A 531.7-W space heater is designed for operation in Germany, where household electrical outlets supply 230 V (rms) service. What is the power output of the heater when plugged into a 120-V (rms) electrical outlet in a house in the United States? Ignore the effects of temperature on the heater's resistance.

Answers

Answer 1

Answer:

P=144.74W

Explanation:

We can model the power output of a resistance by using the following formula:

[tex]P=\frac{V^{2}}{R}[/tex]

Wehre P is the power output, V is the rms voltage and R is the resistance. The resistance of the space heater will remain the same, so we can calculate it from the power output in Germany and its rms voltage. So when solving for R, we get:

[tex]R=\frac{V^{2}}{P}[/tex]

and we can now use the provided data:

[tex]R=\frac{(230V)^{2}}{531.7W}[/tex]

which yields:

R= 99.49 Ω

Once we know what the heater's resistance is, we can now go ahead and calculate the power outpor of the heater in the U.S.

[tex]P=\frac{V^{2}}{R}[/tex]

so

[tex]P=\frac{(120V)^{2}}{99.49\Omega}[/tex]

P=144.74W


Related Questions

coil of wire is connected to a power supply, and a current runs in the coil. A single loop of wire is located near the coil, with its axis on the same line as the axis of the coil. The radius of the loop is 2 cm.
At time t1 the magnetic field at the center of the loop, due to the coil, is 0.4 T, in the direction shown in the diagram; the current in the coil is constant.
(a) What is the absolute value of the magnetic flux through the loop at time t1?
Φ mag = T m2
(b) What approximations or assumptions did you make in calculating your answer to part (a)?
Check all that apply.
1.The magnitude of the magnetic field due to the coil is uniform over the area of the loop.
2.The magnetic field outside the loop is zero.
3. The magnetic field due to the coil is uniform in direction over the area of the loop.
(c) What is the direction of the "curly" electric field inside the wire of the loop at time t1? (Remember that at this time the current in the coil is constant.)
E = 0
At a later time t2, the current in the coil begins to decrease.
(d) Now what is the direction of the "curly" electric field in the loop?
counter-clockwise
At time t2 the rate of change of the magnetic field at the center of the loop, due to the coil, is -0.36 T/s.
(e) At this time, what is the absolute value of the rate of change of the magnetic flux through the loop?
|dΦmag/dt| = T m2/s
(f) At this time, what is the absolute value of the emf in the loop?
|emf| = V
(g) What is the magnitude of the electric field at location P, which is inside the wire?
|E| = V/m
(h) Now the wire loop is removed. Everything else remains as it was at time t2; the magnetic field is still changing at the same rate. What is the magnitude of the electric field at location P?
|E| = V/m

Answers

a) The magnetic flux is 0.0005Tm².

b) 1. The magnitude of the magnetic field due to the coil is uniform over the area of the loop.3. The magnetic field due to the coil is uniform in direction over the area of the loop.

c) The direction of the electric field inside the wire of the loop at time t1 is zero

d) The direction of the "curly" electric field in the loop at time  when the current in the coil t₂ is counter clockwise

e)  The absolute value of the rate of change of the magnetic flux through the loop is [tex]0.000045T^2[/tex]

f) The absolute value of the emf in the loop at previous instant is 0.000045V

g) The magnitude of the electric field at location P, which is inside the wire is 0.0036V/m

h) Now the wire loop is removed.

The question is investigating the interactions of current, magnetic fields, magnetic flux, and electromagnetic forces.

(a) The magnetic flux is the magnetic field times the area it is flowing through. So we have

[tex]\phi_{mag}= B * A = 0.4T * \pi*(0.02m)^2 = 0.0005 T m^2[/tex]

(b) The assumptions made are: 1. The magnetic field is uniform over the loop's area, 2. Magnetic field outside the loop is zero, 3. The magnetic field is uniform in direction over the loop's area.

(c) The direction of the electric field inside the wire of the loop at time t1 is zero, as the magnetic field and the current are constant and hence there’s no change in magnetic flux.

(d) If the current in the coil begins to decrease, Lenz's law tells us that an induced current will always counteract the change in magnetic flux that caused it. Therefore, the direction of the "curly" electric field in the loop will be counter-clockwise.

(e) At the later time the rate of change of the magnetic flux, |dΦmag/dt|, would be equal to the rate of change of the magnetic field times the area of the loop [tex]= |0.36 T/s * \pi*(0.02m)^2| = 0.000045 T m^2/s.[/tex]

(f) The absolute value of the emf in the loop would be equal to the absolute value of the rate of change of magnetic flux. Based on Faraday's law this means [tex]|emf| = |d\phi_{mag}/dt| = 0.000045 V.[/tex]

(g) [tex]\|E| = \frac{|\text{emf}|}{2 \pi r} = \frac{0.000452 \, \text{V}}{2 \pi (0.02 \, \text{m})} \approx 0.0036 \, \text{V/m}[/tex]

(h ) The magnitude of the electric field at location P, which is inside the wire, would depend on specifics not given in the question.

A 1-kilogram parcel of air is at 35°c and contains 7 grams of water vapor. What is the relative humidity?

Answers

Answer:

20%

Explanation:

Relative Humidity (%) = (water vapor content÷water vapor capacity) × 100

=(7÷35)×100

=(0.2)×100

=20%

According to the Temperature-Water Vapor Capacity Table, the water capacity at 35 °C is 35 grams.

Water Vapor Capacity: The amount of water (grams) which air can hold at a given temperature.

Water Vapor Content: The amount of water vapor actually present in the air.

Determine whether each statement below about conduction in semiconductors is true or false.
1. After a photon "kicks" an electron into the upper conduction band, the electron moves to the p-type side of the p-n junction.
2. An n-type semiconductor has missing electrons (or holes) in the lower energy valence band.
3. Electrons cannot move in a full valence band.

Answers

Answer:

1. True

2. False

3. True

Explanation:

Semiconductors are the materials whose conduction is intermediary to that of the conductor and insulator and can be made more conducting by mixing impurities or we call it as doping.

In semiconductors, the concentration of the holes in the valence band and the electrons in the conduction band is usually very small and can be varied noticeably by doping.

(1) After being excited by a photon, an electron can move to the conduction band as a hole is created in the valence band band and this hole moves to the p-side of the p-n junction.

(2) It is not the n-type but the p-type semiconductor with missing electrons or holes in the valence band of lower energy.

(3) Electrons are free to move in a partially filled conduction band and valence band.

There is no movement of electrons along the band which are completely full or totally vacant.

A playground merry-go-round with a radius of 1.80 m has a mass of 120 kg and is rotating with an angular speed of 0.400 rev/s. What is its angular speed after a 37.5-kg child gets onto it by grabbing its outer edge? The child is initially at rest.

Answers

The angular speed of the merry-go-round after the child gets on is approximately 1.28 rev/s.

To find the angular speed of the merry-go-round after the child gets onto it, we can use the principle of conservation of angular momentum. The total angular momentum before the child gets on should be equal to the total angular momentum after.

The angular momentum (L) of the merry-go-round before the child gets on is given by:

L_initial = I_initial * ω_initial

Where:

I_initial = Moment of inertia of the merry-go-round

ω_initial = Initial angular speed

The angular momentum (L) of the child after getting on is given by:

L_child = I_child * ω_final

Where:

I_child = Moment of inertia of the child

ω_final = Final angular speed

Since angular momentum is conserved, L_initial = L_child.

The moment of inertia (I) of a solid disk like a merry-go-round can be calculated using the formula:

I = (1/2) * m * r^2

Where:

m = Mass

r = Radius

For the merry-go-round:

I_initial = (1/2) * 120 kg * (1.80 m)^2

I_child = (1/2) * 37.5 kg * (1.80 m)^2

Now, we can set up the equation for conservation of angular momentum:

I_initial * ω_initial = I_child * ω_final

Solve for ω_final:

(1/2) * 120 kg * (1.80 m)^2 * ω_initial = (1/2) * 37.5 kg * (1.80 m)^2 * ω_final

Now, we can cancel out some terms:

120 * ω_initial = 37.5 * ω_final

Now, solve for ω_final:

ω_final = (120 * ω_initial) / 37.5

Substitute the given value for ω_initial (0.400 rev/s):

ω_final = (120 * 0.400 rev/s) / 37.5

ω_final ≈ 1.28 rev/s

So, the angular speed of the merry-go-round after the child gets on is approximately 1.28 rev/s.

Learn more about Angular Momentum here:

https://brainly.com/question/32554788

#SPJ3

A ball is thrown upward from the top of a building 160 ft high with an initial velocity of 64 ft/sec. Its height in feet above the ground is given by s(t)=−16t2+64t+160 where t
is in seconds.
a) When does the ball reach its maximum height?
b) What is its maximum height?
c) When does it hit the ground?
d) With what velocity does it hit the ground?
e) What was its acceleration at time t=1?

Answers

Answer:

2 seconds

5.74165 seconds

-32 ft/s²

119.73 ft/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 32 ft/s²

[tex]s=-16t^2+64t+160[/tex]

[tex]v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-64}{-32}\\\Rightarrow t=2\ s[/tex]

The maximum height will be reached in 2 seconds

From the given equation

[tex]s=-16(2)^2+64\times 2+160\\\Rightarrow s=224\ ft[/tex]

The maximum height is 224 ft from the ground

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 224=0t+\frac{1}{2}\times 32\times t^2\\\Rightarrow t=\sqrt{\frac{224\times 2}{32}}\\\Rightarrow t=3.74165\ s[/tex]

Time taken to fall from the maximum height is 3.74165 seconds

Time taken from the point in time the ball is thrown is 2+3.74165=5.74165 seconds

[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 32\times 224+0^2}\\\Rightarrow v=119.73\ ft/s[/tex]

Velocity with which the ball will hit the ground is 119.73 ft/s

At t = 1

Acceleration of a body thrown is always i.e., a body in free fall is always 32 ft/s². Here as the ball is thrown up the it will be negative so -32 ft/s²

Consider the following statements:
A) The entropy of an isolated system never decreases.
B) Heat never flows spontaneously from cold to hot.
C) The total thermal energy of an isolated system is constant.
Which of these express the second law of thermodynamics?
1. A only
2. B only
3. C only
4. Both A and B
5. Both B and C

Answers

Answer:

1. A only

Explanation:

First law of thermodynamics it sates that energy of the universe is constant.It is also known as energy conservation law.

Therefore according to the first law of thermodynamics ,the thermal energy of the system is unchanged.

Second law of thermodynamics states that ,it is impossible to make a device which take heat from higher temperature energy resource and give 100 % work without heat rejecting.

Therefore only option A is correct.

1. A only

What is the difference between an sbb galaxy and an sb galaxy?

Answers

Answer:

One of the most important difference between the two galaxies" is that the sbb galaxy has a lot of material and bar structures passing thourgh the center and the sb galaxy does not have this".

Explanation:

Basically we have 3 types of galaxies (ellipticals, spirals, and irregulars)

Sb galaxies

On this type of galaxies the "intermediate type of spiral typically has a medium-sized nucleus. They can contain stars, star clouds, and interstellar gas and dust. Usually show wide dispersions in terms of their shape. Other members of this subclass have arms that begin tangent to a bright, while still others reveal a small, bright spiral pattern inset into the nuclear bulge. In any of these cases, the spiral arms may be set at different pitch angles. is important to mention that a pitch angle is defined as the angle between an arm and a circle centred on the nucleus and intersecting the arm".

SB galaxies

"For these types of galaxies the luminosities, dimensions, spectra, and distributions of the barred spirals tend to be indistinguishable from those of normal spirals".

One special case occuers at the SBb systems, that "have a smooth bar as well as relatively smooth and continuous arms. In some galaxies of this type, the arms start at or near the ends of the bar, with conspicuous dust lanes along the inside of the bar that can be traced right up to the nucleus"

One of the most important difference between the two galaxies" is that the sbb galaxy has a lot of material and bar structures passing thourgh the center and the sb galaxy does not have this".

The main greenhouse gases in the atmospheres of the terrestrial planets are

Answers

Answer:

Answered

Explanation:

Terrestrial Planets are the planets that have solid surface and are smaller in size. Mercury, Venus, Earth and Mars are the terrestrial planets of our solar system.

The main greenhouse gases in the atmospheres of the terrestrial planets are, Carbon dioxide( the atmosphere of Venus has mainly CO_2 in it making it hottest planet of the solar system because of greenhouse effect). Water vapor and Cloroflorocarbons in the Earth atmosphere. Traces of methane and nitrous oxide are also present.

A body moves in circle cover half of revolution in 10 sec its linear distance became 10m along circumference of circle than its centripetal acceleration

Answers

The centripetal acceleration is [tex]0.63 m/s^2[/tex]

Explanation:

The centripetal acceleration for an object in circular motion is given by

[tex]a=\frac{v^2}{r}[/tex]

where

v is the linear speed

r is the radius of the circle

The body in the problem cover half of revolution in

t = 10 s

And the corresponding linear distance covered is

L = 10 m

which corresponds to half of the circumference, so

[tex]L=2\pi r[/tex]

From this equation we find the radius of the circle:

[tex]r=\frac{L}{2\pi}=\frac{10}{2\pi}=1.59 m[/tex] [m]

While the linear speed is:

[tex]v=\frac{L}{t}=\frac{10}{10}=1 m/s[/tex]

Therefore, the centripetal acceleration is

[tex]a=\frac{1^2}{1.59}=0.63 m/s^2[/tex]

Learn more about circular motion:

brainly.com/question/2562955

brainly.com/question/6372960

#LearnwithBrainly

If the wavelength of a photon in vacuum is the same as the de broglie wavelength of an electron, then the

Answers

Answer:

Explanation:

The photons travel faster faster through space because photons always travel through space faster than electrons, in fact when an electron gets hitted by a photon this boost its speed

The simplest atomic nucleus in nature is molecular formula of hydrogen, which consists of a single proton. Individual protons have charge and can be thought of as small spinning spheres. A charged spinning sphere will generate a magnetic field, whose direction is indicated by the magnetic moment of the object, vector mu. In what direction will the proton rotate, based on the direction of its magnetic moment and the direction of the uniform magnetic field that it is immersed in?

Answers

Final answer:

The direction of rotation of a proton can be determined using the right-hand rule in physics when considering the direction of its magnetic moment and the uniform magnetic field it's immersed in. The resultant rotation direction works to facilitate energy minimization in the system.

Explanation:

In the presence of an external magnetic field, the principle of physics concerning the interaction between magnetic fields and magnetic moments state that the magnetic moment of an object, in this case a proton, will align itself along the direction of the external magnetic field. This means, if the magnetic moment vector mu of the proton is directed along the positive z-axis, and the magnetic field is also along the positive z-axis, the proton's rotation will be in the direction opposite to that of the magnetic field following the right-hand rule. The proton's rotation and the magnetic field directions facilitate energy minimization in the system. Hence, the direction of rotation of a proton, based on the direction of its magnetic moment and the direction of the uniform magnetic field it is immersed in, can be determined by the right-hand rule; if your thumb points in the direction of the proton's magnetic moment (as opposed to the magnetic field), your fingers will curl in the direction of its rotation.

Learn more about Proton Rotation here:

https://brainly.com/question/33623500

#SPJ2

A __________ is a device designed to open and close a circuit by non-automatic means and to open the circuit automatically on a predetermined overcurrent without damage to itself when properly applied within its rating.

Answers

Answer:

Circuit breaker

Explanation:

Circuit breaker is the devise designed to protect the circuit from over current by opening the circuit automatically. Breaker can also be off manually by toggle switch. Earlier fuses were used but circuit breakers have replaced them. Fuse and circuit breakers operates differently. in case of overloading fuses blown off and opens the circuit while circuit breaker opens the circuit automatically without being blown off.

Final answer:

A circuit breaker is a safety device in a circuit that opens the circuit when an overcurrent occurs. It is faster than fuses and can be reset.

Explanation:

A circuit breaker is a device designed to open and close a circuit by non-automatic means and to open the circuit automatically on a predetermined overcurrent without damage to itself when properly applied within its rating. It acts as a safety device that switches off an appliance if the current in the circuit is too strong.

Circuit breakers are rated for a maximum current and can be reset, reacting much faster than fuses. They consist of components like bimetallic strips that respond to heat to break the electrical connection in the circuit.

A ray of light strikes the midpoint of one face of an equiangular crown glass prism (n=1.52) at an angle of incidence of 30.0.
(a.) Find the angle of reflection at the first surface of the prism.
(b.) Find the angle of refraction

Answers

Answer:

Angle of reflection  at plane surface of prism = 30°

Explanation:

Angle of reflection = angle of incidence at any surface plane or curved .

Here angle of incidence at plane surface of prism = 30°

Angle of reflection  at plane surface of prism = 30°

If i be the angle of incidence and r be angle of refraction

sin i / sin r = refractive index

= 1.52

sin r = sin i / 1.52

=  sin 30 / 1.52

= .5 / 1.52

= .3289

r = 19.2 °

Calculate the partial pressure of ozone at 441 ppb if the atmospheric pressure is 0.67 atm.

Answers

Final answer:

The partial pressure of ozone at 441 ppb with an atmospheric pressure of 0.67 atm is [tex]2.947 x 10^-7 atm.[/tex]

Explanation:

Atmospheric pressure=0.67 atm

We have to calculate the partial pressure of ozone at 441 ppb .

To calculate the partial pressure of ozone at 441 ppb, we need to use the formula:

Partial Pressure = Concentration x Total Pressure

Given that the atmospheric pressure is 0.67 atm and the concentration of ozone is 441 ppb (441 parts per billion), we can calculate the partial pressure as follows:

Partial Pressure of Ozone

= (441/1,000,000,000) x 0.67 atm

[tex]= 2.947 x 10-7[/tex]

Learn more about Partial pressure of ozone here:

https://brainly.com/question/13962756

#SPJ12

What mass of LP gas is necessary to heat 1.7 L of water from room temperature (25.0 ∘C) to boiling (100.0 ∘C)? Assume that during heating, 16% of the heat emitted by the LP gas combustion goes to heat the water. The rest is lost as heat to the surroundings.

Answers

Answer:

72.25 g

Explanation:

mass of 1.7 L water = 1.7 x 10⁻³ x 10³ kg

= 1.7 kg

heat required to raise its temperature from 25 degree to 100 degree

= mass x specific heat x rise in temperature

= 1.7 x 4.18 x 10³ x 75 J

= 532.95 kJ

Now calorific value of LP gas = 46.1 x 10⁶J / kg

Let required mass of LP gas be m kg

heat evolved from this amount of gas

=  46.1 x 10⁶ m

Heat utilized in warming water  

= 46.1 x 10⁶ m  x .16 J

So

46.1 x 10⁶ m  x .16  =  532.95 x 10³

7376 x 10³ m = 532.95 x 10³

m = 532.95 / 7376 kg

= 72.25 g

Final answer:

In order to heat 1.7 L of water from room temperature to boiling, approximately 66.7 kg of LP gas, assuming that during heating only 16% of the heat emitted by LP gas combustion goes to heat the water, would be required.

Explanation:

To calculate the mass of LP gas needed to heat the water, we firstly need to determine the amount of energy required to heat the water from room temperature to the boiling point. This can be determined using the formula for heat Q=m*c* ΔT, where m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature. Considering water's specific heat capacity is 4.184 J/g °C and the change in temperature is 75 °C, the heat needed to warm the water would be (1.7 kg * 4.184 kJ/kg °C * 75 °C) = 532.722 kJ.

Since only 16% of the heat from the LP gas goes to heat the water, the total energy provided by the combustion of LP gas would be obtained by dividing the heat to warm water (532.722 kJ) by 0.16, which equals to 3.33 * 10^3 kJ.

Considering that the heat of combustion of LP gas is about 50 kJ/g approx, the mass of LP gas needed would finally be found by dividing the total energy provided by the LP gas (3.33 * 10^3 kJ) by the heat of combustion of LP gas, which results in approximately 66.7 kg.

Learn more about Heat transfer here:

https://brainly.com/question/13433948

#SPJ12

Two 0.006 Kg bullets are fired with speeds of 20.0 m/s and 50.0 m/s respectively. What are their kinetic energies? Which bullet has more kinetic energy? What is the difference of their kinetic energies?

Answers

Answer:

a) Kinetic energies

K₁ = 1.2 J

K₂ = 7.5 J

b) The bullet that has the highest kinetic energy is the one with the highest speed , v = 50 m/s , K₂ = 7.5 J

c) K₂ -K₁  = 6.3 J

Explanation:

The kinetic energy (K) is that due to the movement of a body and is calculated as follows:

K = (1/2) m*v²  (J)

Where :

m : the mass of the body ( kg)

v is the speed of the body (m/s)

Data

m₁ = m₂ = 0.006 Kg

v₁ = 20 m/s

v₂ = 50 m/s

a)Calculation of the kinetic energy

K₁ = (1/2) (m₁)*(v₁)²

K₁ = (1/2) (0.006)*(20)²

K₁ = 1.2 J

K₂= (1/2) (m₂)*(v₂)²

K₂ = (1/2) (0.006)*(50)²

K₂ = 7.5 J

b) K₂ ˃ K₁

The bullet that has the highest kinetic energy is the one with the highest speed , v = 50 m/s, K₂ = 7.5 J

c) Difference of their kinetic energies (K₂ -K₁)

K₂ -K₁  = 7.5 J - 1.2 J = 6,3 J

A thin spherical shell rolls down an incline without slipping. If the linear acceleration of the center of mass of the shell is 0.23g, what is the angle the incline makes with the horizontal?

Answers

Fnet = ma = m*0.23g = mgsinΘ - Ff

where Ff is the friction force upslope.

net torque τ = Ff * r,

but also τ = I*α =(2/3)mr² * a/r = 2mra/3 = 2mr(0.23g)/3 = 0.46mrg/3

Then Ff * r = 0.46mrg / 3

Ff = 0.46mg/3 → put this into net force equation:

m*0.23g = mgsinΘ - 0.46mg/3 → mg cancels; multiply through by 3

0.69 = 3sinΘ - 0.46

3sinΘ = 1.15

sinΘ = 1.15/3

Θ = arctan(1.15/3) = 22.54 º

A copper rod of cross-sectional area 11.6 cm2 has one end immersed in boiling water and the other in an ice-water mixture, which is thermally well insulated except for its contact with the copper. The length of the rod between the containers is 19.6 cm, and the rod is covered with a thermal insulator to prevent heat loss from the sides.
How many grams of ice melt each second? (The thermal conductivity of copper is 390 W/m-C°.)

Answers

Answer:

0.686 g of ice melts each second.

Solution:

As per the question:

Cross-sectional Area of the Copper Rod, A = [tex]11.6\ cm^{2} = 11.6\times 10^{- 4}\ m^{2}[/tex]

Length of the rod, L = 19.6 cm = 0.196 m

Thermal conductivity of Copper, K = [tex]390\ W/m.^{\circ}C[/tex]

Conduction of heat from the rod per second is given by:

[tex]q = \frac{KA\Delta T}{L}[/tex]

where

[tex]\Delta T = 100^{\circ} - 0^{\circ} = 100^{\circ}C[/tex] = temperature difference between the two ends of the rod.

Thus

[tex]q = \frac{390\times 11.6\times 10^{- 4}\times 100}{0.196} = 228.48\ J/s[/tex]

Now,

To calculate the mass, M of the ice melted per sec:

[tex]M = \frac{q}{L_{w}}[/tex]

where

[tex]L_{w}[/tex] = Latent heat of fusion of water = 333 kJ/kg

[tex]M = \frac{228.48}{333\times 10^{3}} = 6.86\times 10^{- 4}\ kg = 0.686\ g[/tex]

To find the number of grams of ice melted per second, we can calculate the rate of heat transfer through the copper rod from the boiling water to the ice-water mixture using Fourier's Law of Heat Conduction. The formula is:

[tex]\[ Q = kA \frac{\Delta T}{L} \][/tex]

Where:

- Q is the rate of heat transfer (in watts, W)

- k  is the thermal conductivity of the material (in W/m°C)

-  A  is the cross-sectional area of the rod (in m²)

- [tex]\( \Delta T \)[/tex] is the temperature difference between the hot and cold ends (in °C)

- L is the length of the rod (in meters)

First, we need to find the temperature difference [tex]\( \Delta T \)[/tex]between the hot end (boiling water) and the cold end (ice-water mixture). We know water boils at 100°C and ice-water mixture is at 0°C. Therefore,[tex]\( \Delta T = 100°C - 0°C = 100°C \).[/tex]

Given:

- Cross-sectional area [tex]\( A = 11.6 \, \text{cm}^2 = 0.00116 \, \text{m}^2 \)[/tex]

- Length of the rod [tex]\( L = 19.6 \, \text{cm} = 0.196 \, \text{m} \)[/tex]

- Thermal conductivity of copper [tex]\( k = 390 \, \text{W/m°C} \)[/tex]

- Latent heat of fusion of ice [tex]\( L_f = 334 \, \text{J/g} \)[/tex]

Now, let's calculate the rate of heat transfer  Q :

[tex]\[ Q = (390 \times 0.00116) \times \frac{100}{0.196} \][/tex]

[tex]\[ Q \approx 236.8 \, \text{W} \][/tex]

Next, we need to convert this rate of heat transfer into grams of ice melted per second using the latent heat of fusion of ice:

[tex]\[ \text{Grams of ice melted per second} = \frac{Q}{L_f} \][/tex]

[tex]\[ \text{Grams of ice melted per second} = \frac{236.8 \, \text{J/s}}{334 \, \text{J/g}} \][/tex]

[tex]\[ \text{Grams of ice melted per second} \approx 0.708 \, \text{g/s} \][/tex]

Therefore, approximately [tex]\( 0.708 \)[/tex] grams of ice melt each second. This means that [tex]\( 0.708 \)[/tex] grams of ice in the ice-water mixture will melt every second due to the heat transferred from the boiling water through the copper rod.

A rectangular loop of wire of width 10 cm and length 20 cm has a current of 2.5 A flowing through it. Two sides of the loop are oriented parallel to a uniform magnetic field of strength 0.037 T, the other two sides being perpendicular to the magnetic field.
A)What is the magnitude of the magnetic moment of the loop?
B)What torque does the magnetic field exert on the loop?

Answers

Answer:

(a) 0.05 Am^2

(b) 1.85 x 10^-3 Nm

Explanation:

width, w = 10 cm = 0.1 m

length, l = 20 cm = 0.2 m

Current, i = 2.5 A

Magnetic field, B = 0.037 T

(A) Magnetic moment, M = i x A

Where, A be the area of loop

M = 2.5 x 0.1 x 0.2 = 0.05 Am^2

(B) Torque, τ = M x B x Sin 90

τ = 0.05 x 0.037 x 1

τ = 1.85 x 10^-3 Nm

Electromagnetic radiation of 8.12×10¹⁸ Hz frequency is applied on a metal surface and caused electron emission. Determine the work function of the metal if the maximum kinetic energy ([tex]E_k[/tex]) of the emitted electron is 4.16×10⁻¹⁷ J.

Answers

Answer:

The work function ϕ of the metal = 53.4196 x 10⁻¹⁶ J      

Explanation:

When light is incident on a photoelectric material like metal, photoelectrons are emitted from the surface of the metal. This process is called photoelectric effect.

The relationship between the maximum kinetic energy ([tex]E_{k}[/tex]) of the photoelectrons to the frequency of the absorbed photons (f) and the threshold frequency (f₀) of the photoemissive metal surface is:

                                        [tex]E_{k}[/tex] = h(f − f₀)

                                        [tex]E_{k}[/tex] = hf - hf₀

E is the energy of the absorbed photons:  E = hf

ϕ is the work function of the surface:  ϕ = hf₀

                                        [tex]E_{k}[/tex] = E - ϕ

Frequency f = 8.12×10¹⁸ Hz

Maximum kinetic energy [tex]E_{k}[/tex] = 4.16×10⁻¹⁷ J  

Speed of light  c = 3 x 10⁸ m/s

Planck's constant h = 6.63 × 10⁻³⁴ Js                                

                                        E = hf = 6.63 × 10⁻³⁴ x 8.12×10¹⁸

                                        E = 53.8356 x 10⁻¹⁶ J

from [tex]E_{k}[/tex] = E - ϕ ;

                                        ϕ = E - [tex]E_{k}[/tex]

                                        ϕ = 53.8356 x 10⁻¹⁶ - 4.16×10⁻¹⁷

                                        ϕ = 53.4196 x 10⁻¹⁶ J

The work function of the metal ϕ = 53.4196 x 10⁻¹⁶ J      

A proton of mass m moving with a speed of 3.0 × 106 m/s undergoes a head on elastic collision with an alpha particle of mass 4m at rest. What are the velocities of the two particles after the collision?

Answers

Answer:6.0×10^5m/s

Explanation:

According to the law of conservation of momentum, sum of the momenta of the bodies before collision is equal to the sum of their momenta after collision.

After their collision, the two bodies will move with a common velocity (v)

Momentum = mass × velocity

Let m1 be the mass of the proton = m

Let m2 be the mass of the alpha particle = m2

Let v1 be the velocity of the proton = 3.0×10^6m/s

Let v2 be the velocity of the alpha particle = 0m/s (since the body is at rest).

Using the law,

m1v1 + m2v2 = (m1 + m2)v

m(3.0×10^6) + 4m(0) = (m + 4m)v

m(3.0×10^6) = 5mv

Canceling 'm' at both sides,

3.0×10^6 = 5v

v = 3.0×10^6/5

The common velocity v = 6.0×10^5m/s

Io experiences tidal heating primarily because __________.

Answers

Final answer:

Io experiences tidal heating primarily because of the intense gravitational pull of Jupiter which creates friction inside Io and ultimately results in heating. This process is enhanced by Io's elliptical orbit.

Explanation:

Io, one of Jupiter's moons, experiences tidal heating primarily due to the intense gravitational pull of Jupiter. These gravitational forces create friction within Io, resulting in heat. This process is also facilitated by Io's elliptical orbit which varies the gravitational forces acting on it during its orbit around Jupiter, thereby enhancing the frictional heating. Therefore, the main contributor to Io's tidal heating is its interaction with Jupiter's gravitational field.

Learn more about Tidal Heating here:

https://brainly.com/question/34613711

#SPJ6

ind the net rate of heat transfer by radiation from a skier standing in the shade, given the following. She is completely clothed in white (head to foot, including a ski mask), the clothes have an emissivity of 0.200 and a surface temperature of 10.0ºC , the surroundings are at −15.0ºC , and her surface area is 1.60 m^2 . (answer in W)

Answers

Answer:

Q=116.37 W

Explanation:

Given that

Emissivity ,ε= 0.200

Surface temperature ,T₁ = 10⁰ C = 283 K

Surrounding T₂ = - 15⁰ C = 258 K

Area ,A= 1.6 m²

The net heat transfer given as

[tex]Q=\sigma A \varepsilon (T_1^4-T_2^2)[/tex]

σ = 5.67 x 10⁻⁸

The temperature should be in Kelvin.

Now by putting the values

[tex]Q=5.67\times 10^{-8}\times 1.6\times 0.2\times (283^4-258^2)\ W[/tex]

Q=116.37 W

Therefore answer will be 116.37 W.

If the cost of this work input is 10¢/kW · h, how does its cost compare with the direct heat transfer achieved by burning natural gas at a cost of 86.0 cents per therm. (A therm is a common unit of energy for natural gas and equals 1.055 ✕ 108 J.) cost of heat pump cost of natural gas =

Answers

Answer:

Explanation:

One therm = 1.055 x 10⁸J

= 1.055 X 10⁵ kJ

= [tex]\frac{1.055\times10^5}{60\times60}[/tex]kWh

29.3055 kWh

cost of 29.3055 kWh is 86 cent

or cost of imput= [tex]\frac{86}{29.3055}[/tex]

= 2.93 cent /]kWh

compare it with cost rate quoted earlier which each was

= 10

A person runs up several flights of stairs and is exhausted at the top. Later the same person walks up the same stairs and does not feel as tired. Ignoring air resistance, does it take more work to run up the stairs than to walk up?

Answers

Final answer:

It takes the same amount of work to move up the stairs whether running or walking, as work is related to the change in potential energy, which does not depend on the speed of climbing. However, running up the stairs requires additional work to be done against gravity due to the higher kinetic energy, leading to a feeling of greater exhaustion.

Explanation:

The question concerns whether it takes more work to run up stairs than to walk up. In physics, the term 'work' refers to the amount of energy transferred by a force through a distance. In the context of climbing stairs, work is done against gravity to elevate a person's body to a higher potential energy level. According to the work-energy principle, work is equal to the change in kinetic energy plus the change in potential energy.

Using the given information, the person does 1764 J of work to move up the stairs, regardless of whether they run or walk.

This is the work done to overcome gravity. Only 120 J of work is used to increase the person's kinetic energy when running, which is additional work that occurs due to the higher speed.

Therefore, the total work done when running will be the sum of these two amounts.

However, the amount of work done to raise the person's body to a higher elevation (the potential energy) does not change whether the person runs or walks.

The difference is in the kinetic energy.

The feeling of exhaustion may be greater when running due to the higher pace requiring more power output (rate of doing work) and possibly higher energy expenditure related to physiological effects, but the work done against gravity, which depends on the change in elevation and mass of the person, remains the same in both cases.

Forces of attraction limit the motion of particles most in

Answers

Answer:

Solids

Explanation:

Some of the properties that limit the motion of particles in a solid:

1. The molecules of a solid are very closely packed together thereby limiting their motion compare to molecules of liquid which are free to move  and gas with loosely bound molecules.

2. The molecules of a solid are held together by strong inter-molecular force due to very small inter-molecular spaces.

3. The motion of molecules in a solid vibrates only in their mean or fixed positions.

4. The particles are arranged in definite pattern and shape. A solid neither takes on the shape of its container like liquid, nor does it fill the entire volume available like a gas.

5. A solid is rigid and does not flow like liquid and gas.

6. A solid has a definite volume and can not be easily compressed.

Final answer:

Forces of attraction most limit the motion of particles in solids. This is because particles in a solid are tightly packed together and held in place by strong intermolecular forces. As solids change to liquids or gases, these forces lessen, allowing particles more freedom.

Explanation:

Forces of attraction most limit the motion of particles in solids. A solid's particles are tightly packed together and held in place by strong intermolecular forces. For example, atoms in a solid are always in close contact with neighboring atoms, held in place by forces (Figure 14.2 (a)). In contrast, particles in a liquid, while also in close contact, are able to slide over one another (b), and particles in a gas move about freely (c).

As solids are heated and change state to a liquid and then a gas, these forces of attraction lessen, allowing particles more freedom of movement. In summary, the state of a substance (solid, liquid, or gas) is largely dependent upon the behavior of its particles, which, in turn, is determined by the attractive forces between them. The stronger the forces of attraction, the less motion the particles will have, as is the case with solids.

Learn more about Forces and Motion

https://brainly.com/question/13960157

#SPJ11

A baseball, which has a mass of 0.685 kg., is moving with a velocity of 38.0 m/s when it contacts the baseball bat duringwhich time the velocity of the ball becomes 57.0 m/s in the opposite direction.a. How much impulse has been delivered to the ball by the bat?While in contact with the bat the ball undergoes a maximum compression of approximately 1.0 cm.b. Approximately how long did it take for the ball to be stopped by the bat?c. What will be the average force applied to the ball by the bat while stopping the ball?

Answers

Answers:

a) [tex]65.075 kgm/s[/tex]

b) [tex]10.526 s[/tex]

c) [tex]61.82 N[/tex]

Explanation:

a) Impulse delivered to the ball

According to the Impulse-Momentum theorem we have the following:

[tex]I=\Delta p=p_{2}-p_{1}[/tex] (1)

Where:

[tex]I[/tex] is the impulse

[tex]\Delta p[/tex] is the change in momentum

[tex]p_{2}=mV_{2}[/tex] is the final momentum of the ball with mass [tex]m=0.685 kg[/tex] and final velocity (to the right) [tex]V_{2}=57 m/s[/tex]

[tex]p_{1}=mV_{1}[/tex] is the initial momentum of the ball with initial velocity (to the left) [tex]V_{1}=-38 m/s[/tex]

So:

[tex]I=\Delta p=mV_{2}-mV_{1}[/tex] (2)

[tex]I=\Delta p=m(V_{2}-V_{1})[/tex] (3)

[tex]I=\Delta p=0.685 kg (57 m/s-(-38 m/s))[/tex] (4)

[tex]I=\Delta p=65.075 kg m/s[/tex] (5)

b) Time

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately [tex]1.0 cm=0.01 m[/tex]:

[tex]V_{2}=V_{1}+at[/tex] (6)

[tex]V_{2}^{2}=V_{1}^{2}+2ad[/tex] (7)

Where:

[tex]a[/tex] is the acceleration

[tex]d=0.01 m[/tex] is the length the ball was compressed

[tex]t[/tex] is the time

Finding [tex]a[/tex] from (7):

[tex]a=\frac{V_{2}^{2}-V_{1}^{2}}{2d}[/tex] (8)

[tex]a=\frac{(57 m/s)^{2}-(-38 m/s)^{2}}{2(0.01 m)}[/tex] (9)

[tex]a=90.25 m/s^{2}[/tex] (10)

Substituting (10) in (6):

[tex]57 m/s=-38 m/s+(90.25 m/s^{2})t[/tex] (11)

Finding [tex]t[/tex]:

[tex]t=1.052 s[/tex] (12)

c) Force applied to the ball by the bat

According to Newton's second law of motion, the force [tex]F[/tex] is proportional to the variation of momentum  [tex]\Delta p[/tex] in time  [tex]\Delta t[/tex]:

[tex]F=\frac{\Delta p}{\Delta t}[/tex] (13)

[tex]F=\frac{65.075 kgm/s}{1.052 s}[/tex] (14)

Finally:

[tex]F=61.82 N[/tex]

Answers:

a) 65.125 Ns

b) 5.263 * 10^(-4) s

c) 123737.5 N

Explanation:

a) Impulse delivered to the ball F.dt

According to the Impulse-Momentum we have the following:

[tex]F*dt = m*(V_{2} - V_{1})[/tex]

Using the given data we insert in equation above:

[tex]Impulse = 0.685 kg (57 - (-38))\\\\Impulse = 65.1225 Ns[/tex]

Answer: 65.125 Ns

b)

This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately 0.01m :

Using the kinematic equations for constant acceleration:

[tex](v_{f})^2 = (v_{i})^2 + 2*a*s[/tex]

Where:

vf = 0 (ball stops on the bat)

vi = 38 m/s

s = compression = 0.01 m

Using the equation above we compute acceleration:

[tex]a = \frac{(v_{f})^2 - (v_{i})^2}{2*s} \\\\a = \frac{0^2 - 38^2}{2*0.01} \\\\a = -72,200 m/s^2[/tex]

Using the acceleration to compute time:

[tex]v_{f} = v_{i} + a*t\\\\t = \frac{v_{f} - v_{i}}{a}\\\\t = \frac{0 - 38}{-72,200}\\\\t = 5.263*10^(-4) s[/tex]

Answer: 5.263*10^(-4) s

c)

According to Newton's second law of motion:

[tex]F_{avg} * dt = Impulse[/tex]

Using answer from part a and b

[tex]F_{avg} = \frac{Impulse}{dt} \\\\F_{avg} = \frac{65.125}{5.263*10^(-4)} \\\\F_{avg} = 123737.5 N[/tex]

Answer: 123737.5 N

A popular classroom demonstration is to place a gas can on a burner and boil water in it. Left unchecked this has the potential to be a very boring demo. However the can is removed from the flame and the lid is screwed on tightly. After it cools down the can will
A) still be boring and not change.
B) shrivel up, since colder gases have less pressure.
C) bulge and expand, since colder gases are denser and exert more pressure
D) shrivel up, since the atmosphere exerts more force on the can as it cools.

Answers

Answer:

D) shrivel up, since the atmosphere exerts more force on the can as it cools.

Explanation:

As the water in the can is boiled the can gets heated up and contains hot vapour and gases which are rare in density and are in their expanded state. In this state when the can is sealed tightly such that no air leaks in or out of the can. When the temperature of the can drops, the gases shrink in volume and the pressure inside the can become less than the pressure of the atmosphere which leads to shriveling of the can.

The box now rests on a frictionless ramp angled at 15◦ . The mover pulls up on a rope attached to the box to move it up the incline. 33 kg F 29 ◦ 15◦ If the rope makes an angle of 29 ◦ with the horizontal, what is the smallest force the mover would have to exert to move the box up the ramp? The acceleration due to gravity is 9.81 m/s 2 .

Answers

Answer:

F = 84.61 N

Explanation:

As in the figure, since there is no friction so if component of Force applied along the incline is greater than the component of weight along the incline, then the object will move up the incline.

component of Force along the incline = F cos(23° - 15°) = F cos(8°)

component of weight along the incline = 33*g*sin(15°) = 33*9.81*sin(15°)

Equating the above two components of forces will give the minimum Force required.

F cos(8°) = 33*9.81*sin(15°)

F = 33*9.81*sin(15°) / cos(8°)                  (calculate the value using a scientific calculator)

F = 84.61 N

Check all that apply. check all that apply. when two hydrogen atoms are very far apart, the potential energy approaches zero. when the distance between two hydrogen atoms is 0.74 å, a covalent bond is formed. when two hydrogen atoms that are far apart approach each other, the potential energy decreases. at a distance of 0.50 å the potential energy is less than that at 0.74 å. when the potential energy is zero, a covalent bond is formed.

Answers

When two hydrogen atoms are very far apart, the potential energy approaches zero.When two hydrogen atoms that are far apart approach each other, the potential energy decreases.The interatomic distance between hydrogen molecules is 0.74 å, thus when the distance between two hydrogen atoms is 0.74 å, a covalent bond is formed.

The given parameters;

distance between the atoms of the hydrogen, r = 0.74 å = 0.74 x 10⁻¹⁸ mdistance between the atoms of the hydrogen, r =0.5 x 10 10⁻¹⁸ m

The potential energy of the hydrogen atoms is calculated as follows;

[tex]V = \frac{kq}{r}[/tex]

where;

k is Coulomb's constantq is the charge of the electronr is the distance between the atoms

The potential energy when the distance = 0.74 x 10⁻¹⁸ m

[tex]V = \frac{9\times 10^{9} \times 1.602\times 10^{-19}}{0.74\times 10^{-18}} = 1.95\times 10^9 \ N.m[/tex]

The potential energy when the distance = 0.5 x 10⁻¹⁸ m

[tex]V = \frac{9\times 10^{9} \times 1.602\times 10^{-19}}{0.5\times 10^{-18}} = 2.88 \times 10^9 \ N.m[/tex]

Thus, we can conclude that the following;

when two hydrogen atoms are very far apart, the potential energy approaches zero.when two hydrogen atoms that are far apart approach each other, the potential energy decreasesthe interatomic distance between hydrogen molecules is 0.74 å, thus when the distance between two hydrogen atoms is 0.74 å, a covalent bond is formed.

Learn more here:https://brainly.com/question/18160141

Final answer:

When hydrogen atoms approach each other, their potential energy decreases and they begin to form a bond. At an optimal distance of 0.74 å, a stable covalent bond is formed. The potential energy being zero or less does not signify a bond formation.

Explanation:

When two hydrogen atoms are far apart, the potential energy indeed approaches zero because there is no overlap of their atomic orbitals. As they approach each other, their atomic orbitals start overlapping, the energy of the system decreases, initiating the process of bond formation. When the distance between the two hydrogen atoms reaches 0.74 å (Angstroms), their energy is at its lowest point which signifies the formation of a covalent bond. This is because at this optimal distance, both repulsive and attractive forces combine to achieve the lowest possible energy configuration, leading to a stable covalent bond.

However, if the distance were to reduce to 0.50 å, the atoms would be too close and the energy of the system would increase due to stronger nuclear repulsions and electron confinement. In essence, a scenario where the potential energy is either less than or equals to zero does not correlate to the formation of a covalent bond. Instead, it's the optimal balance of forces at a specific distance that gives rise to a stable covalent bond in hydrogen atoms.

Learn more about Covalent Bonding here:

https://brainly.com/question/19382448

#SPJ2

Other Questions
4. (3x + 3x-2) + (3x - 5x - 3)2 Which of the following is the best example of gene flow? a) An earthquake kills most individuals in a tree population, leaving just a few survivors. b) Wind blows pollen from one population of plants to another, and cross-fertilization occurs. c) Genes are shuffled by the crossing over of chromosomes during meiosis. d) A polyploid plant develops. A point mutation occurs in a sex cell of an adult rabbit. The gene affected bythe mutation is responsible for proteins that build heart muscles. Whichdescribes the most likely effect of this mutation? Distance to your brothers house is 552 miles, and the distance to Disneyland is 736 miles. If it took 12 hours to drive to your brothers house, how long would you estimate the drive to Disneyland to take? The Pamir Knot A) is a complex tangle of east-west and north-south trending mountain ranges on the borders of Afghanistan, Tajikistan, Pakistan, and China. B) is the term for the border between Mongolia and China. C) refers to the political isolation experienced by Azerbaijan on the western side of the Caspian Sea. D) refers to the mountainous region lying on the border between Nepal and China. Imagine that you operate a factory that builds cars and trucks. You have acertain number of employees, supplies, and machines for building thevehicles. What can a PPF graph tell you? Consider a reaction that has a positive H and a positive S. Which of the following statements is TRUE? Consider a reaction that has a positive H and a positive S. Which of the following statements is TRUE? This reaction will be spontaneous only at low temperatures. This reaction will be spontaneous at all temperatures. This reaction will be nonspontaneous only at low temperatures. This reaction will be nonspontaneous at all temperatures. It is not possible to determine without more information. There are 20 members of a basketball team. (a) The coach must select 12 players to travel to an away game. How many ways are there to select the players who will travel? (b) From the 12 players who will travel, the coach must select her starting line-up. She will select a player for each of the five positions: center, power forward, small forward, shooting guard and point guard. How many ways are there for her to select the starting line-up? (c) From the 12 players who will travel, the coach must select her starting line-up. She will select a player for each of the five positions: center, power forward, small forward, shooting guard and point guard. However, there are only three of the 12 players who can play center. Otherwise, there are no restrictions. How many ways are there for her to select the starting line-up? Amazon, a successful online retailer, manages an extensive customer database that is used to determine which products are suggested to each customer. Some data are best collected from the customer; other data are best collected from the businesses where purchases are made. Which of the following customer data are best collected from the customer A. Publicity B. Personal Selling why should online time be limited for teens? The speed of light in air 1. depends only on the frequency of the light. 2. depends on both the wavelength and the frequency of light. 3. depends only on the wavelength of light. 4. is independent of the wavelength and frequency of light. What is an effector? a. A molecule that brings about a cellular response to a signal. b. A molecule that brings a signal to a cellular response. c. A molecule that brings enzymatic changes to a cell. d. None of these is the correct answer. Which statement could be a cause of the depreciation of the US dollar?A) the inflation rate lowers in the United StatesB) a decrease in the amount of US dollars in the marketC)US export prices rise at a greater rate than its import pricesD) a widening trade deficit due to inflation causing an increase in costs forproducts exported to foreign countries A random variable x has a Normal distribution with an unknown mean and a standard deviation of 12. Suppose that we take a random sample of size n = 36 and find a sample mean of x = 98 . What is a 95% confidence interval for the mean of x ? Your boss asks you to email a spreadsheet that shows what the company owns and what it has borrowed (owes) at a fixed point in time and shows the net worth of the business. When sending the email, you MOST LIKELY will attach the file named ________. Solve for x.3x 8 < 23 AND- 4x + 26 > 6 Which represents the northern view point during the constitutional convention in the argument are slaves and representation Which statement best describes cell theory?Cell theory describes the different kinds of cells that living things are made up of.Cell theory states that all living things are made of cells that come from other living cells.Cell theory explains the main parts of a cell and how cells reproduce.Cell theory states that non-living matter can make cells that becoming living things. Six mobsters have arrived at the theater for the premiere of the film "Goodbuddies." One of the mobsters, Frankie, is an informer, and he's afraid that another member of his crew, Joey, is on to him. Frankie, wanting to keep Joey in his sights, insists upon standing behind Joey in line at the concession stand, though not necessarily right behind him. How many ways can the six arrange themselves in line such that Frankies requirement is satisfied?a. 6b. 24c. 120d. 360e. 720 If the above cat measures 15 inches, how many centimeters (cm) is that, if 1 inch = 2.54 cm.Show how you got your answer please.