dt \\\int\limits^{D(t)}_{800} {\frac{1}{D(t)} } \, dD(t) =\int\limits^t_0 {t} \, dt \\ln(\frac{D(t)}{800})=-\frac{1}{100}t \\D(t) = 800e^{-\frac{1}{100}t} \\Solving\ D(t) = 0.01* D(0)=0.01*800 =8 \\8 = 800e^{-\frac{1}{100}t} \\ln (\frac{1}{100})=-\frac{1}{100}t \\100 ln 100 = t[/tex]

Dylan has a good credit score and is planning to apply for a loan. What could negatively affect Dylan’s credit score?

A.
missing a loan payment
B.
not making a down payment
C.
providing collateral
D.
using a cosigner

Answers

Answer:

the right answer is a)missing a loan payment

Step-by-step explanation:

because if you are missing a loan payment, you would have a negative report at the risk centers

Answer:

A. missing a loan payment

Step-by-step explanation:

Whenever someone wish to apply a loan, lenders would consider his/her credit scores when analyzing the application. A good credit score would increase his/her chance to be qualified for the loan. The higher the score qualifies you for a fair interest rates, and also it would reduce the perceived risk.

Considering the question, missing a loan payment would definitely affect his credit score negatively. It would affect the interest rate, loan terms and credit limit.

Matching: write in the correct letter.
line segment AB
Ray AB
The length of line segment AB
Line AB

answer options
a) AB
b) AB with a line above it.
c) AB with a line above it going only left.
d) AB with a line with both arrows on either side.

Answers

line segment: b
ray: c
length: a
line: d

Line segment AB - b) AB with a line above it.

Ray AB - c) AB with a line above it going only left.

The length of line segment AB - a) AB

Line AB - d) AB with a line with both arrows on either side.

To match the given terms with the correct letter options, let's define each term and find its corresponding notation:

Line segment AB: A line segment is a part of a line that is bounded by two distinct end points.Ray AB: A ray starts at one point and extends infinitely in one direction. The length of line segment AB: This refers to the numerical length or distance between points A and B. Line AB: A line extends infinitely in both directions.

These notations are crucial in geometry to clearly communicate different types of lines and measurements.

For your rock collection display you want to have at most 25 samples. You want to have at least 3 times as many sedimentary samples (x) as metamorphic samples (y)

Answers

Answer:

Step-by-step explanation:

If a ball is thrown into the air with a velocity of 46 ft/s, its height in feet t seconds later is given by y = 46t − 16t2.

Answers

Answer:

Step-by-step explanation:

you want maximum height reached?

[tex]\frac{dy}{dt} =46-32t\\\\at max. height velocity=0\\ 0=46-32t\\32 t=46\\t=46/32=23/16\\y=t(46-16t)\\ at t=\frac{23}{16} \\ y=\frac{23}{16}(46-16*\frac{23}{16} )\\\\y=\frac{529}{16} ft[/tex]

i. Average velocity for a time period of 0.5 seconds: -26 ft/s.  ii. Average velocity for a time period of 0.1 seconds: -36.4 ft/s iii. Average velocity for a time period of 0.05 seconds: 3.2 ft/s.  iv. Average velocity for a time period of 0.01 seconds: -18.36 ft/s

To find the average velocity for a given time period, we need to calculate the change in height and divide it by the change in time.

Given the height equation:[tex]y = 46t - 16t^2[/tex]

i. Time period of 0.5 seconds:

Initial time, [tex]t_1 = 2[/tex]

Final time, [tex]t_2 = 2 + 0.5 = 2.5[/tex]

Change in time: [tex]\delta t = t2 - t1 = 2.5 - 2 = 0.5[/tex] seconds

To find the change in height, we substitute the initial and final times into the height equation:

Initial height, [tex]y_1 = 46t_1 - 16t_1^2 = 46(2) - 16(2)^2 = 92 - 64 = 28[/tex] feet

Final height, [tex]y_2 = 46t_2 - 16t_2^2 = 46(2.5) - 16(2.5)^2 = 115 - 100 = 15[/tex]feet

Change in height:  [tex]\delta y = y_2 - y_1 = 15 - 28 = -13[/tex] feet

Average velocity: V_avg = Δy / Δt = -13 / 0.5 = -26 ft/s (negative since the ball is moving downward)

ii. Time period of 0.1 seconds:

Initial time,[tex]t_1 = 2[/tex]

Final time, [tex]t_2 = 2 + 0.1 = 2.1[/tex]

Change in time: [tex]\delta t = t_2 - t_1 = 2.1 - 2 = 0.1[/tex]seconds

Initial height, [tex]y_1 = 46t_1 - 16t_1^2 = 46(2) - 16(2)^2 = 92 - 64 = 28[/tex] feet

Final height, [tex]y_2 = 46t_2 - 16t_2^2 = 46(2.1) - 16(2.1)^2 = 96.6 - 72.24 = 24.36[/tex] feet

Change in height: [tex]\delta y = y_2 - y_1 = 24.36 - 28 = -3.64[/tex]feet

Average velocity: [tex]V_{avg} = \delta y / \delta t = -3.64 / 0.1 = -36.4[/tex] ft/s (negative since the ball is moving downward)

iii. Time period of 0.05 seconds:

Initial time, [tex]t_1 = 2[/tex]

Final time, [tex]t_2 = 2 + 0.05 = 2.05[/tex]

Change in time: [tex]\delta t = t_2 - t_1 = 2.05 - 2 = 0.05[/tex] seconds

Initial height, [tex]y_1 = 46t_1 - 16t_1^2 = 46(2) - 16(2)^2 = 92 - 64 = 28[/tex] feet

Final height, [tex]y_2 = 46t_2 - 16t_2^2 = 46(2.05) - 16(2.05)^2 =95.4 - 67.24 = 28.16[/tex] feet

Change in height: [tex]\delta y = y_2 - y_1 = 28.16 - 28 = 0.16[/tex] feet

Average velocity: [tex]V_{avg} = \delta y / \delta t = 0.16 / 0.05 = 3.2[/tex] ft/s

iv. Time period of 0.01 second:

Initial time, t_1 = 2[tex]t_1 = 2[/tex]

Final time, [tex]t_2 = 2 + 0.01 = 2.01[/tex]

Change in time: [tex]\delta t = t2 - t1 = 2.01 - 2 = 0.01[/tex]seconds

Initial height, [tex]y_1 = 46t_1 - 16{t_1}^2 = 46(2) - 16(2)^2 = 92 - 64 = 28[/tex] feet

Final height, [tex]y_2 = 46t_2 - 16t2^2 = 46(2.01) - 16(2.01)^2 =92.46 - 64.6436 = 27.8164[/tex] feet

Change in height: [tex]\delta y = y_2 - y_1 = 27.8164 - 28 = -0.1836[/tex] feet

Average velocity: [tex]V_avg = \delta y / \delta t = -0.1836 / 0.01 = -18.36[/tex]  ft/s (negative since the ball is moving downward)

To estimate the instantaneous velocity when t = 2, we can find the derivative of the height equation with respect to time, dy/dt:

[tex]y = 46t - 16t^2\\dy/dt = 46 - 32t[/tex]

Substitute t = 2 into the derivative equation:

[tex]dy/dt = 46 - 32(2) = 46 - 64 = -18[/tex] ft/s (negative since the ball is moving downward)

Therefore, the estimated instantaneous velocity when t = 2 is -18 ft/s.

Hence, i. Average velocity for a time period of 0.5 seconds: -26 ft/s.  ii. Average velocity for a time period of 0.1 seconds: -36.4 ft/s iii. Average velocity for a time period of 0.05 seconds: 3.2 ft/s.  iv. Average velocity for a time period of 0.01 seconds: -18.36 ft/s

Learn more about velocity and derivatives here:

https://brainly.com/question/29096062

#SPJ2

What is the end behavior of the polynomial function?

Answers

Answer:

  see below

Step-by-step explanation:

Ordinarily a graph like this will have arrowheads on the ends of the curve, indicating the curve continues on in the same direction. Here, we have to assume the existence of such arrowheads in order to choose a sensible answer.

As x goes to -∞, the curve continues to increase toward +∞. This is not an answer choice.

As x goes to +∞, the curve continues to decrease toward -∞. This matches the third answer choice.

Answer:

As [tex]x[/tex] tend to ∞, tehn [tex]y[/tex] tend to -∞.

Step-by-step explanation:

In the graph you can observe the beahaviour of each variable.

Observe, as [tex]x[/tex] tend to ∞, then [tex]y[/tex] tend to -∞. This beahaviour is located in the IV quadrant.

So, in the options, the best answer is "as [tex]x[/tex] tend to ∞, tehn [tex]y[/tex] tend to -∞", because is true.

Other options are just false, for example, as [tex]x[/tex] tend to -∞, [tex]y[/tex] doesn't tendo to -∞.

As  [tex]x[/tex] tend to -∞ [tex]y[/tex] doesn't tendo to 0.

Therefore, the right answer is the third choice.

Other Questions
There are 143076 books in the library. The 3rd grade class walked over and each kid checked out 2 books. There are 21 students in the class. How many books are in left in the library after the students return to their classroom? Alpaca Corporation had revenues of $300,000 in its first year of operations. The company has not collected on $20,000 of its sales and still owes $25,200 on $75,000 of merchandise it purchased. The company had no inventory on hand at the end of the year. The company paid $14,000 in salaries. Owners invested $23,000 in the business and $23,000 was borrowed on a five-year note. The company paid $3,000 in interest that was the amount owed for the year, and paid $6,800 for a two-year insurance policy on the first day of business. Alpaca has an effective income tax rate of 9%.Compute net income for the first year for Alpaca Corporation:a) $ 183,092b) $ 186,186c) $ 225,000d) $ 204,600 Use properties of limits and algebraic methods to find the limit, if it exists. (If the limit is infinite, enter '[infinity]' or '-[infinity]', as appropriate. If the limit does not otherwise exist, enter DNE.) lim x3 f(x), where f(x) = 9 3x if x < 3 ;and x^2 x if x 3 Every time energy is transferred between organisms in a food web, some of the energy is lost as heat.Please select the best answer from the choices providedOTOF Suppose an experiment has 3 stages: A, B, and C. If stage A has 6 outcomes, stage B has 4 outcomes, and stage C has 3 outcomes. how many outcomes does the entire experiment have? Many chemical reactions release energy. Suppose that at the beginning of a reaction, an electron and proton are separated by 0.115 nm , and their final separation is 0.105 nm . How much electric potential energy was lost in this reaction (in units of eV)? Why does melting take place beneath the axis of a mid ocean ridge? (Help!) Which pair of fractions are proportional? A)36/54 and 6/9 B)6/7and 16/21 C) 21/36and 21/42 D) 14/35 and 21/42 Select the correct answer. Which word correctly completes this conversation? Elena: De dnde vienes? Diana: Yo _________ de Argentina. A. Vienes B. Son C. Es D. Soy I am a number between 7 000 000 and 8 000 000 all my digits are odd all the digits in my thousands period are the same all the digits in my units period are the same the sum of my digits is 31 what number am i ? Nine increased by the product of a number and 2 is less than or equal to 27.Use the variable w for the unknown number. A line is drawn so that it passes through the points (3, 4) and (4,1).What is the slope of the line An automobile accelerates from rest at 1.7 m/s 2 for 22 s. The speed is then held constant for 29 s, after which there is an acceleration of 5.8 m/s 2 until the automobile stops. What total distance was traveled? Answer in units of km. Charlie jogs 3 miles south and then 4 miles west. If Charlie were to jog straight home, without changing direction, how far would he have to jog? Urea (CH4N2O) is a common fertilizer that can be synthesized by the reaction of ammonia (NH3) with carbon dioxide as follows: 2NH3(aq)+CO2(aq)CH4N2O(aq)+H2O(l) In an industrial synthesis of urea, a chemist combines 132.0 kg of ammonia with 211.4 kg of carbon dioxide and obtains 172.7 kg of urea. determine the limiting reactant Subatomic particles that do not provide any charge are called _____. The poster shows a message from the Centers for DiseaseControlwhich best describes the purpose of this poster?to encourage people to get their children the flu vaccineto encourage people to vaccinate their children ingeneralto inform people that the flu can cause children to behospitalizedto inform people that children are most susceptible tothe flu The total cost C (in dollars) to participate in a ski club is given by the literal equation C=85x+60, where x is the number of ski trips you take. A. Solve the equation for x. A nurse working in the intensive care unit (ICU) refers to the Institute for Healthcare Improvement (IHI) Ventilator Bundle prior to planning patient care. The nurse realizes nursing interventions outlined in the bundle will improve patients outcomes. Which of the following statement best describes how IHI-established nursing interventions should be included in each bundle?a) Nursing interventions found within the IHI bundles were selected based on the ability to provide optimal time management for the nurseb) Best practice derived from valid and reliable research studies guided nursing interventions being added to the IHI bundlesc) Nurse case managers serving as patient advocates recommended nursing interventions to be included in the IHI bundles based on patient preferenced) Hospitals, physicians, and nurses worked collaboratively to design patient care activities included in IHI bundles A company has determined that it must increase production of a certain line of goods by 112 times last years production. The new output will be 2885 items. What was last year's output?