A ball is thrown vertically upward with a speed of 15.0 m/s. (a) How high does it rise? m (b) How long does it take to reach its highest point? s (c) How long does the ball take to hit the ground after it reaches its highest point? s (d) What is its velocity when it returns to the level from which it started? (Assume the positive direction is upward. Indicate the direction with the sign of your answer.) m/s

Answers

Answer 1

Answer:

a) 0.76 m

b) 1.53 s

c) 0.39 s

d) 3.8 m/s

Explanation:

This is a problem in which we need to use the equations pertaining Uniformly Accelerated Motion, as the acceleration during all this process is constant: The gravitational pull on the ball, 9.8 m/s².

To make things easier, we can divide this process in two parts: The first one (A) is from the moment the ball is thrown, until the moment it reaches it highest point and momentarily stops. The second one (B) from the moment it starts descending until it hits the ground.

a) During part A, we use the formula Vf²=Vi² +2*a*x . Where Vf is the final velocity (0 m/s, as the ball stopped in midair), Vi is the initial velocity (15 m/s), a is the acceleration (-9.8 m/s², it has a minus sign, as it goes against the direction of the movement) and x is the distance; thus, we're left with:

0 m/s=(15.0 m/s)²+2*(-9.8 m/s²)*x

We solve for x

x = 0.76 m

b) The formula is Vf=Vi +a*t, where t is the time. We're left with:

0 m/s=15.0 m/s + (-9.8 m/s²)*t

We solve for t

t= 1.53 s

c) Now we focus on part B, and use the formula x=Vi * t + [tex]\frac{at^{2}}{2}[/tex] , with the difference that the Vi is 0 m/s. We already know the value of x in exercise a). Note that a does not have a negative sign, as the direction of movement is opposite to the direction of part A

0.76 m=0 m/s * t +[tex]\frac{9.8\frac{m}{s^{2} } *t^{2} }{2}[/tex]

Solve for t

0.76=4.9t²

t=0.39 s

d) Once again we use the formula Vf=Vi +a*t, using the value of t previously calculated in exercise c).

Vf=0 m/s + 9.8 m/s² * 0,39 s

Vf=3.8 m/s

Answer 2

The ball rises to a height of 11.48 m, takes 1.53 s to reach its highest point, the same amount of time to fall back down, and has a velocity of -15.0 m/s when it returns to the starting level.

The question involves concepts from physics, specifically the kinematics of one-dimensional motion under constant acceleration due to gravity. Here is how we can solve each part of the given problem:

(a) How high does it rise?

To find the maximum height reached by the ball, we can use the kinematic equation that relates initial velocity, final velocity, acceleration, and displacement:

v² = u² + 2as

At the highest point, the final velocity (v) is 0 m/s, the initial velocity (u) is 15.0 m/s (upward), the acceleration due to gravity (a) is -9.8 m/s² (downward), and s represents the height. Solving for s:

0 = (15.0)² + 2(-9.8)s

s = (15.0)² / (2 * 9.8)

s = 11.48 m

(b) How long does it take to reach its highest point?

To find the time (t) it takes for the ball to reach its highest point, we can use the equation:

v = u + at

Since the final velocity at the highest point is 0 m/s:

0 = 15.0 + (-9.8)t

t = 15.0 / 9.8

t = 1.53 s

(c) How long does the ball take to hit the ground after it reaches its highest point?

The time for the ball to fall back down is the same as the time taken to reach the highest point, so this is also 1.53 s.

(d) What is its velocity when it returns to the level from which it started?

The velocity on returning to the starting level will be the same magnitude as the initial velocity but in the opposite direction, so it will be -15.0 m/s, with the negative sign indicating the downward direction.


Related Questions

Suppose a Southwest Airlines passenger plane took three hours to fly 1800 miles in the direction of the Jetstream. The return trip against the Jetstream took four hours. What was the plane’s speed (as read on the plane’s speedometer) in still air and the Jetstream’s speed? How can applying matrices and linear systems help solve this problem?

Answers

Answer:

plane speed: 525mph, jetstream speed=75mph, in explanation it is solved with a linear equations system

Explanation:

First lets name each speed

vs:=speed of the jetstream

vp:=speed of the plane

Now when in the jetstream direction the speeds are added and on the opposite direction are subtracted, then we get these equations, that are linear.

1800 mi=(vp+vs)*3h

1800 mi=(vp-vs)*4h

which is a linear equation system equivalent to:

600 mph=vp+vs (1)

450 mph=vp-vs  (2)

Now from (2) vp= 450mph+vs (3), replacing this in (1) we get:

600mph=(450mph+vs)+vs=450mph+2*vs, then 2*vs=150mph or vs=*75mph, this is the jetstream speed, replacing this in (3) we get the plane speed too vp=450 mph +75mph = 525 mph

If the car’s speed decreases at a constant rate from 64 mi/h to 30 mi/h in 3.0 s, what is the magnitude of its acceleration, assuming that it continues to move in a straight line? What distance does the car travel during the braking period?

Answers

Answer:[tex]3.874 m/s^2[/tex]

Explanation:

Given

Car speed decreases at a constant rate from 64 mi/h to 30 mi/h

in 3 sec

[tex]60mi/h \approx 26.8224m/s[/tex]

[tex]34mi/h \approx 15.1994 m/s[/tex]

we know acceleration is given by [tex]=\frac{velocity}{Time}[/tex]

[tex]a=\frac{15.1994-26.8224}{3}[/tex]

[tex]a=-3.874 m/s^2[/tex]

negative indicates that it is stopping the car

Distance traveled

[tex]v^2-u^2=2as[/tex]

[tex]\left ( 15.1994\right )^2-\left ( 26.8224\right )^2=2\left ( -3.874\right )s[/tex]

[tex]s=\frac{488.419}{2\times 3.874}[/tex]

s=63.038 m

If a marathon runner averages 9.39 mi/h, how long does it take him or her to run a 26.22-mi marathon? Express your answers in h, min and s.

Answers

Answer:

[tex]t=2.8h[/tex]

[tex]t=10080s[/tex]

[tex]t=168 min[/tex]

Explanation:

From this exercise we have velocity and distance. Using the following formula, we can calculate time:

[tex]v=\frac{d}{t}[/tex]

Solving for t

[tex]t=\frac{d}{v}=\frac{26.22mi}{9.39mi/h} =2.8h[/tex]

[tex]t=2.8h*\frac{3600s}{1h} =10080s[/tex]

[tex]t=2.8h*\frac{60min}{1h} =168min[/tex]

A certain elevator cab has a total run of 218 m and a maximum speed is 319 m/min, and it accelerates from rest and then back to rest at 1.20 m/s^2. (a) How far does the cab move while accelerating to full speed from rest? (b) How long does it take to make the nonstop 218 m run, starting and ending at rest?

Answers

Answer:

a)11.6m

b)45.55s

Explanation:

A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.

When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf=Vo+a.t  (1)\\\\

{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\

X=Xo+ VoT+0.5at^{2}    (3)\\

X=(Vf+Vo)T/2 (4)

Where

Vf = final speed

Vo = Initial speed

T = time

A = acceleration

X = displacement

In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve

a)

for this problem

Vo=0

Vf=319m/min=5.3m/s

a=1.2m/s^2

we can use the ecuation number 1 to calculate the time

t=(Vf-Vo)/a

t=(5.3-0)/1.2=4.4s

then we use the ecuation number 3 to calculate the distance

X=0.5at^2

X=0.5x1.2x4.4^2=11.6m

b)second part

We know that when the elevator starts to accelerate and decelerate, it takes a distance of 11.6m and a time of 4.4s, which means that if the distance is subtracted 2 times this distance (once for acceleration and once for deceleration)

we will have the distance traveled in with constant speed.

With this information we will find the time, and then we will add it with the time it takes for the elevator to accelerate and decelerate

X=218-11.6x2=194.8m

X=VT

T=X/v

t=194.8/5.3=36.75s

Total time=36.75+2x4.4=45.55s

Oppositely charged parallel plates are separated by 4.67 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? ________ N/C (b) What is the magnitude of the force on an electron between the plates? ________ N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.00 mm from the positive plate?_________ J

Answers

Answer:

a)  1.28 *10^5 N/C

b)2.05 *10^{-14} N

c) 4.83 *10^{-17} J

Explanation:

Given Data:

Distance between the plates, d = 4.67 mm

[tex]= (4.67) *10^{-3} m[/tex]

[/tex]= 4.67 *10^{-3} m[/tex]

Potential difference, V = 600 V

Solution:

(a) The  magnitude of the electric field between the plates is,

    [tex]E = \frac{V}{d}[/tex]  

[tex]= \frac{600 V}{4.67 *10^{-3}} m[/tex]

  [tex]= 1.28 *10^5 V/m or 1.28 *10^5N/C[/tex]  

(b) Force on electron btwn the plates is,

   F = q E

 [tex]= (1.6 *10^{-19} C) (1.28 *10^5N/C[/tex]

 [tex]= 2.05 *10^{-14} N[/tex]  

(c) Work done on the electron is

   W = F * s

 [tex]= (2.05 *10^{-14} N) * (5.31 *10^{-3} m - 2.95 *10^{-3} m)[/tex]

 [tex]= 4.83 *10^{-17} J[/tex]

What happens to the width of the central diffraction pattern (in the single slit experiment) as the slit width is changed and why?

Answers

Answer:

width of fringes are increased

Explanation:

The width of central maxima is given by the following expression

Width = 2 x Dλ / d

D is distance of screen from source , d is slit width and λ is wavelength of light source. Here we see , on d getting decreased , width will increase because d is in denominator .

Due to increased width ,  position of a fringe  moves away from the centre.

A spelunker is surveying a cave. She follows a passage 180 m straight west, then 230 m in a direction 45° east of south, and then 280 m at 30° east of north. After a fourth unmeasured displacement, she finds herself back where she started. A: Use a scale drawing to determine the magnitude of the fourth displacement. Express your answer using two significant figures.
B: Determine the direction of the fourth displacement. Express your answer using two significant figures.

Answers

Final answer:

The problem requires vector operations in two dimensions. Displacement is broken down into x and y-components which follow the east-west and north-south directions respectively. Total displacement being zero means the sum of the x and y components of displacement will also be zero. The fourth displacement is determined by negating the total x and y components of the first three displacements. The magnitude and direction are then obtained using Pythagorean theorem and arctan function respectively.

Explanation:

To solve this problem, we need to deal with the changes in displacement in terms of vector operations. Given the different directions, we need to break down the vectors into their x and y components, where x represents east-west direction, and y north-south direction. Since our spelunker starts and ends in the same place, the sum of the displacements in each dimension will also be zero.

For displacement 1, moving 180m west, the x component would be -180, and y component would be 0. For displacement 2, moving 230m in a direction 45° east of south, the x would be -230×sin(45) and y would be -230×cos(45). For displacement 3, moving 280m at 30° east of north, the x would be 280×cos(30) and y would be 280×sin(30).

 

To determine the fourth displacement, we sum up the x and y components for displacement 1,2 and 3 and then negate them to get the x and y component of the fourth displacement. We then use the Pythagorean theorem to calculate the magnitude of the 4th displacement which is square root of (sum x² + sum y²). The direction can be obtained by calculating the arctan of the total y component / total x component.

Learn more about Vector Operations here:

https://brainly.com/question/20047824

#SPJ12

A super snail initially traveling at 2 m/s accelerates at 1 m/s^2 for 5 seconds. How fast will it be going at the end of the 5 seconds? How far did the snail travel?

Answers

Answer:

The snail travel at the end of 5 s with a velocity of 12 m/s and the distance of the snail is 22.5 m.

Explanation:

Given that, the initial velocity of the snail is,

[tex]u=2m/s[/tex]

And the acceleration of the snail is,

[tex]a=1m/s^{2}[/tex]

And the time taken by the snail is,

[tex]t=5 sec[/tex]

Now according to first equation of motion,

[tex]v=u+at[/tex]

Here, u is the initial velocity, t is the time, v is the final velocity and a is the acceleration.

Now substitute all the variables

[tex]v=2m/s+ 1 \times 5 sec\\v=7m/s[/tex]

Therefore, the snail travel at the end of 5 s with a velocity of 7 m/s.

Now according to third equation of motion.

[tex]v^{2}- u^{2}=2as\\ s=\frac{v^{2}- u^{2}}{2a} \\[/tex]

Here, u is the initial velocity, a is the acceleration, s is the displacement, v is the final velocity.

Substitute all the variables in above equation.

[tex]s=\dfrac{7^{2}- 2^{2}}{2(1)}\\s=\dfrac{45}{2}\\ s=22.5m[/tex]

Therefore the distance of the snail is 22.5 m.

Assume everyone in the United States consumes one soft drink in an aluminum can every two days. if there are 280 million americans, how many tons of aluminum need to be recycles each year if each can weight 1/15 pound and once ton=2000 pounds?

Answers

Answer:

1.708*10^6 tons.

Explanation:

Number of Aluminum cans used by 1 person in 1 year = 365/2=182.5 say it as 183 cans per year.

Total number of people in US= 280,000,000

Total number of cans used by americans.

[tex] = 5.12×10^10 cans[/tex]

Weight of 1 can =1/15 pounds

Weight of all cans used in 1 year

[tex]= \frac{5.12*10^10}{15} =3.41*10^9pounds.[/tex]

we know that

1ton=2000pounds.

[tex]\frac{3.41*10^9 pounds}{2000} = 1.708*10^6 tons.[/tex]

Suppose you're on a hot air balloon ride, carrying a buzzer that emits a sound of frequency f. If you accidentally drop the buzzer over the side while the balloon is rising at constant speed, what can you conclude about the sound you hear as the buzzer falls toward the ground?

(A) The frequency and intensity increase
(B) The frequency decrease and intensity increase
(C) The frequency decrease and intensity decrease
(D) The frequency remains the same, but the intensity decreases.

Answers

Answer:

(C) The frequency decrease and intensity decrease

Explanation:

The Doppler effect describes the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source, or the wave source is moving relative to the observer, or both.

if the observer and the source move away from each other as is the case for this problem, the wavelength heard by the observer is bigger.

The frequency is the inverse from the wavelength, so the frequency heard will increase.

The sound intensity depends inversely on the area in which the sound propagates. When the buzzer is close, the area is from a small sphere, but as the buzzer moves further away, the wave area will be from a larger sphere and therefore the intensity will decrease.

Comment on why the acceleration due to gravity is less for the plastic ball. Why do the other two balls (steel ball and golf ball) not have such a low value for the acceleration?

Answers

Answer and Explanation:

The gravitational acceleration 'g' depend directly on the mass of the object or body and inversely on the distance or radius squared:

[tex]g = \frac{Gm_{o}}{R^{2}}[/tex]

where

[tex]m_{o}[/tex] = mass of the object

G = Gravitational constt

Thus the plastic ball is lighter and have low mass as compared to the steel and golf balls.

This is the reason that a plastic ball have a low value of acceleration as compared to that of steel and golf balls with higher values of acceleration.

Final answer:

The acceleration due to gravity is a constant (g) for all objects in the same gravitational field, and any observed difference in falling rates is likely due to air resistance, not gravitational pull. Experiments have confirmed that objects fall at the same rate regardless of their mass or composition, assuming no air resistance.

Explanation:

The acceleration due to gravity should not vary with the material of the object if we ignore effects such as air resistance. This is because, according to Newton's second law, the force acting on an object is the product of its mass and the acceleration (F = ma). Here, the force due to gravity is mg, where m is the mass and g is the acceleration due to gravity. Since a = F/m, the mass cancels out, leaving a = g, which is constant for all objects in the same gravitational field.

The question assumes that the plastic ball has a lower acceleration due to gravity, which contradicts known physics principles. All objects, regardless of their mass or composition, feel the same acceleration due to gravity near the Earth's surface, assuming no other forces, like air resistance, play a significant role. Historical experiments by scientists such as Galileo and Eötvös have confirmed the equality of gravitational acceleration (g) for different substances within exceptionally high precision.

If you observe differing acceleration rates, this can be often attributed to air resistance, not a difference in gravitational pull. Objects with a larger surface area or less aerodynamic shape, like the plastic ball, may experience greater air resistance and thus appear to fall slower, even though their acceleration due to gravity is the same as denser objects like the steel or golf ball.

A car is traveling at a speed of 38.0 m/s on an interstate highway where the speed limit is 75.0 mi/h. Is the driver exceeding the speed limit? Justify your answer.

Answers

Answer: Yes, he is exceeding the speed limit

Explanation:

Hi!

This is problem about unit conversion

1 mile = 1,609.344 m

Then the speed limit v is:

v = 75 mi/h = 120,700.8 m/h

1 hour = 60 min = 60*60 s = 3,600 s

v = (120,700.8/3,600) m/s = 33.52 m/s

38 m/s is higher than the speed limit v.

A uniform electric field of magnitude 4.9 ✕ 10^4 N/C passes through the plane of a square sheet with sides 8.0 m long. Calculate the flux (in N · m^2/C) through the sheet if the plane of the sheet is at an angle of 30° to the field. Find the flux for both directions of the unit normal to the sheet.

1)unit normal with component parallel to electric field (N · m^2/C)
2)unit normal with component antiparallel to electric field (N · m^2/C)

Answers

Answer:

1.  1.568 x 10^6 N m^2 / C

2. -  1.568 x 10^6 N m^2 / C

Explanation:

E = 4.9 x 10^4 N/C

Side of square, a = 8 m

Area, A = side x side = 8 x 8 = 64 m^2

Angle between lane of sheet and electric field = 30°

Angle between the normal of plane of sheet and electric field,

θ = 90°- 30° = 60°

The formula for the electric flux is given by

[tex]\phi = E A Cos\theta[/tex]

(1) [tex]\phi = E A Cos\theta[/tex]

By substituting the values, we get

Ф = 4.9 x 10^4 x 64 x Cos 60 = 1.568 x 10^6 N m^2 / C

(2) [tex]\phi = E A Cos\theta[/tex]

By substituting the values, we get

Ф = - 4.9 x 10^4 x 64 x Cos 60 = - 1.568 x 10^6 N m^2 / C

How long does it a take a runner, starting from rest to reach max speed, 30 f/s given acceleration 8 f/s^2? After finding the time, calculate the distance traveled in that time.

Answers

Explanation:

Given that,

Initial sped of the runner, u = 0

Final speed of the runner, v = 30 ft/s

Acceleration of the runner, [tex]a=8\ ft/s^2[/tex]

Let t is the time taken by the runner. It can be calculated using first equation of motion as :

[tex]t=\dfrac{v-u}{a}[/tex]

[tex]t=\dfrac{30-0}{8}[/tex]

t = 3.75 seconds

Let s is the distance covered by the runner. Using the second equation of motion as :

[tex]s=ut+\dfrac{1}{2}at^2[/tex]

[tex]s=\dfrac{1}{2}\times 8\times (3.75)^2[/tex]

s = 56.25 feet

Hence, this is the required solution.

Final answer:

To reach a maximum speed of 30 f/s from rest with an acceleration of 8 f/s², it takes 3.75 seconds. During this time, the runner travels a distance of 56.25 feet.

Explanation:

The question involves calculating the time it takes for a runner to reach a maximum speed of 30 feet per second (f/s) from rest with an acceleration of 8 feet per second squared (f/s²), and then finding the distance traveled during this time. This can be solved using the basic kinematics equations.

Calculating Time to Reach Max Speed

To find the time, we use the equation v = at, where v is the final velocity (30 f/s), a is the acceleration (8 f/s²), and t is the time. Rearranging the equation to solve for t, we get t = v/a. Plugging in the values, t = 30 f/s / 8 f/s² = 3.75 seconds.

Calculating Distance Traveled

To find the distance traveled, we use the equation d = 0.5 * a * t², where d is the distance, a is the acceleration, and t is the time. Substituting the given values, d = 0.5 * 8 f/s² * (3.75 s)² = 56.25 feet.

Which of the following is not a unit of torque? O pound-foot 0 kilogram-newton Newton-meter O pound-inch

Answers

Answer: Kilogram- newton is wrong unit for Torque

Idem pound-inch is also wrong unit for Torque

Explanation: As it is well known the torque is defined as :

Τorque= F x R

so its UNITS are Newton*meter (SI)

or in the Imperial System is often use  Pound-foot

You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don't pitch your tents close together. Joe's tent is 19.0 m from yours, in the direction 19.0° north of east. Karl's tent is 45.0 m from yours, in the direction 39.0° south of east. What is the distance between Karl's tent and Joe's tent?

Answers

Answer:

Distance between Karl and Joe is 38.467 m

Solution:

Let us assume that you are at origin

Now, as per the question:

Joe's tent is 19 m away from yours in the direction [tex]19.0^{\circ}[/tex] north of east.

Now,

Using vector notation for Joe's location, we get:

[tex]\vec{r_{J}} = 19cos(19.0^{\circ})\hat{i} + 19sin(19.0^{\circ})\hat{j}[/tex]

[tex]\vec{r_{J}} = 17.96\hat{i} + 6.185\hat{j} m[/tex]

Now,

Karl's tent is 45 m away from yours and is in the direction [tex]39.0^{\circ}[/tex]south of east, i.e.,  [tex]- 39.0^{\circ}[/tex] from the positive x-axis:

Again,  using vector notation for Karl's location, we get:

[tex]\vec{r_{K}} = 45cos(-319.0^{\circ})\hat{i} + 45sin(- 39.0^{\circ})\hat{j}[/tex]

[tex]\vec{r_{K}} = 34.97\hat{i} - 28.32\hat{j} m[/tex]

Now,  obtain the vector difference between [tex]\vec{r_{J}}[/tex] and [tex]\vec{r_{K}}[/tex]:

[tex]\vec{r_{K}} - \vec{r_{J}} = 34.97\hat{i} - 28.32\hat{j} - (17.96\hat{i} + 6.185\hat{j}) m[/tex]

[tex]\vec{d} = \vec{r_{K}} - \vec{r_{J}} = 17.01\hat{i} - 34.51\hat{j} m[/tex]

Now, the distance between Karl and Joe, d:

|\vec{d}| = |17.01\hat{i} - 34.51\hat{j}|

[tex]d = \sqrt{(17.01)^{2} + (34.51)^{2}} m[/tex]

d = 38.469 m

The distance between Karl's and Joe's tent is:

Final answer:

The distance between Joe's tent and Karl's tent is approximately 36.84 m.

Explanation:

To find the distance between Joe's tent and Karl's tent, we can use the concept of vector addition. We first need to break down the given distances and angles into their respective components:

Joe's tent: 19.0 m at 19.0° north of east Karl's tent: 45.0 m at 39.0° south of east

Next, we can use the components to find the displacement from Joe's tent to Karl's tent:

For Joe's tent: North component = 19.0 m * sin(19.0°) = 6.36 m, East component = 19.0 m * cos(19.0°) = 17.88 m For Karl's tent: North component = -45.0 m * sin(39.0°) = -27.10 m, East component = 45.0 m * cos(39.0°) = 34.37 m

Using the components, we can calculate the displacement from Joe's tent to Karl's tent:

North displacement = -27.10 m - 6.36 m = -33.46 m East displacement = 34.37 m - 17.88 m = 16.49 m

Finally, we can use the Pythagorean theorem to find the magnitude of the displacement:

Magnitude = sqrt((-33.46 m)^2 + (16.49 m)^2) = 36.84 m

Therefore, the distance between Joe's tent and Karl's tent is approximately 36.84 m.

A stone is thrown vertically upward from ground level at t = 0. At t=2.50 s, it passes the top of a tall building, and 1.50 s later, it reaches its maximum height. What is the height of the tall building? We assume an answer in meters.

Answers

Answer:67.45 m

Explanation:

Given

at t=2.5 s it passes the top of a tall building and after 1.5 s it reaches maximum  height

let u is the initial velocity of stone

v=u+at

0=u-gt

[tex]u=9.81\times 4=39.24 m/s[/tex]

Let us take h be the height of building

[tex]h=ut+\frac{-1}{2}gt^2[/tex]

[tex]h=39.24\times 2.5-\frac{1}{2}\times 9.81\times 2.5^2[/tex]

h=67.45 m

Find the critical angle for total internal reflection for a flint glass-air boundary (you may assume that λ = 580.0 nm). Express your answer to 4 significant figures!

Answers

Answer:

the critical angle of the flint glass is 37.04⁰

Explanation:

to calculate the critical angle for total internal reflection.

given,

wavelength of the flint glass =  λ  = 580.0 nm

                                                       = 580 × 10⁻⁹ m        

critical angle  = sin^{-1}(\dfrac{\mu_a}{\mu_g})

at the wavelength of 580.0 nm the refractive index of the glass is 1.66

refractive index of air = 1                        

critical angle  = sin^{-1}(\dfrac{1}{1.66})

                      = 37.04⁰              

hence, the critical angle of the flint glass is 37.04⁰

Meredith walks from her house to a bus stop that is 260 yards away. If Meredith is 29 yards from her house, how far is she from the bus stop? 231 Correct yards If Meredith is 204.8 yards from her house, how far is she from the bus stop? 55.2 Correct yards Let the variable x represent Meredith's varying distance from her house (in yards). As Meredith walks from her house to the bus stop, the value of x varies from 0 Correct to 260 Correct . How many values does the variable x assume as Meredith walks from her house to the bus stop? 3 Incorrect

Answers

Answer:

a) 231 yards

b) 55.2 yards

c) 0 yards to 260 yards

d) Infinite values

Explanation:

This situation can be described as a horizontal line that begins at point [tex]P_{1}=0 yards[/tex] (Meredith's house) and ends at point [tex]P_{2}=260 yards[/tex] (Bus stop). Where [tex]x[/tex] is the varying distance from her house, which can be calculated in the following way:

x=Final Position - Initial Position

or

[tex]x=x_{f} - x_{i}[/tex]

a) For the first case Meredith is at position [tex]x_{i}=29 y[/tex] and the bus stop at position [tex]x_{f}=260 y[/tex]. So the distance Meredith is from the bus stop is:

[tex]x=260 y - 29 y=231 y[/tex]

b) For the second case the initial position is [tex]x_{i}=204.8 y[/tex] and the final position [tex]x_{f}=260 y[/tex]. Hence:

[tex]x=260 y - 204.8  y=55.2  y[/tex]

c) If we take Meredith's initial position at her house  [tex]x_{i}=0 y[/tex] and her final position at the bus stop  [tex]x_{f}=260 y[/tex], the value of  [tex]x[/tex] varies from 0 yards to 260 yards.

d) As Meredith walks from her house to the bus stop, the variable [tex]x[/tex] assumes infinite values, since there are infinite position numbers from [tex]x=0 yards[/tex] to [tex]x=260 yards[/tex]

The answers to the possible distance covered by Meredith at the various distances from her house are;

A) distance = 231 yards

A) distance = 231 yardsB) distance = 55.2 yards

A) distance = 231 yardsB) distance = 55.2 yardsC) x will vary from 0 m to 260 m i.e 0 ≤ x ≤ 260

A) We are told that meredith walks from her house to a bus stop that is 260 yards away.

After walking, she is now 29 yards from her house. This means that she has walked a total of 29 yards from her house.

Distance left to reach bus stop = 260 - 29 = 231 yards

B) We are told that Meredith is now 204.8 yards from her house. This means that she has walked a total of 204.8 yards from here house. Thus;

Distance left to reach bus stop = 260 - 204.8 = 55.2 yards.

C) This question is basically asking for all the possible values that Meredith could have walked from her house to the bus stop.

Since she starts from her house at 0m, then it means that if the bus stop is 260 m away, then if x is the possible distance, we can say that x will vary from 0 m to 260 m i.e 0 x 260

Read more at; https://brainly.com/question/13242055

A car is making a 40 mi trip. It travels the first half of the total distance 20.0 mi at 18.00 mph and the last half of the total distance 20.0 mi at 56.00 mph. What is the car’s average speed in mph for the entire second trip?

Answers

Answer: The average speed is 27,24 mph (exactly 1008/37 mph)

Explanation:

This is solved using a three rule: We know the speeds and the distances, what we can obtain from it is the time used. It is done like this:

1h--->18mi

X ---->20 mi, then X=20mi*1h/18mi= 10/9 h=1,111 h

1h--->56mi

X ---->20 mi, then X=20mi*1h/56mi= 5/14 h=0,35714 h

Then the average speed is calculated by taking into account that it was traveled 40mi and the time used was 185/126 h=1,468 h and since speed is distance over time we get the answer. Average speed= 40mi/(185/126 h)=1008/37 mph=27,24 mph.

A mass m = 550 g is hung from a spring with spring constant k = 2.8 N/m and set into oscillation at time t = 0. A second, identical mass and spring next to the first set is also set into motion. At what time t should the second system be set into motion so that the phase difference in oscillations between the two systems is pi/2?

Answers

Answer:

The second system must be set in motion [tex]t=0.70s[/tex] seconds later

Explanation:

The oscillation time, T, for a mass, m, attached to spring with Hooke's constant, k, is:

[tex]T=2\pi\sqrt(\frac{m}{k} )[/tex]

One oscillation takes T secondes, and that is equivalent to a 2π phase. Then, a difference phase of π/2=2π/4, is equivalent to a time t=T/4.

If the phase difference π/2 of the second system relative to the first oscillator. The second system must be set in motion [tex]t=\frac{\pi}{2}\sqrt(\frac{m}{k})=\frac{\pi}{2}\sqrt(\frac{0.55}{2.8}= 0.70s)[/tex] seconds later

Recent findings on the topic of brain based research indicate all of the following except

Recent findings on the topic of brain-based research indicate all of the following except

A. early environments matter.
B. all children are born ready to learn.
C. society isn't addressing the needs of young children. ?
D. the brain stops growing at around age two

Answers

The answer is D, the brain actually stops growing around age 18

A quantity of 14.1 cm^3 of water at 8.4°C is placed in a freezer compartment and allowed to freeze to solid ice at -7.2°C. How many joules of energy must be withdrawn from the water by the refrigerator?

Answers

Answer:920.31 J

Explanation:

Given

Volume of water (V)[tex]=14.1 cm^3 [/tex]

mass(m)[tex]=\rho \times V=1000\times 14.1\times 10^{-6}=14.1 gm[/tex]

Temperature [tex]=8.4^{\circ} C[/tex]

Final Temperature [tex]=-7.2 ^{\circ}C[/tex]

specific heat of water(c)[tex]=4.184 J/g-^{\circ}C[/tex]

Therefore heat required to removed is

[tex]Q=mc(\Delta T)[/tex]

[tex]Q=14.1\times 4.184\times (8.4-(-7.2))[/tex]

[tex]Q=920.31 J[/tex]

An elevator moves downward in a tall building at a constant speed of 5.70 m/s. Exactly 4.95 s after the top of the elevator car passes a bolt loosely attached to the wall of the elevator shaft, the bolt falls from rest. (a) At what time does the bolt hit the top of the still-descending elevator? (Assume the bolt is dropped at t = 0 s.)(b) Estimate the highest floor from which the bolt can fall if the elevator reaches the ground floor before the bolt hits the top of the elevator. (Assume 1 floor congruent 3 m.)

Answers

Answer:

a) t = 3.01s

b) 15th floor

Explanation:

First we need to know the distance the elevator has descended before the bolt fell.

[tex]\Delta Y_{e} = -V_{e}*t = -5.7 * 4.95 = -28.215m[/tex]

Now we can calculate the time that passed before both elevator and bolt had the same position:

[tex]Y_{b}=Y_{e}[/tex]

[tex]Y_{ob}+V_{ob}*t-g*\frac{t^{2}}{2} = Y_{oe} - V_{e}*t[/tex]

[tex]0+0-5*t^{2} = -28.215 - 5.7*t[/tex]   Solving for t:

t1 = -1.87s    t2 = 3.01s

In order to know how the amount of floors, we need the distance the bolt has fallen:

[tex]Y_{b}=-g*\frac{t^{2}}{2}=-45.3m[/tex]  Since every floor is 3m:

Floors = Yb / 3 = 15 floors.

A golfer hits a shot to a green that is elevated 3.20 m above the point where the ball is struck. The ball leaves the club at a speed of 18.1 m/s at an angle of 49.0° above the horizontal. It rises to its maximum height and then falls down to the green. Ignoring air resistance, find the speed of the ball just before it lands.

Answers

Answer:

16.17 m/s

Explanation:

h = 3.2 m

u = 18.1 m/s

Angle of projection, θ = 49°

Let H be the maximum height reached by the ball.

The formula for the maximum height is given by

[tex]H=\frac{u^{2}Sin^{2}\theta }{2g}[/tex]

[tex]H=\frac{18.1^{2}\times Sin^{2}49 }{2\times 9.8}=9.52 m[/tex]

The vertical distance fall down by the ball, h'  H - h = 9.52 - 3.2 = 6.32 m

Let v be the velocity of ball with which it strikes the ground.

Use third equation of motion for vertical direction

[tex]v_{y}^{2}=u_{y}^{2}+2gh'[/tex]

here, uy = 0

So,

[tex]v_{y}^{2}=2\times 9.8 \times 6.32[/tex]

vy = 11.13 m/s

vx = u Cos 49 = 18.1 x 0.656 = 11.87 m/s

The resultant velocity is given by

[tex]v=\sqrt{v_{x}^{2}+v_{y}^{2}}[/tex]

[tex]v=\sqrt{11.87^{2}+11.13^{2}}[/tex]

v = 16.27 m/s

A piece of glass of index of refraction 1.50 is coated with a thin layer of magnesium fluoride of index of refraction 1.38. It is illuminated with light of wavelength 680 nm. Determine the minimum thickness of the coating that will result in no reflection

Answers

Answer:

Thickness = 123.19 nm

Explanation:

Given that:

The refractive index of the glass = 1.50

The refractive index of thin layer of magnesium fluoride = 1.38

The wavelength of the light = 680 nm

The thickness can be calculated by using the formula shown below as:

[tex]Thickness=\frac {\lambda}{4\times n}[/tex]

Where, n is the refractive index of thin layer of magnesium fluoride = 1.38

[tex]{\lambda}[/tex] is the wavelength

So, thickness is:

[tex]Thickness=\frac {680\ nm}{4\times 1.38}[/tex]

Thickness = 123.19 nm

The driver of a sports car traveling at 10.0⁣m/s steps down hard on the accelerator for 5.0⁣s and the velocity increases to 30.0⁣m/s. What was the average acceleration of the car during the 5.0s time interval?

Answers

Answer:

[tex]a=4m/s^{2}[/tex]

Explanation:

From the concept of average acceleration we know that

[tex]a=\frac{v_{2}-v_{1} }{t_{2}-t_{1}  }[/tex]

From the exercise we know that

[tex]v_{2}=30m/s\\v_{1}=10m/s\\t_{2}=5s\\t_{1}=0s[/tex]

So, the average acceleration of the car is:

[tex]a=\frac{30m/s-10m/s}{5s}=4m/s^{2}[/tex]

What is the magnitude of the electric field at a distance of 89 cm from a 27 μC charge, in units of N/C?

Answers

Answer:

306500 N/C

Explanation:

The magnitude of an electric field around a single charge is calculated with this equation:

[tex]E(r) = \frac{1}{4 \pi *\epsilon 0} \frac{q}{r^2}[/tex]

With ε0 = 8.85*10^-12 C^2/(N*m^2)

Then:

[tex]E(0.89) = \frac{1}{4 \pi *8.85*10^-12} \frac{27*10^-6}{0.89^2}[/tex]

E(0.89) = 306500 N/C

How do resistors in series affect the total resistance?

Answers

Answer:

Explanation:

Resistance in series is given by the sum of all the resistor in series

value of Total Resistance is given by

[tex]R_{th}=R_1+R_2+R_3+R_4+..............R_n[/tex]

Where [tex]R_{th}[/tex] is the total resistance

[tex]R_1,R_2[/tex] are the resistance in series

Current in series remains same while potential drop is different for different resistor

The value of net resistor is always greater than the value of individual resistor.

If a there is a defect in a single resistor then it affects the whole circuit in series.

A package is dropped from an airplane flying horizontally with constant speed V in the positive xdirection. The package is released at time t = 0 from a height H above the origin. In addition to the vertical component of acceleration due to gravity, a strong wind blowing from the right gives the package a horizontal component of acceleration of magnitude ¼g to the left. Derive an expression for the horizontal distance D from the origin where the package hits the ground.

Answers

Answer:

[tex]D=V*\sqrt{\frac{2H}{g} } -\frac{H}{4}[/tex]

Explanation:

From the vertical movement, we know that initial speed is 0, and initial height is H, so:

[tex]Y_{f}=Y_{o}-g*\frac{t^{2}}{2}[/tex]

[tex]0=H-g*\frac{t^{2}}{2}[/tex]    solving for t:

[tex]t=\sqrt{\frac{2H}{g} }[/tex]

Now, from the horizontal movement, we know that initial speed is V and the acceleration is -g/4:

[tex]X_{f}=X_{o}+V*t+a*\frac{t^{2}}{2}[/tex]   Replacing values:

[tex]D=V*\sqrt{\frac{2H}{g} }-\frac{g}{4}*\frac{1}{2} *(\sqrt{\frac{2H}{g} })^{2}[/tex]

Simplifying:

[tex]D=V*\sqrt{\frac{2H}{g} } -\frac{H}{4}[/tex]

Other Questions
How did Pontiac help to create the Proclamation of 1763 what does the chloroplast produce during the light independent reactions of photosynthesis?a. NADPH moleculesb. ATP moleculesc. carbohydrate molecules d. chlorophyll molecules Boyles Law states that when a sample of gas is compressed at a constant temperature, the pressure P of the gas is inversely proportional to the volume V of the gas. (a) Suppose that the pressure of a sample of air that occupies 0.106 m3 at 25C is 50 kPa. Write V as a function of P. (b) Calculate dVydP when P 50 kPa. What is the meaning of the derivative? What are its units? According to the following reaction, what volume of 0.244 M KCl solution is required to react exactly with 50.0 mL of 0.210 M Pb(NO3)2 solution? 2 KCl(aq) + Pb(NO3)2(aq) PbCl2(s) + 2 KNO3(aq) What does workers compensation do? In Greek history, the Persian Wars (500s & 400s BCE) were caused by A)conflict over Greek settlements in Asia Minor. B)the lack of democratic rights in Greek city-states. C)the assassination of the Persian king. D)attempts by Sparta to control the Delian League. 2) In the Classical Era, Greek religion could BEST be described as A)animistic. B)monotheistic. C)paganistic. D)polytheistic. 3) Society in ancient Sparta was centered mainly around A)trade. B)the arts. C)democracy. D)the military. 4) Which statement offers the BEST description of a person who would have had full political rights in Ancient Athens? A)all adult males B)all adult Greeks C)all free adult males D)all free men and women 5) The term given to the body of stories about ancient Greek gods and heroes is A)theology B)sociology. C)mythology. D)anthropology. 6) When the city of Athens took over territory outside its walls, it changed from a city to a ____________, which led to the development of a complex government. A)city-state B)county C)nation D)parish 7) The Han Dynasty of China contributed which invention to society that is still used today? A)paper B)stirrups C)steel plow D)typewriter 8) Chinese dynasties- such as the Qin, Han, and Ming- are often said to be imperial dynasties. The term imperial is MOST associated which of these words? A)communism B)democracy C)dictatorship D)empire 9) Which of these was a consequence of the Persian Wars in Greece? A)Athens was annexed by the Achaemenid Empire. B)Athens allied with Persia to defeat Sparta. C)Athens formed the Delian League for military protection. D)Athens expanded their territory into Carthage and North Africa. 10) Which of these was the MOST important reason for the success of the economy of Han China? A)Trading gold with the Roman Empire. B)Sea voyages of Zheng He's navy. C)Mongol control of the Silk Road. D)Han control of Silk Road trade. A graduate student wants to write a dissertation on age-related changes in memory between young and old adults. The best research method for her is ____________. Which phrases describe space observatories? Check all that apply.are telescopes that can take images of invisible energyare located on Earth's surface away from areas of light pollutionobserve electromagnetic radiation that is blocked by our atmosphereobserve only electromagnetic radiation that makes it through Earth's atmosphereare large observation decks in space where humans can conduct experiments Which political system is run by a group of noble families or wealthy members of society Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being neither 0 nor 90): (a) Is the velocity ever zero? (b) When is the velocity a minimum? A maximum? (c) Can the velocity ever be the same as the initial velocity at a time other than at t =0? (d) Can the speed ever be the same as the initial speed at a time other than at t =0? Show how the shipmasters failed love story adheres to the ideals of Romanticism. 15. Injecting a drug provides a more immediate effect because __________. A. the drug enters the bloodstream directly B. of the user's understanding of the risk involved C. of the pain of injection D. the drug bypasses the bloodstream 16. In 2009, Florida suffered more __________ fatalities than any other state. A. bicyclist B. child passenger C. pedestrian D. impaired driving 17. One way of bringing your chances of causing an impaired driving collision to zero is to __________. A. tell your friends not to let you drive while impaired B. not drink C. tell your friends not to let you drink too much D. drive while impaired only very late at night 18. Women are more likely to develop __________ from excessive drinking than men. A. alcohol-related liver disease B. alcohol addiction C. tuberculosis D. cancer 19. Driving during restricted hours is considered a moving violation and is worth __________ points on your license. A. 2 B. 3 C. 4 D. 5 20. When approaching an emergency vehicle, law enforcement vehicle, or tow truck stopped on a two-lane road with a speed limit of 20 mph or less, you are required to __________. A. slow down to 10 mph B. slow down to 5 mph C. stop and offer assistance D. pass the vehicle in an opposing lane, if safe 21. You should not attempt to __________ a motorcycle. A. pass B. turn left in front of C. perform a U-turn on D. share a lane with 22. Turning too wide or too sharp when driving while impaired is made more likely due to a reduced __________. A. sense of hearing B. ability to adapt to sudden changes in brightness C. ability to judge distances between objects D. All of the above 23. A citation for driving 16 mph or more over the lawful speed limit puts __________ points on your license. A. 2 B. 3 C. 4 D. 5 24. A citation for driving 15 mph or less over the lawful speed limit puts __________ points on your license. A. 2 B. 3 C. 4 D. 5 25. Effects of chronic __________ use include kidney disease and dysfunction, liver disease, infections in the lungs, chronic constipation, and increased risk of HIV. A. tobacco B. heroin C. cocaine D. marijuana 26. __________ can make depression worse, causing sad feelings to worsen and last longer. A. Alcohol B. Depressants other than alcohol C. Exercise D. A and B 27. It is illegal to modify your __________ system or install a bypass device to increase the noise level of your vehicle. A. cooling B. exhaust C. evaporative emissions D. None of the above 28. __________ indicate a BAL of .10% or higher. A. Slurred speech and a reduced ability to maintain lane position B. Impaired memory and a lack of alertness C. Reduced physical coordination and increased reaction time D. None of the above 29. To a greater extent than other drugs, the effects of __________ depend on the specific personality and mental state of the user. A. stimulants B. depressants C. hallucinogens D. antihistamines 30. __________ are often used to relieve pain, reduce anxiety, lower heart rate and respiration, and induce sleep. A. Amphetamines B. Depressants C. Hallucinogens D. None of the above 31. The long-term consequences of cocaine use include __________. A. coughing up blood B. destruction of cartilage separating the nasal passages C. permanent sedation D. A and B 32. If you do not stop to give help when the vehicle you are driving is involved in a crash causing death or personal injury, your license will be __________. A. revoked B. suspended C. cancelled D. restricted 33. Alcohol's legality and social acceptance make it __________. A. more dangerous B. less dangerous C. cool D. healthy 34. A person who has kept a significant amount of alcohol in his or her bloodstream at all times for a number of years may die if he or she stops drinking alcohol for too long. A. True B. False 35. Air bags are always safe. A. True B. False 36. The practice of cutting a drug can be deadly because of the resulting __________. A. increased rate of metabolism in the liver B. mineral deposits forming in organs C. highly variable drug potency D. B and C 37. A curb of this color means you may stop only to pick up or drop off passengers or freight, and only for a limited time, as indicated nearby. A. White B. Yellow C. Green D. Red 38. An addiction to any drug is very likely to cause you to __________. A. lose your eyesight B. avoid depression C. lose your job D. become more popular 39. Hard liquor usually has an alcohol concentration of __________. A. 20% or more B. 30% or more C. 40% or more D. 50% or more 40. If you allow your drivers license to be used for illegal purposes, your license will be __________. A. revoked B. suspended A solution was prepared by dissolving 2.2 g of an unknown solute in 16.7 g of CCl4. A thermal analysis was performed for this solution and it was found that its initial freezing point was 28.7C. A reliable source in the bibliography states that for CCl4, Tf = 22.9C, and its freezing point lowering constant is Kf = 29.9C/m. Calculate the molar mass of the unknown solute. Use the number line to determine the absolute value. Enter the value, as a mixed number in simplest form, in the box. 223 = Current functional magnetic resonance imaging (fMRI) technology allows researchers to:a. Predict the likelihood of developing Alzheimer's disease.b. Diagnose most forms of mental illness.c. Identify selected sentences that a person reads in a scanner.d. Read a person's private thoughts at a distance. You drop a rock into a deep well and hear the sounds of it hitting the bottom 5.50 s later. If the speed of sound is 340 m/s, determine the depth of the well. NEED HELP ASAP!!!!!!!!John fortier says, "the people can speak." he means: the people can settle the matter Fill in the blank The retail cost of a TV is 40% more than its wholesale cost. Therefore, the retail cost is _times the wholesale cost The retail cost is 1.4 times the wholesale cost. (Type an integer or a decimal Nerve impulses in a human body travel at a speed of about 100 m/s. Suppose a man accidentally stubs his toe. About how much time does it take the nerve impulse to travel from the foot to the brain (in s)? Assume the man is 1.80 m tall and the nerve impulse travels at uniform speed. An die (six faces) has the number 1 painted on three of its faces, the number 2 painted on two of its faces, and the number 3 painted on one face. Assume that each face is equally likely to come up. Find a sample space for this experimen