1.
From a total yearly budget of
$360,000, the Kimball Foundation
spends $30,000 on leasing office
space. What is the ratio of dollars
spent on office space to dollars spent
on other costs?
A. 12:1
B. 11:1
C

Answers

Answer 1

Answer:

I think it would be 11:1.

Step-by-step explanation:

360,000 / 30,000 = 12

11/12 of the yearly budget was used on other costs

1/12 of the yearly budget was used for leasing office

space.

Answer 2

Answer:

Step-by-step explanation:

Okay so I may be wrong BUT since it's asking for the other costs, I'm assuming we're subtracting the $30,000 from the $360,000 first. Therefore the original ratio would be 30,000: 330,000 which is simplified to 1:11 ($ on office space: $ on other costs)


Related Questions

What are the explicit equation and domain for a geometric sequence with a first term of 2 and a second term of -8

Answers

Answer:

[tex]\large\boxed{a_n=2(-4)^{n-1}=\dfrac{(-4)^n}{2}}[/tex]

Step-by-step explanation:

The explicit equation of a geometric sequence:

[tex]a_n=a_1r^{n-1}[/tex]

The domain is the set of all Counting Numbers.

We have the first term of [tex]a_1=2[/tex] and the second term of [tex]a_2=-8[/tex].

Calculate the common ratio r:

[tex]r=\dfrac{a_{n-1}}{a_2}\to r=\dfrac{a_2}{a_1}[/tex]

Substitute:

[tex]r=\dfrac{-8}{2}=-4[/tex]

[tex]a_n=(2)(-4)^{n-1}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\a_n=(2\!\!\!\!\diagup^1)\left(\dfrac{(-4)^n}{4\!\!\!\!\diagup_2}\right)\\\\a_n=\dfrac{(-4)^n}{2}[/tex]

Answer:

Step-by-step explanation:

A geometric sequence has a common ratio. in this case the common ratio

r = -8/2 = -4.

The explicit formula is an = 2(-4)^(n-1).

Which of the binomials below is a factor of this trinomial?
22-5x-14

Answers

Answer:

The factors are the binomials (x - 7)(x + 2)

Step-by-step explanation:

* Lets explain how to factor a trinomial

- The trinomial  ax² ± bx ± c has two factors (x ± h)(x ± k), where

# h + k = -b/a

# h × k = c/a

- The signs of the brackets depends on the sign of c at first then

  the sign of b

# If c is positive, then the two brackets have the same sign

# If b is positive , then the signs of the brackets are (+)

# If b is negative then the sign of the brackets are (-)

# If c is negative , then the brackets have different signs

* Lets solve the problem

∵ The trinomial is x² - 5x - 14

∴ a = 1 , b = -5 and c = -14

c is negative

∴ The brackets have different signs

(x - h) (x + k) are the factors of the trinomial

∵ h + k = -5/1

h + k = -5 ⇒ (1)

∵ h × k = -14/1

h × k = -14 ⇒ (2)

- From (1) , (2) we search about two numbers their product is 14 and

 their difference is 5 , they will be 7 and 2

∵ 7 × 2 = 14

∵ 7 - 2 = 5

- The sign of b is negative then we will put the greatest number in the

 bracket of (-)

∴ h = 7 and k = 2

∴ The brackets are (x - 7)(x + 2)

* The factors are the binomials (x - 7)(x + 2)

What is the equation of the new function???

Answers

Answer:

The correct answer option is C. [tex] g ( x ) = | x - 4 | + 6 [/tex].

Step-by-step explanation:

We know that the transformation which shifts a function along the horizontal x axis is given by [tex]f(x+a)[/tex], while its [tex]f(x-a)[/tex] which shifts the function to the right side.

Here we are to shift the function 4 units to the right and 6 units up.

Therefore, the function will be:

[tex] g ( x ) = | x - 4 | + 6 [/tex]

Answer: Option C

[tex]g (x) = | x-4 | +6[/tex]

Step-by-step explanation:

If we have a main function and perform a transformation of the form

[tex]g (x) = f (x + h)[/tex]

So:

If [tex]h> 0[/tex] the graph of the function g(x) will be equal to the graph of f(x) displaced h units to the left

If [tex]h <0[/tex] the graph of the function g(x) will be equal to the graph of f(x) displaced h units to the right

Also if the transformation is done

[tex]g (x) = f(x) + k[/tex]

So

If [tex]k> 0[/tex] the graph of the function g(x) will be equal to the graph of f(x) displaced k units up

If [tex]k <0[/tex] the graph of the function g(x) will be equal to the graph of f(x) displaced k units downwards.

In this case the main function is [tex]f(x) = | x |[/tex] and moves 4 units to the right and 6 units to the top, then the transformation is:

[tex]g (x) = f (x-4) +6[/tex]

[tex]g (x) = | x-4 | +6[/tex]

expand and simplify 4(2x+3)+4(3x+2)

Answers

8x+12+12x+8
20x+20
The final answer is 20x+20
Final answer:

To expand and simplify the expression 4(2x+3)+4(3x+2), distribute the 4 to both sets of parentheses and combine like terms to get 20x + 20.

Explanation:

To expand and simplify the expression 4(2x+3)+4(3x+2), we can use the distributive property of multiplication over addition. The distributive property states that for any numbers a, b, and c, a(b+c) = ab+ac.

First, we distribute the 4 to both terms inside the first set of parentheses: 4 * 2x + 4 * 3. This simplifies to 8x + 12. Then, we distribute the 4 to both terms inside the second set of parentheses: 4 * 3x + 4 * 2. This simplifies to 12x + 8.

Combining the like terms, the final simplified expression is: 8x + 12 + 12x + 8 = 20x + 20.

Learn more about Expanding and simplifying expressions here:

https://brainly.com/question/14191219

#SPJ3

ANY HELP IF POSSIBLE THANK YOU :)

Answers

Answer:

See explanation

Step-by-step explanation:

There 2 black shapes (one circle and one square) and 2 white shapes (1 circle and 1 square).

1. The ratio of the number of white shapes to the number of black shapes is 2:2=1:1.

2. The ratio of the number of white circls to the number of black squares is 1:1.

3. The ratio of the number of black circles to the number of black squaress is 1:1.

4. There are 4 shapes and 2 are circles (1 white and 1 black), so circles are [tex]\dfrac{2}{4}=\dfrac{1}{2}[/tex] of all shapes.

William says that 15 yeas from now, his age will be 3 times his age 5 years ago. If x x represents William present age, complete the following sentence

A 15 years
B 18 years
C x-15=3(x-5)
D x+15=3(x-5)

Answers

Answer:

I don't know what the following sentence is:

But D is the equation to represent the situation

and A is what turns out to be his current age.

(If you want more help, on this question please post the following sentence).

Step-by-step explanation:

Let x represent the current age.

15 years from now his age is 3 times his age 5 years ago means we have the equation:

x+15=3(x-5)

(I added x to 15 because we said 15 years in the future)

Let's solve this to see if makes any sense just for fun:

Distribute:

x+15=3x-15

Add 15 on both sides:

x+30=3x

Subtract x on both sides:

   30=2x

Divide both sides by 2:

   15=x

So this means his current age is 15.

5 years ago his age would have been 10.

15 years in the future his age will be 30.

Is 30 equal to 3 times 10? Yes, it is! The equation does make sense.

Answer:

D,

Step-by-step explanation:

x is the present age of William, 15 years from now is x+15, and that is equal to  3 times 3() the age he had 5 years ago (x-5)., the equation is  x+15=3(x-5)

A ball is dropped from the top of a building that is 1,000 feet high. Its height, in feet, as a function of the time, x, in seconds, after the ball was dropped, is given by the following equation, ƒ(x) = 1,000 - 16x 2. Which set of numbers is appropriate as the domain for this function?

Natural Numbers
Positive Real Numbers
Positive Integers
Positive Rational Numbers

Answers

Answer:

Positive real numbers

Step-by-step explanation:

The domain is all the possible values of x.  Here, x represents the time that the ball falls.

Natural numbers are integers greater than 0 (1, 2, 3, etc.).  However, the time doesn't have to be an integer (for example, x=1.5).

Positive integers are the same as natural numbers.

Positive rational numbers are numbers greater than 0 that can be written as a ratio of integers (1/1, 3/2, 2/1, etc.).  However, the time can also be irrational (for example, x=√2).

Positive real numbers are numbers greater than 0 and not imaginary (don't contain √-1).  This is the correct domain of the function.

The domain for the function ƒ(x) = 1,000 - 16x^2 is Positive Real Numbers.

The domain for the function ƒ(x) = 1,000 - 16x^2 is a set of Positive Real Numbers. This is because in real-world situations, such as the height of an object, negative time values do not make sense, and the function itself involves squaring x, which ensures that the result is positive. Therefore, the appropriate set of numbers as the domain for this function would be Positive Real Numbers.

Steps for solving 6x - 18 = 54 are shown.
Explain how Step 1 helps solve the equation.

Answers

Answer:

x = 12

Step 1 helps solve the equation, for it helps isolate the x, which is what you are solving for.

Step-by-step explanation:

Isolate the variable x. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS:

Step 1: Add 18 to both sides.

6x - 18 (+18) = 54 (+18)

6x = 54 + 18

6x = 72

Step 2: Divide 6 from both sides:

(6x)/6 = (72)/6

x = 72/6

x = 12

x = 12 is your answer.

~

Answer:

[tex]\huge \boxed{X=12}[/tex]

Step-by-step explanation:

Add by 18 from both sides of equation.

[tex]\displaystyle 6x-18+18=54+18[/tex]

Add numbers from left to right.

[tex]\displaystyle 54+18=72[/tex]

[tex]\displaystyle 6x=72[/tex]

Divide by 6 from both sides of equation.

[tex]\displaystyle \frac{6x}{6}=\frac{72}{6}[/tex]

Simplify, to find the answer.

[tex]\displaystyle 72\div6=12[/tex]

[tex]\huge \boxed{x=12}[/tex], which is our answer.

Help me on this math question please

Answers

Answer:

its simplest form is 4/5

15 points!!
What do you think? And why?

Answers

Angle ECF is facing outward and is not locked into the polygon ABCD being formed on the plane. Because of this, it would be an exterior angle.

What is the length of the altitude of the equilateral triangle below?

Answers

[tex]\bf \textit{height or altitude of an equilateral triangle}\\\\ h=\cfrac{s\sqrt{3}}{2}~~ \begin{cases} s=\stackrel{length~of}{a~side}\\ \cline{1-1} s=8\sqrt{3} \end{cases}\implies h=\cfrac{8\sqrt{3}\cdot \sqrt{3}}{2}\implies h=\cfrac{8\sqrt{3^2}}{2} \\\\\\ h=4\cdot 3\implies h=12[/tex]

The weight of a adult blue whale is 9x10^4 kilograms; the weight of an elephant is 3x10^3 kilograms. How many times heavier is the whale than the elephant?

Answers

Answer:

30 times

Step-by-step explanation:

Weight of adult blue whale = [tex]9 \times 10^{4}[/tex] kilogram

Weight of an elephant = [tex]3 \times 10^{3}[/tex] kilogram

In order to find how many times a quantity is as compared to the other quantity, we divide the two. So here we have to divide the weight of adult blue whale by the wight of elephant.

[tex]\frac{9 \times 10^{4}}{3 \times 10^{3}}\\= 30[/tex]

This means, adult blue whale is 30 times heavier than the elephant.

VERY EASY WILL GIVE BRAINLEST THANK YOU AND FRIEND YOU Determine whenter (18+35)x4= 18+35x4 is true or false. Explain.

Answers

Answer:

False because on the left side of the equation you are adding 18 and 35 first and on the right you are multiplying 35 and 4 first. This will give you an unequal equation when solved.

Let's solve each side

(18+35)*4=212

but 18+(35*4)=158

Simplify (4x − 6) + (5x + 1).

Answers

Answer:

[tex]\displaystyle =9x-5[/tex]

Step-by-step explanation:

[tex]\displaystyle 4x-6+5x+1[/tex]

Group like terms.

[tex]\displaystyle 4x-6+5x+1[/tex]

Add the numbers from left to right.

[tex]4+5=9[/tex]

[tex]9x-6+1[/tex]

Add and subtract numbers from left to right to find the answer.

[tex]6-1=5[/tex]

It change to postive to negative sign.

[tex]\displaystyle=9x-5[/tex], which is our answer.

Answer:

The simplified form is 9x - 5

Step-by-step explanation:

It is given an expression in variable x

(4x − 6) + (5x + 1).

To find the simplified form

(4x − 6) + (5x + 1). =  4x − 6 + 5x + 1

 = 4x + 5x - 6 + 1

 = 9x -5

Therefore simplified form of given expression  (4x − 6) + (5x + 1) is,

9x - 5

20 POINTS!!!

Test the residuals of two other points to determine how well the line of best fit models the data. (the two points are orange circle and yellow square (53,52) and (55,55)

Answers

Answer:

the line will pass through yellow and red

How would you answer this math geometric question

Answers

Answer:

* The shorter side is 270 feet

* The longer side is 540 feet

* The greatest possible area is 145800 feet²

Step-by-step explanation:

* Lets explain how to solve the problem

- There are 1080 feet of fencing to fence a rectangular garden

- One side of the garden is bounded by a river so it doesn't need

 any fencing

- Consider that the width of the rectangular garden is x and its length

 is y and one of the two lengths is bounded by the river

- The length of the fence = 2 width + length

∵ The width = x and the length = y

∴ The length of the fence = 2x + y

- The length of the fence = 1080 feet

2x + y = 1080

- Lets find y in terms of x

∵ 2x + y = 1080 ⇒ subtract 2x from both sides

y = 1080 - 2x ⇒ (1)

- The area of the garden = Length × width

The area of the garden is A = xy

- To find the greatest area we will differentiate the area of the garden

  with respect to x and equate the differentiation by zero to find the

  value of x which makes the area greatest

∵ A = xy

- Use equation (1) to substitute y by x

∵ y = 1080 -2x

∴ A = x(1080 - 2x)

A = 1080x - 2x²

# Remember

- If y = ax^n, then dy/dx = a(n) x^(n-1)

- If y = ax, then dy/dx = a (because x^0 = 1)

∵ A = 1080x - 2x²

∴ dA/dx = 1080 - 2(2)x

∴ dA/dx = 1080 - 4x

- To find x equate dA/dx by 0

∴ 1080 - 4x = 0 ⇒ add 4x to both sides

∴ 1080 = 4x ⇒ divide both sides by 4

x = 270

- Substitute the value of x in equation (1) to find the value of y

∵ y = 1080 - 2x

∴ y = 1080 - 2(270) = 1080 - 540 = 540

y = 540

* The shorter side is 270 feet

* The longer side is 540 feet

∵ The area of the garden is A = xy

∴ The greatest area is A = 270 × 540 = 145800 feet²

* The greatest possible area is 145800 feet²

circle O has a circumference of 36tt cm. what is length of the radius r

Answers

Answer:

5.73cm

Step-by-step explanation:

Given parameters:

Circumference of the circle = 36cm

Unknown

Length of the radius = ?

Lets represent the radius by r

Solution

The circumference of a circle is the defined as the perimeter of a circle. The formula is given as:

            Circumference of a circle = 2πr

Since the unknown is r, we make it the subject of the formula:

           r = [tex]\frac{circumference of the circle}{2π}[/tex]

          r = [tex]\frac{36}{2 x 3.142}[/tex] = [tex]\frac{36}{6.284}[/tex] = 5.73cm

Answer:

The radius = 18 cm.

Step-by-step explanation:

I am assuming that is 36π.

If so, then  circumference  = 2 π r and:

2 π r =  36 π

r  = 36π / 2π

r = 18.

eric runs 3 miles in 28 minutes. at the same rate how many miles would he run in 42 minutes?

Answers

3miles/ 28 minutes times 42 minutes is equal to 4.5 miles.

Therefore, Eric run 4.5 miles in 42 minutes.

Hopefully this helps!

Find the area of the shaded region if the dimensions of the unshaded region are 18ft x 22ft. Use 3.14 for π as necessary.
A. 1,419.84 ft²
B. 1,111.84 ft²
C. 709.92 ft²
D. 957.84 ft²

Answers

See the attached picture:

Answer:

Answer is option B. 1,111.84 ft²

Step-by-step explanation:

The given dimensions of the un shaded region or rectangle are 18 feet x 22 feet.

Now we have additional 7 feet at both ends to form the diameter of the semicircle, making it [tex]14+18=32[/tex] feet

Radius = [tex]\frac{32}{2}=16[/tex] feet

We have 2 semicircles, one at each end. If we combine it it forms a circle.

Area of the circle (2 semicircles) = [tex]\pi r^{2}[/tex]

= [tex]3.14\times(16)^{2}[/tex] = 803.84 square feet

Now we will find the area of the shaded rectangles above and below the non shaded one. The length is 22 feet and width is 7 feet.

So, area = [tex]22\times7=154[/tex] square feet

We have 2 similar rectangles. So, area of both = [tex]2\times154=308[/tex] square feet

So, total area of shaded region = [tex]803.84+308=1111.84[/tex] square feet.

Help me with quistion 1 and 2

Answers

The answer to number 1 is B

Answer:

1.B

first picture is x greater than or equal to 4

second picture is x less than or equal to 4

then x>4 is a open circle and a line to the  right

then x<4 to the left

Step-by-step explanation:

Solve exponential equations


5x − 2=625

Answers

Answer:

x = 6

Step-by-step explanation:

[tex]5^{x-2}=625\\\\5^{x-2}=5^4\qquad(5^4=5\cdot5\cdot5\cdot5=625)\\\\5^{x-2}=5^4\Rightarrow x-2=4\qquad\text{add 2 to both sides}\\\\x-2+2=4+2\\\\x=6\\\\\text{check:}\\\\5^{6-2}=5^4=625\qquad\bold{CORRECT}[/tex]

There is a tall tree in Iva’s backyard. She thinks it might hit her house if it fell over. She measures that the base of the tree is 50 feet from her house. When Iva stands at the edge of her house, the angle of elevation from her feet to the top of the tree is 50°. Iva’s house is safe if the tree’s height is less than the tree’s distance from the house. Complete the statement based on this information.


The height of the tree is_____50 feet, so Iva’s house is ______.

Answer choices:

1. Greater than, less than, equal to

2. Safe, not safe

Answers

Answer:

The height of the tree is Greater than 50 feet, so Iva’s house is not safe

Step-by-step explanation:

step 1

Find the height of the tree

Let

h ----> the height of the tree

we know that

The tangent of angle of 50 degrees is equal to divide the opposite side to the angle of 50 degrees (height of the tree) by the adjacent side to the angle of 50 degrees (tree’s distance from the house)

so

tan(50°)=h/50

h=(50)tan(50°)=59.6 ft

therefore

The height of the tree is Greater than 50 feet, so Iva’s house is not safe

Answer:

greater than and not safe

Step-by-step explanation:

Solve for x. Please show work.

Answers

Answer:

First exercise: [tex]x=7[/tex]

Second exercise: [tex]x=2[/tex]

Step-by-step explanation:

Acording to the Intersecting Secants Theorem the products of the segments of two secants that intersect each other outside a circle, are equal.

Based on this, in order to solve the first exercise and the second exercise, we can write  the following expressions and solve for "x":

First exercise:

[tex](5)(5+x)=6(6+4)\\\\25+5x=60\\\\5x=60-25\\\\x=\frac{35}{5}\\\\x=7[/tex]

Second exercise:

[tex](4)(4+x)=3(3+5)\\\\16+4x=24\\\\4x=24-16\\\\x=\frac{8}{4}\\\\x=2[/tex]

What do I do for this question?

Answers

a chord intersected by a radius segment at a right-angle, gets bisected into two equal pieces, namely MO = NO and PZ = QZ.

[tex]\bf MO=NO\implies \stackrel{MO}{18}=NO\qquad \qquad NO=6x\implies \stackrel{NO}{18}=6x \\\\\\ \cfrac{18}{6}=x \implies 3=x \\\\[-0.35em] ~\dotfill\\\\ PZ=x+2\implies PZ=3+2\implies PZ=5=QZ \\\\[-0.35em] ~\dotfill\\\\ PQ=PZ+QZ\implies PQ=5+5\implies PQ=10[/tex]

what’s the trapezoids missing length?

Answers

Answer:

Step-by-step explanation:

Let CD = x

(x + 40)/2 = 31                  The midline is 1/2 the sum of the 2 bases. multiply by 2 on both sides.

x + 40 = 31 * 2

x + 40 = 62                       Subtract 40 from both sides.

x +40-40 = 62 - 40          Combine

x = 22

Check

(22 + 40)/2

62 / 2

31 = PQ

Final answer:

To find the missing length of a trapezoid with similar triangles inside, we use the ratio of the sides of the triangles, which is approximately 8.667 based on the provided lengths.

Explanation:

When determining the missing length of a trapezoid, we need to consider the properties of similar triangles or the geometric shape of a trapezoid itself. The given information suggests a scenario where similar triangles are within a trapezoid and leads to a proportional relationship between the sides of the triangles. If a trapezoid has triangles within it that share an angle, the lengths of the corresponding sides of those triangles will be proportional.

Based on the data provided, if the long sides of the triangles are in the ratio of 13.0 in to 1.5 in, which simplifies to an approximate factor of 8.667, the bottom sides of the triangles - which are the parallel sides of the trapezoid - will also be in the same ratio. By finding the length of the shorter bottom side, we can divide the length of the longer bottom side by 8.667 to get the missing length on the shorter side.

LOOK AT PICTURE. VOLUME OF CAN PROBLEM

Answers

Answer:

The correct answer is third option.  994

Step-by-step explanation:

Points to remember

Volume of cylinder = πr²h

Where 'r' is the radius and 'h' is the height of cylinder

From the given question we get the cylinder height and radius

The height h = 3 times the diameter of one ball

 = 3 * 7.5 = 22.5 cm

Radius = half of the diameter of a ball

 = 7.5/2 = 3.75 cm

To find the volume of cylinder

Volume of cylinder = πr²h

 = 3.14 * 3.75² * 22.5

 = 993.515 ≈ 994

The correct answer is third option.  994

6⁄10 _______ 9⁄12 A. > B. ≤ C. = D.

Answers

6/10 is equal to 0.60
9/12 is equal to 0.75
your answer is not above for D but if D is < then that would be the correct answer :)

For this case we must indicate the sign corresponding to:

[tex]\frac {6} {10}[/tex]and [tex]\frac {9} {12}[/tex]

We have to:

[tex]\frac {6} {10} = 0.6\\\frac {9} {12} = 0.75[/tex]

It is observed that[tex]0.75> 0.6[/tex]

So we have to:

[tex]\frac {6} {10} <\frac {9} {12}[/tex]

Answer:

[tex]\frac {6} {10} <\frac {9} {12}[/tex]

Multiply. Express your answer in simplest form.

1 7/8 × 2 1/3

Answers

Answer:

4  3/8

Step-by-step explanation:

1 7/8 × 2 1/3

Change the numbers to improper fractions

1 7/8 = (8*1 +7) /8 = 15/8

2 1/3 = (3*2 +1)/3 = 7/3

15/8 * 7/3

Rearranging

15/3 * 7/8

5/1 * 7/8

35/8

Now we need to change this back to a mixed number

8 goes into 35   4 times with 3 left over

4 3/8

Answer:

35/8 or 4 3/8

Step-by-step explanation:

Change each fraction to improper

15/8 * 7/3

multiply

105/24

reduce

35/8

make it mixed if the answer wants it to be

4 3/8

A non-food crop is infected by pests on the 1st of a month. The pests infect the crop in such a way that the area infected doubles after each month. If the pests continue to infect the crop in this way, the non-food crop will be entirely infected after the sixth month.

After which month will one-eighth of the non-food crop be infected?

Answers

Answer:

After month 3.

Step-by-step explanation:

If you know that the crop will be completely infected after 6 months and the area infected doubles each month, you can work backwards. So picture the 6th month as 100%. Then, basically divide that percentage by 2 until you reach 1/8, or .125, or 12.5. So 100% (month 6) > 50% (month 5) > 25% (month 4) > 12.5% (month 3). So 12.5% is equal to 1/8 or .125, which is what you are trying to look for.

Hope this helps!

The non-food crop will be infected by one-eighth of the crop after 3 months.

What is the sum of n terms in a geometric sequence?

The sum of n terms of a geometric sequence is given by the formula,

Sn = [a(1 - r^n)]/(1 - r)

Where r - a common ratio

a - first term

n - nth term

Sn - the sum of n terms

Calculation:

Given that,

The crop is infected by pests.

The area infected doubles after each month. So, it forms a geometric progression or sequence.

The entire crop is infected after six months.

So, n = 6, r = 2(double) and consider a = x

Then the area of the infected crop after 6 months is,

S(6) = [x(1 - 2^6)]/(1 - 2)

      = x(1 - 64)/(-1)

     = -x(-63)

     = 63x

So, after six months the area of the infected crop is about 63x

So, the one-eighth of the crop = 63x/8 = 7.875x

For one month the infected area = x (< one-eighth)

For two months it will be x + 2x = 3x (< one-eighth)

For three months it will be x + 2x + 4x = 7x ( < one-eighth)

For four months it will be x + 2x + 4x + 8x = 15x (> one-eighth)

So, the one-eighth of the crop will be infected after 3 months.

Learn more about the sum of geometric sequences here:

https://brainly.com/question/24221513

#SPJ2

.
Solve the triangle.
B = 72°, b = 12, c = 8 (1 point)

Answers

Answer:

a=11.8,b=12,c=8,A=68.7°, B=72°, C= 39.3°

Step-by-step explanation:

Given data:

b = 12

c= 8

a= ?

∠B= 72°

∠C= ?

∠A=?

To find the missing angle we will use law of sine:

a/sinA=b/sinB=c/sinC

Find m∠C.

b/sinB = c/sinC

Substitute the values:

12/sin72°=8/sinC

Apply cross multiplication.

12*sinC=sin72° * 8

sinC=0.951*8/12

sinC=7.608/12

sinC= 0.634

C= 39.3°

Now we know that the sum of angles = 180°

So,

m∠A+m∠B+m∠C=180°

m∠A+72°+39.3°=180°

m∠A=180°-72°-39.3°

m∠A= 68.7°

Now find the side a:

a/sinA=b/sinB

a/sin68.7°=12/sin72°

Apply cross multiplication:

a*sin72°=12*sin68.7°

a*0.951=12*0.931

a=0.931*12/0.951

a=11.172/0.951

a=11.75

a=11.8 ....

Other Questions
For every real number x,y, and z the statement (x-y)z=xz-yz is Solve the following problems:Given: mDAB=mCBA mCAB=mDBA CA=13 cmFind: DB Jenna bought a bike for $200. The value of the bike decreases by 5% each year. Write an equation to model the situation. A. y = 200(0.95)x B. y = 200(0.5)x C. y = 195(0.95)x D. y = 95(0.95)x I dont know the answer to the question in the picture above. Is the answer A, B, C, or D In the following pairs of compounds, which is the most acidic? Benzoic acid and 4-nitrobenzoic acid 4-Methylbenzoic acid and 4-chlorobenzoic acid p-Nitrophenol and m-nitrophenol if 1/2 of a gallon of paint covered 1/4 of the wall how much does it take to cover the whole wall??? Read the passage and examine the text in bold. Then, answer the question.Grandmother described our weather perfectly and poetically: "Here are the long heavy winds and breathless calms on the tilted mesas where dust devils dance, whirling up into a wide, pale sky. Here you have no rain when all the earth cries for it. This is a land of lost rivers, with little in it to love, yet, it is a land that once visited must be come back to inevitably." If it were not so, there would be no one to tell of its harshness, beauty, and power.Does the bolded portion contain an error? Choose the correction if one is needed. poetically; "Here are poetically, "Here are poetically "Here are No correction needed If f(x) = 3x - 4, which of these is the inverse of f(x)?A. f^-1(x) = x/3 +4B. F^-1(x) = x/3 -4C. f^-1(x) = x+4/3D. F^-1(x) = x-4/3 Sara buys a house for $290,000. She makes a 20% down payment and finances the balance with a 30-year fixed loan at 4.2% interest compounded monthly. Sara's monthly payment is: Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1200 K to a cold reservoir at 600 K. Calculate the entropy change of the two reservoirs and determine if the increase of entropy principle is satisfied. What is absolute value? 6.789 the digits 8 stand for How did the Virginia declaration of rights influenced the Declaration of Independence? One angle measure in an acute isosceles triangle is 20. What is the measure of one of the other angles?8020140160 The force between two electrical charges is 0.3 N. What would be the force if the charges are doubled, and the distance between them increased by 100%? (Please show clear steps/explanation) Researchers sampled 178 young women who recently participated in a STEM program. Of the 178 STEM participants, 110 were in urban areas, 56 in suburban areas, and 12 in rural areas. If one of the participants is selected at random, what is the probability that she is from an urban area? Not a rural area? Of the many difference concepts, such as geography, culture, language, race, and political boundaries, that have defined Latin America which do you think is most important and which least important? Explain why using elements of the essay What is Latin America? Find the value of tan( + ) if terminates in Quadrant III and sin = -5/13.-5/13-5/1205/12 find principal of a loan at 11% for 5 years with $426.25 simple interest Which part of the ear carries sound messages to the brain?eardrumbones of the middle earear canalauditory nerve