A 4.0 µC point charge and a 3.0 µC point charge are a distance L apart. Where should a third point charge be placed so that the electric force on that third charge is zero? (Use the following as necessary: L.)

Answers

Answer 1

Answer:

Q must be placed at 0.53 L

Explanation:

Given  data:

q_1 = 4.0 μC , q_2 = 3.0μC

Distance between charge is L

third charge q be placed at  distance x cm from q1

The force by charge q_1 due to q is

[tex]F1 = \frac{k q q_1}{x^2}[/tex]

[tex]F1 = \frac{k q ( 4.0 μC )}{ x^2}[/tex]                  ----1

The force by charge q_2 due to q is

[tex]F2 =  \frac{k q q_2}{(L-x)^2}[/tex]

[tex]F2 = \frac{kq (3.0 μC)}{(L-x)^2}[/tex]                   --2

we know that net electric force is equal to zero

F_1 = F_2

[tex]\frac{k q ( 4.0 μC )}{x^2}   =\frac{k q ( 3.0 μC )}{(l-x)^2}[/tex]

[tex]\frac{4}{3}*(L-x)^2 = x^2[/tex]

[tex]x = \sqrt{\frac{4}{3}*(L - x)[/tex]

[tex]L-x = \frac{x}{1.15}[/tex]

[tex]L = x + \frac{x}{1.15} = 1.86 x[/tex]

x = 0.53 L

Q must be placed at 0.53 L

Answer 2
Final answer:

The third charge should be placed either between the two charges or on the extended line of the two charges to make the electric force on that charge zero. The exact position depends on the charges involved and can be calculated using the principle of superposition and Coulomb's Law.

Explanation:

The problem deals with the principle of superposition in electrostatics and the force on a charge due to other charges nearby. The force on any charge due to a number of other charges is simply the vector sum of the forces due to individual charges. Starting from this principle, we can try to figure out where the third charge must be placed so that the net force on it is zero.

The two possible positions along the line of the charges are on either side of the two given charges, let's call them 4.0 µC (charge_1) and 3.0 µC (charge_2). These positions can be calculated using the formula of force between two point charges (Coulomb's Law): F = k(q1 x q2)/r² where F is force, k is Coulomb's constant, q1 and q2 are charges and r is distance between charges.

 

Learn more about Electric Force here:

https://brainly.com/question/20935307

#SPJ11


Related Questions

What is the difference between average and instantaneous velocity?

Answers

Explanation:

Instantaneous velocity is specific rate of the change of the position or the displacement with respect to the time at a particular single point (x,t)

[tex]v(t)=\frac{d}{dt}x(t)[/tex]

Average velocity is average rate of the change of the position or the displacement with respect to the time over an particular interval.

[tex]{v}=\frac {\Delta x}{\Delta t}=\frac{{x}_{\text{f}}-{x}_{\text{i}}}{{t}_{\text{f}}-{t}_{\text{i}}}[/tex]

A boat moves 60 kilometers east from point A to point B. There, it reverses direction and travels another 45 kilometers toward point A. What are the total distance and total displacement of the boat?
A. The total distance is 105 kilometers and the total displacement is 45 kilometers east.
B. The total distance is 60 kilometers and the total displacement is 60 kilometers east.
C. The total distance is 105 kilometers and the total displacement is 15 kilometers east.
D. The total distance is 60 kilometers and the total displacement is 45 kilometers east.

Answers

Answer:

C. The total distance is 105 kilometers and the total displacement is 15 kilometers east.

Explanation:

The main difference between distance and displacement is that: distance is a measure of the total length traveled along the road, the displacement only takes into account the length between the initial (departure) and final (arrival) position.

So the boat traveled 105 km, but the displacement between the start and finish point is only 15 km.

:)

When an object is thrown vertically upward from the surface of the Earth: What is the instantaneous velocity in the point of maximum height?What is the acceleration in the point of maximum height?

Answers

Answer:

zero, acceleration due to gravity = 9.8 m/s^2

Explanation:

When an object throws vertically upwards, the acceleration acting on the object is acceleration due to gravity which is acting in vertically downwards direction.

As the object moves upwards, its velocity goes on decreasing because the direction of velocity and the acceleration both are opposite to each other. At maximum height, the velocity of object becomes zero and then object starts moving in downwards direction.

Thus, the value of instantaneous velocity at maximum height is zero but the vale of acceleration is acceleration due to gravity which is acting vertically downward direction.

What is the magnitude (in N/C) and direction of an electric field that exerts a 4.00 x 10^−5 N upward force on a −2.00 µC charge? magnitude N/C
direction: upward, downward, to the left, to the right

Answers

Answer:

The magnitude of electric field is [tex]1.25\times10^{14}\ N/C[/tex] in downward.

Explanation:

Given that,

Force [tex]F= 4.00\times10^{-5}\ N[/tex]

Charge q= -2.00 μC

We know that,

Charge is negative, then the electric field in the opposite direction of the exerted force.

We need to calculate the magnitude of electric field

Using formula of electric force

[tex]F = qE[/tex]

[tex]E = \dfrac{F}{q}[/tex]

[tex]E=\dfrac{4.00\times10^{-5}}{-2.00\times1.6\times10^{-19}}[/tex]

[tex]E=-1.25\times10^{14}\ N/C[/tex]

Negative sign shows the opposite direction of electric force.

Hence, The magnitude of electric field is [tex]1.25\times10^{14}\ N/C[/tex] in downward.

The skateboarder in the drawing starts down the left side of the ramp with an initial speed of 7.03 m/s. Neglect nonconservative forces, such as friction and air resistance, and find the height h of the highest point reached by the skateboarder on the right side of the ramp. (g = 9.80 m/s2)

Answers

Answer:

h=5.04m

Explanation:

At the bigining he has only kinetic energy because he is at the lowest point. When he is at the highest point, he is no longer moving because he will start moving downwards: all his kinetic energy transformed into potential gravitational energy:

[tex]E_k=E_p[/tex]

[tex]\frac{mv^2}{2}=mgh\\ h= \frac{v^2}{g}[/tex]

h=5.04m

Answer:

The height of the highest point reached by the skateboarder on the right side of the ramp is [tex]h=2.52m[/tex]

Explanation:

In this problem, we use the Energy Conservation Principle, as there are not nonconservative forces, the energy is constant and we will call it E.  Then, we choose two different moments that will be advantageous for our analysis.

The first moment is the moment where the skateboarder is situated at the height 0 meters (meaning that the potential energy is zero), i.e, the energy is totally kinetic. We will call it K.

The second moment is the moment where the skateboarder is situated at the highest point reached, this means that all energy will be potential, because for an instant, the velocity of the skateboarder is zero (and in the following instant he will go back the way he came due to the pull of gravity). We will call it V. This is the point with the height that we want to calculate.

Therefore, we can equalize both energies, as they are constant and equal to E. We write

[tex]E=K=V=\frac{1}{2}mv^2 =mgh\Leftrightarrow \frac{1}{2}v^2=gh\Leftrightarrow h=\frac{v^2}{2g}[/tex]

Now, we can replace the given data, to obtain

[tex]h=\frac{7.03^2}{2*9.80}m=2.52m[/tex]

which is the outcome.

Carl is eating lunch at his favorite cafe when his friend Isaac calls and says he wants to meet him. Isaac is calling from a city 175 miles away, and wants to meet Carl somewhere between the two locations. Isaac says he will start driving right away, but Carl needs 35.0 min to finish his lunch before he can begin driving. Isaac plans to drive at 65.0 mph , and Carl plans to drive at 50.0 mph . Ignore acceleration and assume the highway forms a straight line. How long will Isaac be driving before he meets Carl?

Answers

Answer:

106.52 minutes

Explanation:

Given:

Initial distance between Carl and Isaac = 175 miles

speed of Isaac = 65 mph

Speed of Carl = 50 mph

Now, the Carl starts after 35 minutes, but the Isaac has already started so the distance covered by Isaac in 35 minutes will be

= [tex]\frac{35}{60}\times65[/tex]

= 37.91 miles

Therefore,

the distance left between Isaac and Carl = 175 - 37.91 = 137.09 miles

Since Isaac and Carl are moving towards each other,

therefore the relative speed between the both = 65 + 50 = 115 mph

Hence, the time taken to meet = [tex]\frac{137.09}{115}[/tex]

or

The time taken to meet = 1.192 hours

or

The time taken = 1.192 × 60 = 71.52 minutes

Therefore the total time Isaac have been travelling = 71.52 + 35

= 106.52 minutes

A test specimen in a tensile test has a gage length of 2.0 in and an area = 0.5in^2. During the test the specimen yields under a load of 32,000 lb. The corresponding gage length = 2.0083 in. This is the 0.2% yield point. The maximum load of 60,000 lb is reached at a gage length = 2.6 in. Determine a) yield strength, b) madulus of elasticity, and c) ten

Answers

Answer:

yield strength is 64000 lb/ in²

modulus of elasticity is 29.76 ×[tex]10^{6}[/tex] lb/in²

Explanation:

given data

length L = 2 in

area A = 0.5 in²

load = 32000 lb

gage length L1 = 2.0083 in

yield point = 0.2%

maximum load = 60000 lb

to find out

yield strength and modulus of elasticity

solution

we apply here yield strength that is express as

yield strength = [tex]\frac{load}{area}[/tex]  ...........1

yield strength =  [tex]\frac{32000}{0.5}[/tex]

yield strength = 64000 lb/ in²

and

modulus of elasticity  is calculated as

modulus of elasticity =  [tex]\frac{yield strength}{strain}[/tex]    ..........2

here strain = [tex]\frac{L1 - L}{L}[/tex]  

strain = [tex]\frac{2.0083 - 2}{2}[/tex]  

strain = 0.00415

so new strain after offset is here 0.00415 - 0.002

new strain = 0.00215

so from equation 2

modulus of elasticity =  [tex]\frac{yield strength}{strain}[/tex]  

modulus of elasticity =  [tex]\frac{64000}{0.00215}[/tex]  

modulus of elasticity is 29.76 ×[tex]10^{6}[/tex] lb/in²

Final answer:

The yield strength is 64,000 psi, modulus of elasticity is approximately 15.422 x 106 psi, and the tensile strength is 120,000 psi based on the data given from the tensile test of a specimen.

Explanation:

Yield Strength, Modulus of Elasticity, and Tensile Strength

To address the given tensile test problem, we first need to determine the yield strength, which is found by dividing the load at yield by the original area. Hence, the yield strength (\(\sigma_y\)) is 32,000 lb divided by 0.5 in2, which equals 64,000 psi.

The modulus of elasticity (E) can be calculated using Hooke's Law, which is the stress over the strain. In this scenario, the initial stress (\(\sigma_i\)) is the yield load (32,000 lb) over the area (0.5 in2) and the initial strain (\(\epsilon_i\)) is the change in length (0.0083 in) over the original gage length (2.0 in). Therefore, E is 64,000 psi divided by 0.00415, which equals approximately 15,422,000 psi or 15.422 x 106 psi.

As for the tensile strength, it is the maximum stress that the material can withstand while being stretched or pulled before necking, which is the maximum load (60,000 lb) divided by the original cross-sectional area (0.5 in2), which gives us 120,000 psi.

Keisha looks out the window from a tall building at her friend Monique standing on the ground, 8.3 m away from the side of the building, as shown. If Keisha's line of sight makes a 30° angle with the side of the building, what is Keisha's height above the ground? Assume Monique is 1.5 m tall. A. 14 m B. 15 m C. 16 m D. 17 m

Answers

Answer:

Explanation:

GIVEN DATA:

Distance between keisha and her friend 8.3 m

angle made by keisha toside building 30 degree

height of her friend monique is 1.5 m

from the figure

[tex]\Delta ACB[/tex]

[tex]tan 30 = \frac{8.3}{h}[/tex]

[tex]h= \frac{8.3}{tan 30} = 14.376 m[/tex]

therefore

height of keisha is [tex]= h  + 1.5 m[/tex]

                               = 14.376 + 1.5

[tex]= 15.876 \simeq 16 m[/tex]

therefore option c is correct

Cosmic rays are highly energetic particles which can travel at great speeds through outer space. A typical speed for a cosmic ray is 1.29 x 10^8 m/s. What is this speed converted to km/hr (kilometers per hour)? A. 1.29 x 10^5 km/hr B. 35.8 km/hr C. 7.74 x 10^6 km/hr D. 4.64 x 10^8 km/hr

Answers

Answer:

Speed of the cosmic rays, [tex]v=4.64\times 10^8\ km/hr[/tex]

Explanation:

It is given that, Cosmic rays are highly energetic particles which can travel at great speeds through outer space.

The speed of the cosmic rays, [tex]v=1.29\times 10^8\ m/s[/tex]

We need to convert the speed of cosmic rays to kilometers per hour. We know that :

1 kilometers = 1000 meters

1 hour = 3600 seconds

[tex]v=1.29\times 10^8\ m/s=\dfrac{1.29\times 10^8\times (1/1000\ km)}{(1/3600\ h)}[/tex]

On solving the above expression,

[tex]v=464400000\ km/h[/tex]

or

[tex]v=4.64\times 10^8\ km/hr[/tex]

So, the speed of the cosmic rays is [tex]4.64\times 10^8\ km/hr[/tex]. Hence, this is the required solution.

A mass attached to a horizontal spring is stretched by 10 cm and released. It takes 0.2 sec for the mass to reach the equilibrium position. The mass is then stretched to 30 cm and released. How long does it take the mass to reach the equilibrium position?

Answers

Answer:

No change

Explanation:

The time period of an oscillating body depends on the mass of the body attached and the spring constant of the spring.

The time taken by the oscillating body to complete one vibration is called the time period of teh body.

As the time period does not depend on the amplitude of the oscillations so the time period does not change as the amplitude changes.

Thus, the time taken by the mass to reach to the equilibrium position remains  same.

If a body travels half its total path in the last 1.10 s of its fall from rest, find the total time of its fall (in seconds).

Answers

Answer:3.75 s

Explanation:

Given Body travels half of its motion in last 1.1 sec

Let h be the height and t be the total time taken

here initial velocity is zero

[tex]h=ut+\frac{gt^2}{2}[/tex]

[tex]h=0+\frac{gt^2}{2}[/tex]

[tex]h=\frac{gt^2}{2}------1[/tex]

Now half of the distance traveled will be in t-1.1 s and half distance traveled is in last 1.1 s

[tex]\frac{h}{2}=\frac{g\left ( t-1.1\right )^2}{2}-----2[/tex]

from 1 & 2 we get

[tex]gt^2=2g\left ( t-1.1\right )^2[/tex]

[tex]t^2-4.4t+2.42=0[/tex]

[tex]t=\frac{4.4\pm \sqrt{4.4^2-4\left ( 1\right )\left ( 2.42\right )}}{2}[/tex]

[tex]t=\frac{4.4\pm 3.11}{2}[/tex]

Therefore two value of t is satisfying the equation  but only one value is possible

therefore t=3.75 s

Electric fields are vector quantities whose magnitudes are measured in units of volts/meter (V/m). Find the resultant electric field when there are two fields, E1and E2, where E1 is directed vertically upward and has magnitude 100 V/m and E2 is directed 45 degrees to the left of E1 and has magnitude 150 V/m. Use a graph to show vector drawing!

Answers

The resultant electric field (Er) is approximately 231.76 V/m, directed at an angle of about 62.76° to the left of the vertical E1 direction.

Find the resultant electric field when there are two fields, E1 and E2:

Step 1: Resolve the electric fields into their x and y components.

E1:

Ex1 = 0 V/m (because E1 is directed vertically upward)

Ey1 = 100 V/m

E2:

Since E2 is directed 45 degrees to the left of E1, we can use trigonometry to find its x and y components.

Ex2 = 150 V/m * sin(45°) = 106.07 V/m (directed to the left, so negative)

Ey2 = 150 V/m * cos(45°) = 106.07 V/m

Step 2: Add the x and y components of each electric field separately.

Σ Ex = Ex1 + Ex2 = 0 V/m - 106.07 V/m = -106.07 V/m

Σ Ey = Ey1 + Ey2 = 100 V/m + 106.07 V/m = 206.07 V/m

Step 3: Find the magnitude of the resultant electric field (Er) using the Pythagorean theorem.

Er = √(Σ Ex)² + (Σ Ey)²

Er = √(-106.07 V/m)² + (206.07 V/m)²

Er ≈ 231.76 V/m

Step 4: Find the direction of the resultant electric field using arctangent.

tan(θ) = Σ Ey / Σ Ex

tan(θ) = 206.07 V/m / -106.07 V/m

θ ≈ arctan(-1.94) ≈ -117.24°

Since the arctangent function only outputs values between -90° and 90°, we need to add 180° to get the angle within the range of 0° to 180°.

θ = -117.24° + 180° ≈ 62.76°

Therefore, the resultant electric field has a magnitude of approximately 231.76 V/m and is directed approximately 62.76° to the left of E1.

A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof a time of 1.03 s later. You may ignore air resistance. A-If the initial speed of the first ball is v0 = 8.90 m/s what must the height h of the building be for both balls to reach the ground at the same time?
B-If v0 is greater than some value vmax, a value of h does not exist that allows both balls to hit the ground at the same time. Solve for vmax
C-if v0 is less than some value vmin, a value of h does not exist that allows both balls to hit the ground at the same time. Solve for vmin.

Answers

Answer:

[tex]h=53.09m[/tex]         (2)

[tex]v_{min}>5.05m/s[/tex]

[tex]v_{max}<10.4m/s[/tex]

Explanation:

a)Kinematics equation for the first ball:

[tex]v(t)=v_{o}-g*t[/tex]

[tex]y(t)=y_{o}+v_{o}t-1/2*g*t^{2}[/tex]

[tex]y_{o}=h[/tex]       initial position is the building height

[tex]v_{o}=8.9m/s[/tex]      

The ball reaches the ground, y=0, at t=t1:

[tex]0=h+v_{o}t_{1}-1/2*g*t_{1}^{2}[/tex]

[tex]h=1/2*g*t_{1}^{2}-v_{o}t_{1}[/tex]           (1)

Kinematics equation for the second ball:

[tex]v(t)=v_{o}-g*t[/tex]

[tex]y(t)=y_{o}+v_{o}t-1/2*g*t^{2}[/tex]

[tex]y_{o}=h[/tex]       initial position is the building height

[tex]v_{o}=0[/tex]       the ball is dropped

The ball reaches the ground, y=0, at t=t2:

[tex]0=h-1/2*g*t_{2}^{2}[/tex]

[tex]h=1/2*g*t_{2}^{2}[/tex]         (2)

the second ball is dropped a time of 1.03s later than the first ball:

t2=t1-1.03              (3)

We solve the equations (1) (2) (3):

[tex]1/2*g*t_{1}^{2}-v_{o}t_{1}=1/2*g*t_{2}^{2}=1/2*g*(t_{1}-1.03)^{2}[/tex]

[tex]g*t_{1}^{2}-2v_{o}t_{1}=g*(t_{1}^{2}-2.06*t_{1}+1.06)[/tex]

[tex]g*t_{1}^{2}-2v_{o}t_{1}=g*(t_{1}^{2}-2.06*t_{1}+1.06)[/tex]

[tex]-2v_{o}t_{1}=g*(-2.06*t_{1}+1.06)[/tex]

[tex]2.06*gt_{1}-2v_{o}t_{1}=g*1.06[/tex]

[tex]t_{1}=g*1.06/(2.06*g-2v_{o})[/tex]

vo=8.9m/s

[tex]t_{1}=9.81*1.06/(2.06*9.81-2*8.9)=4.32s[/tex]

t2=t1-1.03              (3)

t2=3.29sg

[tex]h=1/2*g*t_{2}^{2}=1/2*9.81*3.29^{2}=53.09m[/tex]         (2)

b)[tex]t_{1}=g*1.06/(2.06*g-2v_{o})[/tex]

t1 must :   t1>1.03  and t1>0

limit case: t1>1.03:

[tex]1.03>9.81*1.06/(2.06*g-2v_{o})[/tex]

[tex]1.03*(2.06*9.81-2v_{o})<9.81*1.06[/tex]

[tex]20.8-2.06v_{o}<10.4[/tex]

[tex](20.8-10.4)/2.06<v_{o}[/tex]

[tex]v_{min}>5.05m/s[/tex]

limit case: t1>0:

[tex]g*1.06/(2.06*g-2v_{o})>0[/tex]

[tex]2.06*g-2v_{o}>0[/tex]

[tex]v_{o}<1.06*9.81[/tex]

[tex]v_{max}<10.4m/s[/tex]

A car is able to stop with an acceleration of − 3.00 m/s^2. Justify the mathematical routine used to calculate the distance required to stop from a velocity of 100.0 km/h by choosing the correct answer below.
A.) 16.7m because the average velocity is 50 km/h, the change in velocity divided by the acceleration is the time, and the time multiplied by the average velocity is the distance.
B.) 64.4m because the average velocity is 13.9 m/s, the average velocity divided by the acceleration is the time, and the time multiplied by the average velocity is the distance.
C.) 129m because the average velocity is 13.9 m/s, the change in velocity divided by the acceleration is the time, and the time multiplied by the average velocity is the distance.
D.) 257m because the initial velocity is 27.8 m/s, the initial velocity divided by the acceleration is the time, and the time multiplied by the initial velocity is the distance.

Answers

Answer:

129 m because the average velocity is 13.9 m/s, the change in velocity

divided by the acceleration is the time, and the time multiplied by the

average velocity is the distance. ⇒ answer C

Explanation:

Lets explain how to solve the problem

The given is:

The care is able to stop with an acceleration of -3 m/s²

→ The final velocity = 0 and acceleration = -3 m/s²

Calculate the distance required to stop from a velocity of 100 km/h

→ Initial velocity = 100 km/h

At first we must to change the unite of the initial velocity from km/h

to m/s because the units of the acceleration is m/s²

→ 1 km = 1000 meters and 1 hr = 3600 seconds

→ 100 km/h = (100 × 1000) ÷ 3600 = 27.78 m/s

The initial velocity is 27.78 m/s

Acceleration is the rate of change of velocity during the time,

then the time is the change of velocity divided by the acceleration

→ [tex]t=\frac{v-u}{a}[/tex]

where v is the final velocity, u is the initial velocity, t is the time and

a is the acceleration

→ v = 0 , u = 27.78 m/s , a = -3 m/s²

Substitute these values in the rule

→ [tex]t=\frac{0-27.78}{-3}=9.26[/tex] seconds

The time to required stop is 9.26 seconds

We can calculate the distance by using the rule:

→ s = ut + [tex]\frac{1}{2}[/tex] at²

→ u = 27.78 m/s , t = 9.26 s , a = -3 m/s²

Substitute these values in the rule

→ s = 27.78(9.26) + [tex]\frac{1}{2}[/tex] (-3)(9.26) = 128.6 ≅ 129 m

The distance required to stop is 129 m

Average velocity is total distance divided by total time

→ Total distance = 129 m and total time = 9.26 s

→ average velocity = 129 ÷ 9.26 = 13.9 m/s

The average velocity is 13.9 m/s

So the time multiplied by the average velocity is the distance

The answer is C

129 m because the average velocity is 13.9 m/s, the change in

velocity divided by the acceleration is the time, and the time

by the average velocity is the distance.

A car travels for 30 minutes at 30 m/s due north. The car stops for 10 ninutes, then turns and travels for 20 minutes due south at 20 m/s. What is the average velocity of the car? What is the average speed of the car?

Answers

Answer:

Average speed 21.67 m/s

Average velocity=8.33 m/s

Explanation:

In order to solve this, We have to know the difference between speed and velocity.

Velocity is a vector value, so it means we have to specify the magnitud and direction, we take the displacement instead of the distance.

speed is an scalar value, we only care about the magnitud, we take in count the total distance.

first we have to get the total amount of time

Total time= 30min+10min+20min=60min

Total time is= 3600 seconds

the distance on the first trame is:

[tex]X1=v*t\\\\X1=30m/s*(30min)(60sec/1min)\\X1=54km[/tex]

the distance on the second trame is:

[tex]X2=v*t\\\\X2=20m/s*(20min)(60sec/1min)\\X2=24km[/tex]

The total distance is the sum of both values

Td=78km

the Displacement is the vectorial sum of them, because the second trame is opposite the first, we have to substract the second distance

D=54-24=30km

[tex]Speed(avg)=\frac{distance}{time} \\\\Speed(avg)=\frac{78000m}{3600} \\\\Speed(avg)=21.67 m/s[/tex]

[tex]Velocity(avg)=\frac{displacement}{time} \\\\Velocity(avg)=\frac{30000m}{3600} \\\\Velocity(avg)=8.33 m/s[/tex]

Two infinite planes of charge lie parallel to each other and to the yz plane. One is at x = -5 m and has a surface charge density of σ = -2.6 µC/m^2. The other is at x = 3 m and has a surface charge density of σ = 5.8 µC/m^2. Find the electric field for the following locations. (a) x < -5 m
(b) -5 m < x < 3 m
(c) x > 3 m

Answers

Answer:

a) -180.7 kN/C

b) -474.3 kN/C

c) 180.7 kN/C

Explanation:

For infinite planes the electric field is constant on each side, and has a value of:

E  = σ / (2 * e0) (on each side of the plate the field points in a different direction, the fields point towards positive charges and away from negative charges)

The plate at -5 m produces a field of:

E1 = 2.6*10^-6 / (2 * 8.85*10^-12) = 146.8 kN/C into the plate

The plate at 3 m:

E2 = 5.8*10^-6 / (2 * 8.85*10^-12) = 327.5 kN/C away from the plate

At x < -5 m the point is at the left of both fields

The field would be E = 146.8 - 327.5 = -180.7 kN/C

At -5 m < x < 3 m, the point is between the plates

E = -146.8 - 327.5 = -474.3 kN/C

At x > 3 m, the point is at the right of both plates

E = -146.8 + 327.5 = 180.7 kN/C

Final answer:

The electric fields at the given locations are calculated by using the formula E=σ/2ε₀, and considering that the fields always point toward negative charges. Hence, they vary depending on the position of the point relative to the planes of charge.

Explanation:

The field contribution due to each individual infinite plane is E=σ/2ε₀, where ε₀ is the permittivity of the free space (8.85 x10⁻ⁱ² C²/Nm²). Now, we'll calculate the electric field for each given location:

(a) For x < -5 m: Here, the point sits to the left of both the planes. Both fields point to the right (towards negative charge), so they add up.(b) -5 m < x < 3 m: The point is between the planes. The field from the negative plane points to the right, and that of the positive plane also points to the right, hence they subtract. E = -2.6 / 2ε₀ - 5.8 / 2ε₀ .(c) x > 3 m: Here, the point is to the right of both planes. The fields from both planes point left (towards the negative charge), add up. E = -2.6 / 2ε₀ + 5.8 / 2ε₀ .

Learn more about Electric Field here:

https://brainly.com/question/8971780

#SPJ3

A 6.0 kg ball is dropped from a 10-m height. Its kinetic energy, just before it hits the ground is : 588 J
392 J
280 J
140 J
882 J

Answers

Answer:

588 J

Explanation:

mass of ball, m = 6 kg

Height from it dropped, h = 10 m

initial velocity, u = 0

acceleration due to gravity, g = 9.8 m/s^2

Let it hits the ground with velocity v.

Use third equation of motion

[tex]v^{2} = u^{2}+2as[/tex]

[tex]v^{2}=0^{2}+2\times 9.8\times 10[/tex]

v = 14 m/s

The formula for the kinetic energy is given by

[tex]K=\frac{1}{2}mv^{2}[/tex]

where, m is the mass of the ball and v be the velocity of the ball as it hits the ground

K = 0.5 x 6 x 14 x 14

K = 588 J

A concert loudspeaker suspended high off the ground emits 31 W of sound power. A small microphone with a 1.0 cm^2 area is 42 m from the speaker. What is the sound intensity at the position of the microphone? (include units)
What is the sound intensity level at the position of the microphone? (in dB)

Answers

Answer:

intensity of sound at level of microphone is 0.00139 W / m 2

sound intensity level at position of micro phone is 91.456 dB

EXPLANATION:

Given data:

power of sound   P = 31 W

distance betwen microphone & speaker is   42 m

a) intensity of sound at microphone is calculated as

                   [tex]I = \frac{P}{A}[/tex]

                   [tex]= \frac{34}{4 \pi ( 44m )^ 2}[/tex]

                   =  0.00139 W / m 2        

b) sound intensity level at position of micro phone is

                [tex]\beta = 10 log \frac{I}{I_o}[/tex]

    where I_o id reference sound intensity and taken as

                [tex]= 1 * 10^{-12} W / m 2[/tex]  

               [tex]\beta = 10 log\frac{0.00139}{10^[-12}}[/tex]

                     = 91.456 dB

Two points are given in polar coordinates by : (r, θ) = (2.60 m, 50.0°)
and
(r, θ) = (3.60 m, −46.0°)
, respectively. What is the distance between them?

Answers

Two points are given in polar coordinates,  the distance between the two points is approximately 3.12m.

You can use the polar-to-cartesian conversion formula to convert each point to Cartesian coordinates (x, y), then apply the distance formula in

Cartesian coordinates to determine the separation between two points supplied in polar coordinates.

The polar-to-cartesian conversion formulas are:

[tex]\[ x = r \cdot \cos(\theta) \][/tex]

[tex]\[ y = r \cdot \sin(\theta) \][/tex]

Given the points:

[tex]\( (r_1, \theta_1) = (2.60 \, \text{m}, 50.0^\circ) \)[/tex]

[tex]\( (r_2, \theta_2) = (3.60 \, \text{m}, -46.0^\circ) \)[/tex]

Converting these points to Cartesian coordinates:

For the first point:

[tex]\[ x_1 = 2.60 \, \text{m} \cdot \cos(50.0^\circ) \approx 1.66 \, \text{m} \][/tex]

[tex]\[ y_1 = 2.60 \, \text{m} \cdot \sin(50.0^\circ)\\\\ \approx 1.98 \, \text{m} \][/tex]

For the second point:

[tex]\[ x_2 = 3.60 \, \text{m} \cdot \cos(-46.0^\circ)\\\\ \approx 2.53 \, \text{m} \][/tex]

[tex]\[ y_2 = 3.60 \, \text{m} \cdot \sin(-46.0^\circ)\\\\ \approx -2.57 \, \text{m} \][/tex]

Now, you can use the distance formula in Cartesian coordinates to find the distance between the two points:

[tex]\[ \text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Plug in the values and calculate:

[tex]\[ \text{distance} = \sqrt{(2.53 \, \text{m} - 1.66 \, \text{m})^2 + (-2.57 \, \text{m} - 1.98 \, \text{m})^2}\\\\ \approx 3.12 \, \text{m} \][/tex]

Thus, the distance between the two points is approximately 3.12 m.

For more details regarding Cartesian coordinates, visit:

https://brainly.com/question/30637894

#SPJ12

You've been called in to investigate a construction accidentin
which the cable broke while a crane was lifting a 5300 kg
container. The steel cable is 2.0 cm indiameter and has a safety
rating of 50,000 N. The crane is designednot to exceed speeds of
3.0 m/s or accelerations of 1.0m/s2, and your tests find
that the crane is notdefective. What is the maximum tension the
cable?

Answers

Answer:

57300 N

Explanation:

The container has a mass of 5300 kg, the weight of the container is:

f = m * a

w = m * g

w = 5300 * 9.81 = 52000 N

However this container was moving with more acceleration, so dynamic loads appear.

w' = m * (g + a)

w' = 5300 * (9.81 + 1) = 57300 N

The rating for the cable was 50000 N

The maximum load was exceeded by:

57300 / 50000 - 1 = 14.6%

There are two vectors à and b, with an angle between them. Then the dot product of them is A. a. b = ab cos B. a b = (a + b) cos C. a. b = ab sino D.. b = (a + b) sino

Answers

Answer:

[tex]a.b=|a||b|\ cos\theta[/tex]                                                                    

Explanation:

Let a and b are two vectors such that [tex]\theta[/tex] is the angle between them. Dot product is also known as scalar product.  It is used to find the angle between two vectors such that,

[tex]a.b=|a||b|\ cos\theta[/tex]

[tex]\theta[/tex] is the angle between a and b. It can be calculated as :

[tex]\theta=cos^{-1}(\dfrac{a.b}{|a||b|})[/tex]

[tex]|a|\ and\ |b|[/tex] are the magnitude of vectors a and b such that :

[tex]|a|=\sqrt{x^2+y^2+z^2}[/tex] if a = xi +yj +zk

and

[tex]|b|=\sqrt{p^2+q^2+r^2}[/tex] if a = pi +qj +rk            

So, the correct option is (a). Hence, this is the required solution.                                        

Suppose a man's scalp hair grows at a rate of 0.49 mm per day. What is this growth rate in feet per century?

Answers

Answer:

58.703 ft/centuri

Explanation:

Length of the hair grow, l = 0.49 mm

Time to grow, t = 1 day

Convert mm into feet.

We know that, 1 mm = 0.00328 feet

So, 0.49 mm = 0.49 x 0.00328 = 0.0016072 ft

Convert day into century.

We know that, 1 century = 36525 days

So, 1 day = 1 / 36525 centuri

growth rate of hair =  [tex]\frac{0.0016072}{\frac{1}{36525}}[/tex]

                               = 58.703 ft/centuri

A solid cylinder of cortical bone has a length of 500mm, diameter of 2cm and a Young’s Modulus of 17.4GPa. Determine the spring constant ‘k’. Please explain.

Answers

Answer:

The spring constant k is[tex]1.115\times 10^{9} N/m[/tex]

Solution:

As per the question:

Length of the solid cylinder, L = 500 mm = [tex]500\times 10^{- 3} = 0.5 m[/tex]

Diameter pf the cylinder, D = 2 cm = 0.02 m

As the radius is half the diameter,

Radius, R = 1 cm = 0.01 m

Young's Modulus, E = 17.4 GPa = [tex]17.4\times 10^{9} Pa[/tex]

Now,

The relation between spring constant, k and Young's modulus:

[tex]kL = EA[/tex]

where

A = Area

Area of solid cylinder, A = [tex]2\piR(L + R)[/tex]

[tex]0.5k = 17.4\times 10^{9}\times 2\piR(L + R)[/tex]

[tex]k = \frac{17.4\times 10^{9}\times 2\pi\times 0.01(0.01 + 0.5)}{0.5}[/tex]

k = [tex]1.115\times 10^{9} N/m[/tex]

Young's modulus, E is the ratio of stress and strain

And

Stress = [tex]\frac{Force or thrust}{Area}[/tex]

Strain = [tex]\frac{length, L}{elongated or change in length, \Delta L}[/tex]

Also

Force on a spring is - kL

Therefore, we utilized these relations in calculating the spring constant.

A person starts to run around a square track with sides of 50 m starting in the bottom right corner and running counter-clockwise. Running at an average speed of 5 m/s, the jogger runs for 53.80 seconds. What is the difference between the magnitude of the person's average velocity and average speed in m/s? (please provide detailed explanation)

Answers

Answer:3.71 m/s

Explanation:

Given

square track with sides 50 m

average speed is 5 m/s

Total running time=53.8 s

Total distance traveled  in this time[tex]=53.8\times 5=269 m[/tex]

i.e. Person has completed square track one time and another 69 m in second round

So displacement is 269-200=69 m

average velocity[tex]=\frac{Displacement}{time}[/tex]

[tex]=\frac{69}{53.8}=1.28 m/s[/tex]

Difference between average velocity and average speed is

5-1.28=3.71 m/s

Answer:

The difference in average speed and average velocity in terms of magnitude is 3.993 m/s

Solution:

As per the question:

The side of a square track, l = 50 m

Average speed of the runner, [tex]v_{avg} = 5 m/s[/tex]

Time taken, t = 53.80 s

Now,

The distance covered by the runner in this time:

s = [tex]v_{avg}t[/tex]

s = [tex]5\times 53.80[/tex]

s = 269 m

After covering a distance of 269 m, the person is at point A:

[tex]AQ^{2} = AR^{2} + QR^{2}[/tex]

where

AR = 19 m

QR = 50 m

Refer to fig 1.

As the runner starts from the bottom right, i.e., at Q and traveled 269 m.

After completion of 250 m , he will be at point R after one complete round and thus travels 19 m more to point A to cover 269 m.

Thus

[tex]AQ = \sqrt{19^{2} + 50^{2}} = 53.48 m[/tex]

where

AQ is the displacement

Hence,

Average velocity, v' = [tex]\frac{AQ}{t}[/tex]

v' = [tex]\frac{53.48}{53.80} = 1.007 m/s[/tex]

The difference in average speed and average velocity is:

[tex]v_{avg} - v' = 5 - 1.007 = 3.993 m/s[/tex]

A skier is gliding along at 4.2 m/s on horizontal, frictionless snow. He suddenly starts down a 10° incline. His speed at the bottom is 18 m/s . a) What is the length of the incline?
Express your answer with the appropriate units.

b) How long does it take him to reach the bottom?
Express your answer with the appropriate units.

Answers

Answer:

a) 90m

b) 8.1s

Explanation:

The shortest way to finding the length of the incline is to apply an energetic analysis to determine the height of the incline. At the beginning, there is potential and kinetic energy that will turn into kinetic energy only:

[tex]mgh+\frac{1}{2}mv_{0}^{2} =\frac{1}{2}mv_{f}^{2}[/tex]

Before we input any information, let's solve for h:

[tex]mgh+\frac{1}{2}mv_{0}^{2} =\frac{1}{2}mv_{f}^{2}}\\\\m(gh+\frac{v_{0}^{2}}{2})=\frac{1}{2}mv_{f}^{2}}\\\\gh+\frac{v_{0}^{2}}{2}=\frac{v_{f}^{2}}{2}\\\\gh=\frac{1}{2}(v_{0}^{2}-v_{f}^{2})\\\\h=\frac{1}{2g}(v_{0}^{2}-v_{f}^{2})=\frac{1}{2*9.8\frac{m}{s^{2}}}(4.2\frac{m}{s}^{2}-18\frac{m}{s}^{2})=15.63m[/tex]

Using a sine formula we can solve for [tex]l[/tex]:

[tex]Sin(10)=\frac{h}{l}\\\\l=\frac{h}{Sin(10)}=\frac{15.63m}{0.17}=90m[/tex]

In order to find the time we will use the distance formula and final velocity formula as a system of equations to solve for t:

[tex]X=V_{0}t+\frac{at^2}{2}\\\\V_f=V_0+at[/tex]

Since the acceleration and time are both variables we will solve for acceleration in the final velocity formula and replace in the distance formula:

[tex]V_f=V_0+at\\V_f-V_0=at\\\frac{V_f-V_0}{t}=a\\\\l=V_0t+\frac{(\frac{V_f-V_0}{t})t^2}{2}\\l=V_0t+\frac{(V_f-V_0)t}{2}\\l=t(V_0+\frac{V_f-V_0}{2})\\\\t=\frac{l}{V_0+\frac{V_f-V_0}{2}}=\frac{90m}{4.2\frac{m}{s}+\frac{18\frac{m}{s}-4.2\frac{m}{s}}{2}}=8.1s[/tex]

Final answer:

In this question, we calculate the length of the incline and the time taken by a skier to reach the bottom based on given velocity and angle.

Explanation:

For part a: The length of the incline can be found using the principles of physics. Using the given information about the skier's initial and final speeds and the angle of the incline, you can calculate that the length of the incline is approximately 67.7 meters.

For part b: To determine the time it takes for the skier to reach the bottom, you can use the kinematic equations of motion along the incline. The time taken for the skier to reach the bottom is about 9.64 seconds.

Students in an introductory physics lab are performing an experiment with a parallel-plate capacitor made of two circular aluminum plates, each 21 cm in diameter, separated by 1.0 cm . Part A How much charge can be added to each of the plates before a spark jumps between the two plates? For such flat electrodes, assume that value of 3× 10 6 N/C of the field causes a spark. Express your answer with the appropriate units. q max q m a x = nothing nothing SubmitRequest Answer Provide Feedback Next

Answers

Answer:

0.92 μC

Explanation:

In a parallel-plate capacitor, the electric field formed is equal to the charge density divited by the vacuum permisivity e0, as there are no dielectric between the plates. e0 is equal to 8.85*10^-12 C^2/Nm^2. The charge density is the total charge of each individual plate divided by its area. Then, the maximum charge allowed will be equal to:

[tex]E = \frac{o}{e_0} = \frac{Q}{Ae_0} \\ Q = E*A*e_0 = 3*10^6 N/C * (0.25*\pi *(0.21m)^2)*8.85*10^{-12}C^2/Nm^2 = 9.196 *10^{-7} C[/tex]

or 0.92 μC

A cube with sides of area 48 cm^2 contains a 28.7 nanoCoulomb charge. Find the flux of the electric field through the surface of the cube in unis of Nm^2/C.
Please conceptually explain this question answer to me! Thanks!!

Answers

Answer:

The flux of the electric field through the surface is 3.24\times10^{3}\ Nm^/C[/tex].

Explanation:

Given that,

Area of cube = 48 cm²

Charge = 28.7 nC

We need to calculate the flux of the electric field through the surface

Using formula Gauss's law

The electric flux through any closed surface,

[tex]\phi =\dfrac{q}{\epsilon_{0}}[/tex]

Where, q = charge

Put the value into the formula

[tex]\phi=\dfrac{28.7\times10^{-9}}{8.85\times10^{-12}}[/tex]

[tex]\phi =3.24\times10^{3}\ Nm^/C[/tex]

Hence, The flux of the electric field through the surface is 3.24\times10^{3}\ Nm^/C[/tex].

The brakes are applied to a car traveling on a dry, level highway. A typical value for the magnitude of the car's acceleration is 4.60 m/s2. If the car's initial speed is 31.8 m/s, how long does it take to stop and how far does it travel, starting from the moment the brakes are applied?

Answers

Final answer:

The car takes approximately 6.91 seconds to stop and travels approximately 110.7 meters before coming to a stop.

Explanation:

The car's initial speed is 31.8 m/s and it decelerates at a rate of 4.60 m/s2. To find the time it takes to stop, we can use the equation:

Final velocity = Initial velocity + (Acceleration x Time)

Since the final velocity is 0 m/s when the car stops, we can rearrange the equation to solve for time:

Time = (Final velocity - Initial velocity) / Acceleration

Plugging in the values, we get:

Time = (0 m/s - 31.8 m/s) / -4.60 m/s2

Simplifying the equation, we find that it takes approximately 6.91 seconds for the car to stop.

To find the distance traveled, we can use the equation:

Distance = Initial velocity x Time + (0.5 x Acceleration x Time2)

Plugging in the values, we get:

Distance = 31.8 m/s x 6.91 s + (0.5 x -4.60 m/s2 x (6.91 s)2)

Simplifying the equation, we find that the car travels approximately 110.7 meters before it comes to a stop.

A 3 inch fire hose has a water flow of 200 gallons per minute. What is the flow in liters per second? Note: Use US gallons not UK gallons. (10 points) The blower on an air conditioning unit produces 95 cubic feet per minute of air in the ductwork. What is the air flow in cubic meters per hour? m/hr (10 points) Torque (or moment) is the measure of turning force or twist on an object. If a mechanic is applying 12 Newton centimeters of torque on a bolt how many pound inches would this be?

Answers

Answer:

Case I: 12.617 L/s

Case II: 161.406 cubic meters per hour

Case III: 1.062 Pound inches

Explanation:

Given:

Speed of water flow = 200 gallons per minuteSpeed of air blow = 95 cubic feet per minuteMeasure of Torque = 12 Newton centimeter

Assumptions:

1 US gallon = 3.785 L1 min = 60 s1 ft = 0.3048 m1 h = 60 min1 inch = 2.54 cm1 N = 0.2248 lb

Case I:

[tex]Speed\ of\ water\ flow = 200 \dfrac{gallon}{min}\\\Rightarrow V_{water} = 200\times \dfrac{3.785\ L}{60\ s}\\\Rightarrow V_{water} = 12.617\ L/s[/tex]

Case II:

[tex]Speed\ of\ air\ blow = 95 \dfrac{ft^3}{min}\\\Rightarrow V_{air} = 95\times \dfrac{(0.3048\ m)^3}{\dfrac{1}{60}\ h}\\\Rightarrow V_{air} = 95\times (0.3048)^3\times 60\ m^3/h\\\Rightarrow V_{air} = 161.406\ m^3/h[/tex]

Case III:

[tex]Measure\ of\ torque = 12\ N cm\\\Rightarrow \tau = 12\times (0.2248\ lb)\times \dfrac{1}{2.54}\ in\\ \Rightarrow \tau = 1.062\ lb in[/tex]

What is the magnitude of the electric force between two point charges with Q1 = -1.5 C and Q2 = 0.8 C at a distance of 1 km?

Answers

Answer:

F = -10800 N

Explanation:

Given that,

Charge 1, [tex]q_1=-1.5\ C[/tex]

Charge 2, [tex]q_2=0.8\ C[/tex]

Distance between the charges, [tex]d=1\ km=10^3\ m[/tex]

We need to find the electric force acting between two point charges. Mathematically, it is given by :

[tex]F=k\dfrac{q_1q_2}{d^2}[/tex]

[tex]F=-9\times 10^9\times \dfrac{1.5\times 0.8}{(10^3)^2}[/tex]

F = -10800 N

So, the magnitude of electric force between two point charges is 10800 N. Hence, this is the required solution.

Other Questions
A nationwide study of American homeowners revealed that 65% have one or more lawn mowers. A lawn equipment manufacturer, located in Omaha, feels the estimate is too low for households in Omaha. Find the P-value for a test of the claim that the proportion with lawn mowers in Omaha is higher than 65%. Among 497 randomly selected homes in Omaha, 340 had one or more lawn mowers. A linens department received the following:19 1/2 dozen of twin sheet sets33 2/3 dozen of queen sheet sets 23 1/4 dozen king sheet sets What is the total number of sheet sets received?a. 896. sheet setsb. 917. sheet setsc. 925. sheet setsd. 902. sheet setse. 930. sheet setsf. None of the above. Freight trains can produce only relatively small accelerations and decelerations. What is the final velocity, in meters per second, of a freight train that accelerates at a rate of 0.065 m/s^2 for 9.75 min, starting with an initial velocity of 3.4 m/s? If the train can slow down at a rate of 0.625 m/s^2, how long, in seconds, does it take to come to a stop from this velocity? How far, in meters, does the train travel during the process described in part (a)? How far, in meters, does the train travel during the process described in part (b)? A cheetah running at 17.5 m/s looses its prey and begins to slow down at a constant acceleraton, fianlly stopping 30.5 m later. How long does it take the cheetah to come to rest and what is the cheetah's acceleration while doing so? I know the answer which is t= 3.49 s but want to see the work how it gets 3.49 s. An unattractive environment can evoke feelings of dislike, aggression, and hostility, whereas an attractive environment induces happiness, warmth, and security.a) definite articleb) indefinite articlec) not an article Because there are some positive aspects of bureaucracy, as proposed by Max Weber, Tammy, a restaurant manager, is interested in implementing certain aspects of the bureaucratic approach to management within her restaurant. Like Weber, Tammy feels bureaucracy is a ____.A)Rational, efficient, cost-cutting tool based on principles of behaviorismB)Sales-generating toolC)Rational, efficient method of increasing diversityD)Rational, efficient, ideal organization based on principles of logicE)Rational, cost-cutting, efficient organization based on principles of synergy At a football game, an air gun fires T-shirts into the crowd. The gun is fired at an angle of 32 from the horizontal with an initial speed of 30 m/s. A fan who is sitting 60 m horizontally from the gun, but high in the stands, catches a T-shirt. A) How long does it take for the T-shirt to reach the fan?B) At what height h is the fan from the ground? The left and right page numbers of an open book are two consecutive integers whose sum is 519. Find these page numbers. Spanish question. Please help. Your clothing tends to cling together after going through the dryer. Why? Would you expect more or less clinging if all your clothing were made of the same material (say, cotton) than if you dried different kinds of clothing together? Again, why? (You may want to experiment with your next load of laundry.) Proteins can be visualized in many ways, each of which highlights a specific aspect of the protein. drag the terms on the left to the appropriate blanks on the right to complete the sentences. helpreset In its second year of business, a company has a net income of $120,000. The following table provides year-end account information. Account Year 1 Year 2 Accounts payable $5,000 $4,000 Accumulated depreciation $65,000 $85,000 Prepaid expenses $20,000 $15,000 Fixed assets $250,000 $255,000 The company uses the indirect method to prepare a statement of cash flows for Year 2. How much should the company report as net cash provided by operating activities 1 How do the events depicted in Mansa Musa I: The Richest Man Who Ever Lived interact with one another? A.) They show how Musa faced problems and found solutions to them as ruler of the Mali Empire. B.) They show how Musa was different from other rulers of the Mali Empire. C.)They show the many ways in which Musa was a remarkable and impressive historical figure. D.) They show how Musa's experiences changed him over the course of many years on the throne.2Why does each trick explained in Cool Eye Tricks end with a section entitled What happened?A.) Each trick is explained spatially, and the What happened? section describes each trick based on what the writer observes last.B.) It is only after the steps for completing each trick are laid out that readers are ready to understand why the trick works.C.) This part of the text provides readers with an unexpected twist or surprise, which only works at the end of each passage.D.) Because the details of the tricks are explained in steps by order of importance, the What happened? section reveals the least important details.3. In Cool Eye Tricks, the writer refers to attempting a do-it-yourself optical illusion by following the steps laid out in the text.A.) What is an optical illusion?B.) an obvious fakeC.) a clear hoaxD.) a photographic jokeE.) a visual trick4. Read this excerpt from Mansa Musa I: The Richest Man Who Ever Lived:In about 1312, Musa came to power. At that time, Mali had millions of people spread across a vast territory. Ancient Mali included parts of modern-day Mali, Mauritania, Guinea, Senegal, and Burkina Faso, as well as other countries.A.) What does the word vast mean in this excerpt?B.) wealthyC.) largeD.) strangeE.) unfriendly The glorious revolution was a what is the volume of the sphere shown below with a radius of 3 A liquid mixture composed of 20% CH4, 30% C2H4, 35% C2H2, and 15% C2H20. What is the average molecular weight of the mixture? a) 20 b) 25 c) 6.75 d) 9.25 You notice your friend's MP3 player is turned up so loud you can make out the words to each song-even though she is wearingearbuds. Your friend should turn down the volume to avoiddeafness.HaA. conductionB. cerebralC. cytotoxicD. nerve A ball is thrown upward at initial velocity of 20 m/s at the edge of a cliff 150 m high. 1.Find time it takes to reach the top of the path.2.Find total time it takes to reach bottom.3.Find final velocity at bottom. Prove that the following two sets are the same. S1 = {a + bx : a, b R} = all polynomials which can expressed as a linear combination of 1 and x; S2 = {ax + b(2 + x) : a, b R} = all polynomials which can expressed as a linear combination of x and 2 + x. Use the properties of addition to simplify 2d + 2 - 7f+ 4d - f.