A car starts from rest and speeds up at a constant rate of 2.03 m/s^2 in a straight line until it reaches a speed of 21.1 m/s. The car then slows down at half the rate that it sped up until it stops. How far (in m) does the car move from start to stop?

Answers

Answer 1

Answer:

The car moves from start to stop 328.88 m in total.

Explanation:

Vo= 0 m/s

V1= 21.1 m/s

V2= 0 m/s

a1= 2,03 m/s²

a2= -1.015 m/s²

Speed Up:

Speed up time:

V1= Vo + a1 * t1

t1= V1/a1

t1= 10.39 sec

total distance of speed up:

d1= Vo * t1 + (a1 * t1²)/2

d1= 109.57m

Slow Down:

V2= V1 - a2 * t2

t2= V1/a2

t2= 20.78 sec

total distance of slow down:

d2= V1 * t2 - (a2 * t2²)/2

d1= 219.31m

Total Distance:

TD= d1+d2= 109.57m + 219.31m

TD= 328.88 m


Related Questions

If a mile of 24-gauge copper wire has a resistance of 0.14 kΩ and the resistivity of copper is 1.7 × 10−8 Ω ⋅ m, what is the diameter of the wire? (1 mile = 1.6 km)

Answers

D = 497.4x10⁻⁶m. The diameter of a mile of 24-gauge copper wire with resistance of 0.14 kΩ and resistivity of copper 1.7×10−8Ω⋅m is 497.4x10⁻⁶m.

In order to solve this problem we have to use the equation that relates resistance and resistivity:

R = ρL/A

Where ρ is the resistivity of the matter, the length of the wire, and A the area of ​​the cross section of the wire.

If a mile of 24-gauge copper wire has a resistance of 0.14 kΩ and the resistivity of copper is 1.7×10⁻⁸ Ω⋅m. Determine the diameter of the wire.

First, we have to clear A from the equation R = ρL/A:

A = ρL/R

Substituting the values

A = [(1.7×10⁻⁸Ω⋅m)(1.6x10³m)]/(0.14x10³Ω)

A = 1.9x10⁻⁷m²

The area of a circle is given by A = πr² = π(D/2)² = πD²/4, to calculate the diameter D we have to clear D from the equation:

D = √4A/π

Substituting the value of A:

D = √4(1.9x10⁻⁷m²)/π

D = 497.4x10⁻⁶m

Final answer:

The diameter of the wire is approximately 4.5 × 10^-6 meters.

Explanation:

To find the diameter of the wire, we can use the formula for resistance:

R = (ρ * L) / (A),

where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire. Rearranging the formula to solve for the area:

A = (ρ * L) / R.

Given that the mile of 24-gauge copper wire has a resistance of 0.14 kΩ (or 0.14 * 10^3 Ω), the resistivity of copper is 1.7 × 10^-8 Ω ⋅ m, and 1 mile is equal to 1.6 km, we can substitute the values in the formula:

A = (1.7 × 10^-8 Ω ⋅ m * (1.6 * 10^3 m)) / (0.14 * 10^3 Ω).

Calculating the area, we find:

A ≈ 1.94 × 10^-11 m^2.

Next, we use the formula for the area of a circle (A = π * r^2) to find the radius (r) of the wire:

r = √(A / π).

Substituting the values, we have:

r ≈ √(1.94 × 10^-11 m^2 / π).

Calculating the radius, we find:

r ≈ 2.25 × 10^-6 m.

Finally, we can double the radius to find the diameter of the wire:

D = 2r ≈ 2 * 2.25 × 10^-6 m = 4.5 × 10^-6 m.

Therefore, the diameter of the wire is approximately 4.5 × 10^-6 meters.

Learn more about diameter of wire here:

https://brainly.com/question/35710519

#SPJ2

A crude approximation for the x-component of velocity in an incompressible laminar boundary layer flow is a linear variation from u = 0 at the surface (y = 0) to the freestream velocity, U, at the boundary layer edge (y = δ). The equation for he profile is u = Uy/δ, where δ = cx1/2 and c is a constant. Show that the simplest expression for the y component of velocity is v = uy/4x. Evaluate the maximum value of the ratio v /U, at a location where x = 0.5 m and δ = 5 mm.

Answers

Answer:

v/U=0.79

Explanation:

Given u=[tex]u=\frac{Uy}{\partial }=\frac{Uy}{cx^{1/2}}[/tex]

Now for the given flow to be possible it should satisfy continuity equation

[tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0[/tex]

Applying values in this equation we have

[tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0\\\\\frac{\partial u}{\partial x}=\frac{\partial (\frac{Uy}{cx^{1/2}})}{\partial x}\\\\\frac{\partial u}{\partial x}=\frac{-1}{2}\frac{Uy}{cx^{3/2}}\\\\[/tex]

Thus we have

[tex]\frac{\partial v}{\partial y}=\frac{1}{2}\frac{Uy}{cx^{3/2}}\\\\\therefore \int \partial v=\int \frac{1}{2}\frac{Uy}{cx^{3/2}}\partial x\\\\v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}\\\\v=\frac{1}{4}\frac{uy}{x}[/tex] Hence proved [tex]\because u=\frac{Uy}{cx^{1/2}}[/tex]

For maximum value of v/U put y =[tex]\partial[/tex]

[tex]v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}[/tex]

[tex]v=\frac{1}{4}\frac{Uy^{2}}{cx^{3/2}}\\\\\frac{v}{U}=\frac{\partial ^{2}}{4cx^{3/2}}\\\\[/tex]

Thus solving we get using the given values

v/U=0.79

Final answer:

The y-component of velocity in a boundary layer flow is derived using the principle of continuity for an incompressible fluid. Upon evaluation, the ratio v /U has a maximum of 0.25 at the specified location (x = 0.5 m and δ = 5 mm).

Explanation:

The y-component v of the velocity can be solved using the continuity equation, d/dx (u A) + d/dy (v A) = 0, where A is the cross-sectional area of the pipe. This equation arises from the principle of conservation of mass for an incompressible fluid. In this case, our A is the width of the plate (into the page) times the y-distance from the plate or y*b. When the equation derived for velocity, u = Uy/δ, and the equation for the boundary layer thickness, δ = cx1/2, are plugged into the continuity equation and simplified, we derive the expression v = uy/4x.  Substituting for δ, we get v = Uy/(4δ*sqrt(x)), and at x = 0.5 m and δ = 5 mm, the maximum value of v /U is 1/4 or 0.25.

Learn more about Laminar Flow here:

https://brainly.com/question/33954336

#SPJ3

Initially, a particle is moving at 5.24 m/s at an angle of 35.2° above the horizontal. Four seconds later, its velocity is 6.25 m/s at an angle of 57.5° below the horizontal. What was the particle's average acceleration during these 4.00 seconds in the x-direction (enter first) and the y-direction?

Answers

Answer:

- 0.23

0.56

Explanation:

[tex]\underset{v_{o}}{\rightarrow}[/tex] = initial velocity of the particle = [tex](5.24 Cos35.2) \hat{i} + (5.24 Sin35.2) \hat{j}[/tex] = [tex](4.28) \hat{i} + (3.02) \hat{j}[/tex]

[tex]\underset{v_{f}}{\rightarrow}[/tex] = final velocity of the particle = [tex](6.25 Cos57.5) \hat{i} + (6.25 Sin57.5) \hat{j}[/tex] = [tex](3.36) \hat{i} + (5.27) \hat{j}[/tex]

t = time interval = 4.00 sec

[tex]\underset{a}{\rightarrow}[/tex] = average acceleration = ?

Using the kinematics equation

[tex]\underset{v_{f}}{\rightarrow}[/tex] = [tex]\underset{v_{o}}{\rightarrow}[/tex] + [tex]\underset{a}{\rightarrow}[/tex] t

[tex](3.36) \hat{i} + (5.27) \hat{j}[/tex] = [tex](4.28) \hat{i} + (3.02) \hat{j}[/tex] + [tex]\underset{a}{\rightarrow}[/tex] (4)

[tex](- 0.92) \hat{i} + (2.25) \hat{j}[/tex] = 4 [tex]\underset{a}{\rightarrow}[/tex]

[tex]\underset{a}{\rightarrow}[/tex] = [tex](- 0.23) \hat{i} + (0.56) \hat{j}[/tex]

hence

Average acceleration along x-direction = - 0.23

Average acceleration along y-direction = 0.56

A 200 ohm resistor has a 2-ma current in it. what is the voltage across the resistor?

Answers

Answer:

V=4v

Explanation:

To perform this operation, we will refer to Ohm's Law. This Law relates the terms current, voltage and resistance.

The current intensity that passes through a circuit is directly proportional to the voltage or voltage of the circuit and inversely proportional to the resistance it presents.

[tex]I=\frac{v}{r}[/tex]

Where

I=Current

V= Voltage

R=Resistance.

So, in this case:

R=200 ohm

I= 2mA  = 0.002 A

V= searched variable

[tex]V=r*I[/tex]

[tex]V=(200ohm)(0.002A)=4V[/tex]

B. A hydraulic jack has a ram of 20 cm diameter and a plunger of 3 cm diameter. It is used for lifting a weight of 3 tons. Find the force required at the plunger.

a. 675.2kgf

b. 67.52kgf

c. 6752.0kgf

d. None of the above

Answers

Answer:

option (b)

Explanation:

According to the Pascal's law

F / A = f / a

Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.

Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm

A = π R^2 = π x 100 cm^2

F = 3 tons = 3000 kgf

diameter of plunger, d = 3 cm, r = 1.5 cm

a = π x 2.25 cm^2

Use Pascal's law

3000 / π x 100 = f / π x 2.25

f = 67.5 Kgf

A closed cylindrical tank that is 8 ft in diameter and 24 ft long is completely filled with gasoline. The tank, with its long axis horizontal, is pulled by a truck along a horizontal surface. Determine the pressure difference between the ends (along the long axis of the tank) when the truck undergoes an acceleration of 5 ft/s2.

Answers

Answer:

[tex]P_{1}-P_{2}=5400lb/ft^{2}[/tex]

Explanation:

We shall use newtons second law to evaluate the pressure difference

For the system the forces that act on it as shown in the figure

Thus by Newton's second law

[tex]F_{1}-F_{2}=mass\times acceleration\\\\P_{1}\times Area-P_{2}\times Area=mass\times acceleration\\\\\because Force=Pressure\times Area\\\\\therefore P_{1}-P_{2}=\frac{mass\times acceleration}{Area}[/tex]

Mass of the gasoline can be calculated from it's density[tex]45lb/ft^{3}[/tex]

[tex]Mass=Density\times Volume\\\\Mass= 45lb/ft^{3}\times \pi \frac{d^{2}}{4}L\\\\Mass=45lb/ft^{3}\times\frac{\pi 8^{2}}{4}\times 24\\Mass=54286.72lbs[/tex]

Using the calculated values we get

[tex]P_{1}-P_{2}=\frac{54286.72\times 5}{\frac{\pi 8^{2}}{4}}[/tex]

[tex]P_{1}-P_{2}=5400lb/ft^{2}[/tex]

A sled of mass m is given a kick on a frozen pond. The kick imparts to it an initial speed of 2.20 m/s. The coefficient of kinetic friction between sled and ice is 0.115. Use energy considerations to find the distance the sled moves before it stops. m

Answers

Answer:

2.15 m

Explanation:

u = 2.2 m/s, v = 0, uk = 0.115

a = uk x g = 0.115 x 9.8 = 1.127 m/s^2

Let s be the distance traveled before stopping.

v^2 = u^2 - 2 a s

0 = 2.2^2 - 2 x 1.127 x s

s = 2.15 m

A 641-C point charge is at the center of a cube with sides of length 0.47 m. What is the electric flux through one of the six faces of the cube? (Give your answer in scientific notation using N.m2/C as unit)

Answers

Answer:

12 × 10^12 Nm^2/C

Explanation:

According to the Gauss's theorem

The total electric flux by the enclosed charge is given by

Charge enclosed / €0

So flux by each surface

= Q enclosed / 6 × €0

= 641 / ( 6 × 8.854 × 10^-12)

= 12 × 10^12 Nm^2/C

A 2 kg block is lifted vertically 2 m by a man What is work done by the man?

Answers

Answer:

Work done, W = 39.2 J

Explanation:

It is given that,

Mass of the block, m = 2 kg

The block is lifted vertically 2 m by the man i.e the distance covered by the block is, h = 2 m. The man is doing work against the gravity. It is given by :

[tex]W=mgh[/tex]

Where

g is acceleration due to gravity

[tex]W=2\ kg\times 9.8\ m/s^2\times 2\ m[/tex]

W = 39.2 J

So, the work done by the man is 39.2 J. Hence, this is the required solution.

travelling with velocity 1) Calculate the energy E (in eV) and direction vector Ω for a neutron v= 2132 +3300+154 k [m/sec]. (3 points) ^ ^

Answers

Answer:

[tex]K.E =0.081eV[/tex]

[tex]\vec{\Omega}=(0.54\hat{i}+0.83\hat{j}+0.039\hat{k}[/tex]

Explanation:

Given:

Velocity vector [tex]\vec{v}=(2132\hat{i}+3300\hat{j}+154\hat{k})m/s[/tex]

the mass of neutron, m = 1.67 × 10⁻²⁷ kg

Now,

the kinetic energy (K.E) is given as:

[tex]K.E =\frac{1}{2}mv^2[/tex]

[tex]\vec{v}^2 = \vec{v}.\vec{v}[/tex]

or

[tex]\vec{v}^2 = (2132\hat{i}+3300\hat{j}+154\hat{k}).(2132\hat{i}+3300\hat{j}+154\hat{k})[/tex]

or

[tex]\vec{v}^2 =15.45\times 10^6 m^2/s^2[/tex]

substituting the values in the K.E equation

[tex]K.E =\frac{1}{2}1.67\times 10^{-27}kg\times 15.45\times 10^6 m^2/s^2[/tex]

or

[tex]K.E =1.2989\times 10^{-20}J[/tex]

also

1J = 6.242 × 10¹⁸ eV

thus,

[tex]K.E =1.2989\times 10^{-20}\times 6.242\times 10^{18}[/tex]

[tex]K.E =0.081eV[/tex]

Now, the direction vector [tex]\vec{\Omega}[/tex]

[tex]\vec{\Omega}=\frac{\vec{v}}{\left | \vec{v} \right |}[/tex]

or

[tex]\vec{\Omega}=\frac{(2132\hat{i}+3300\hat{j}+154\hat{k})}{\left |\sqrt{((2132\hat{i})^2+(3300\hat{j})^2+(154\hat{k}))^2} \right |}[/tex]

or

[tex]\vec{\Omega}=\frac{(2132\hat{i}+3300\hat{j}+154\hat{k})}{3930.65}[/tex]

or

[tex]\vec{\Omega}=0.54\hat{i}+0.83\hat{j}+0.039\hat{k}[/tex]

How fast must a meter stick be moving if its length is observed to shrink to 0.7 m?

Answers

Answer:

2.14×10⁸ m/s

Explanation:

L=Required Length=0.7 m

L₀=Initial length=1 m

c=speed of light=3×10⁸ m/s

[tex]From\ Lorentz\ Contraction\ relation\\L=L_0\sqrt{1-\frac {v^2}{c^2}}\\\Rightarrow 0.7=1\sqrt {1-\frac {v^2}{c^2}}\\\Rightarrow 0.49=1-\frac {v^2}{c^2}\\\Rightarrow 0.49-1=-\frac {v^2}{c^2}\\\Rightarrow -0.51=-\frac {v^2}{c^2}\\\Rightarrow 0.51=\frac {v^2}{c^2}\\\Rightarrow v^2=0.51\times c^2\\\Rightarrow v=\sqrt{0.51} \times c\\\Rightarrow v=0.71\times 3\times 10^8\\\Rightarrow v=2.14\times 10^8\ m/s\\\therefore velocity\ of\ stick\ should\ be\ 2.14\times 10^8\ m/s[/tex]

The Space Shuttle rocket ship starts vertically upward from the launch pad acceleration of 6.5 m/sec^2. (a) Find how much time it takes for the rocket ship to accelerate to 100 m/s. (b) At what height above the ground will the ship reach the velocity of 100 m/s?

Answers

Answer:

(a) 15.4 second

(b) 769.23 m

Explanation:

u = 0, a = 6.5 m/s^2, v = 100 m/s

(a) Let t be the time taken

Use First equation of motion

v = u + a t

100 = 0 + 6.5 x t

t = 15.4 second

(b) Let height covered is h.

Use third equation of motion

v^2 = u^2 + 2 a h

100^2 = 0 + 2 x 6.5 x h

10000 = 13 x h

h = 769.23 m

What energy is needed to raise the temperature of 2 kg of water from 20 ºC to 100 ºC. The heat capacity of water is 4190 J /kg/ ºC.

Answers

Answer:

670400 J

Explanation:

m = mass of water = 2 kg

T₀ = initial temperature of water = 20 ºC

T = initial temperature of water = 100 ºC

c = heat capacity of water = 4190 J /kg ºC

Q = energy needed to raise the temperature of water

Energy needed to raise the temperature of water is given as

Q = m c (T - T₀)

Inserting the values

Q = (2) (4190) (100 - 20)

Q = 670400 J

A disc-shaped grindstone with mass 50 kg and diameter 0.52m rotates on frictionless bearings at 850 rev/min. An ax is pushed against the rim (to sharpen it) with a normal force of 160 N. The grindstone subsequently comes to rest in 7.5 seconds. What is the co-efficient of friction between ax and stone?

Answers

Answer:

0.48

Explanation:

m = mass of disc shaped grindstone = 50 kg

d = diameter of the grindstone = 0.52 m

r = radius of the grindstone = (0.5) d = (0.5) (0.52) = 0.26 m

w₀ = initial angular speed = 850 rev/min = 850 (0.10472) rad/s = 88.97 rad/s

t = time taken to stop = 7.5 sec

w = final angular speed  0 rad/s

Using the equation

w = w₀ + α t

0 = 88.97 + α (7.5)

α = - 11.86 rad/s²

F = normal force on the disc by the ax = 160 N

μ = Coefficient of friction

f = frictional force

frictional force is given as

f = μ F

f = 160 μ

Moment of inertia of grindstone is given as

I = (0.5) m r² = (0.5) (50) (0.26)² = 1.69 kgm²

Torque equation is given as

r f = I |α|

(0.26) (160 μ) = (1.69) (11.86)

μ = 0.48

A bicycle with 0.80-m-diameter tires is coasting on a level road at 5.6 m/s . A small blue dot has been painted on the tread of the rear tire. Part A What is the angular speed of the tires? Express your answer in radians per second. ω ω = 14 rad/s Previous Answers Correct Part B What is the speed of the blue dot when it is 0.80 m above the road?

Answers

Answer:

a)

14 rad/s

b)

11.2 m/s

Explanation:

a)

d = diameter of tire = 0.80 m

r = radius of tire = (0.5) d = (0.5) (0.80) = 0.40 m

v = speed of bicycle = 5.6 m/s

w = angular speed of the tire

Speed of cycle is given as

v = r w

5.6 = (0.40) w

w = 14 rad/s

b)

v' = speed of blue dot

Speed blue of dot is given as

v' = v + rw

v' = 5.6 + (0.40) (14)

v' = 11.2 m/s

Final answer:

The angular speed of the bicycle tire is 14 rad/s. The speed of the blue dot when it is 0.80 m above the road is the same as the bicycle's speed which is 5.6 m/s.

Explanation:

This is a problem which involves the calculation  of the angular speed and linear speed of an object in circular motion, here the circular motion being the rotation of a bicycle tire.

Given the linear speed of the bicycle and the radius of the tire, we would use the equation that links linear speed v and angular speed a, expressed as v = ra. We can find angular speed by rearranging this formula as a = v/r. Hence, we can calculate the angular speed of the tire as 5.6 m/s divided by the radius of the tire, which is half of the diameter, so 0.4m, which equals 14 rad/s.

Next, when a point on the tire (the blue dot) is 0.8 m above the ground it is at the top of tire's circular path, so its speed is equivalent to the linear speed of the bicycle, 5.6 m/s. This is because at this point the dot is not in contact with the ground hence it isn't stationary relative to the ground unlike the point at the bottom of the tire.

Learn more about Circular Motion here:

https://brainly.com/question/2285236

#SPJ11

The RC charging circuit in a camera flash unit has a voltage source of 265 V and a capacitance of 136 μF HINT (a) Find its resistance R (in ohms) if the capacitor charges to 90.0% of its final value in 16.2 s. (b) Find the average current (in A) delivered to the flash bulb if the capacitor discharges 90.0% of its full charge in 1.14 ms.

Answers

Answer:

a)

51764.7 ohm

b)

28.5 A

Explanation:

a)

t = time taken to charge to 90.0% of its final value = 16.2 s

T = time constant

C = capacitance = 136 x 10⁻⁶ F

R = resistance of the resistor

Q₀ = Maximum charge stored

Q = Charge after time "t" = 0.90 Q₀

Using the equation

[tex]Q = Q_{o}(1 - e^{\frac{-t}{T}})[/tex]

[tex]0.90 Q_{o} = Q_{o}(1 - e^{\frac{-16.2}{T}})[/tex]

[tex]0.90 = (1 - e^{\frac{-16.2}{T}})[/tex]

T = 7.04 s

Time constant is given as

T = RC

7.04 = R (136 x 10⁻⁶)

R = 51764.7 ohm

b)

V = Potential difference of voltage source = 265 volts

q = Amount of charge discharged = 0.90 Q₀ = 0.90 (CV) = (0.90) (136 x 10⁻⁶) (265) = 0.032436 C

t = time taken to discharge = 1.14 x 10⁻³ s

Current is given as

[tex]i = \frac{q}{t}[/tex]

i = 28.5 A

For the RC charging circuit of a camera flash unit has the value of resistance and current as,

(a)The resistance R is 51765 ohms.(b) The average current  delivered to the flash bulb is 28.5 ampere.

What is the formula of RC circuit?

RC circuit is the circuit in which the voltage or current passes through the resistor and capacitor consist by the circuit.

The formula for the RC circuit can be given as,

[tex]Q=Q_o\left(1-e^{\dfrac{-1}{RC}}\right )[/tex]

Here, [tex](Q_o)[/tex] is the initial charge and (R) is the resistance.

(a)The resistance R-

The  capacitor charges to 90.0% of its final value. Thus, the charge for the first case can be given as,

[tex]Q=0.90 Q_o[/tex]

The capacitance of 136 μF. Put the values in the above formula as,

[tex]0.90Q_o=Q_o\left(1-e^{\dfrac{-1}{R\times136\times10^{-6}}}\right )\\R=51765\rm ohm[/tex]

Thus, the value of the resistance R is 51765 ohms.

(b) The average current  delivered to the flash bulb-

The voltage source of the RC circuit is 265 V  and the capacitor discharges 90.0% of its full charge in 1.14 ms. Thus, the amount of charge discharged is,

[tex]Q=0.9\times136\times10^{-6}\times265\\Q=3.2436\times10^{-2}\rm C[/tex]

The value of current is the ratio of discharge per second time (1.14 ms.). Therefore,

[tex]I=\dfrac{3.2436\times10^{-2}}{1.14\times10^{-3}}\\I=28.5\rm A[/tex]

Thus, for the RC charging circuit of a camera flash unit has the value of resistance and current as,

(a)The resistance R is 51765 ohms.(b) The average current  delivered to the flash bulb is 28.5 ampere.

Learn more about the RC circuit here;

https://brainly.com/question/15183130

An undiscovered planet, many light-years from Earth, has one moon which has a nearly circular periodic orbit. If the distance from the center of the moon to the surface of the planet is 2.31500 x 10^5 km and the planet has a radius of 4.150 x10^3 km and a mass of 7.15 x10^22 kg, how long (in days) does it take the moon to make one revolution around the planet. The gravitational constant is 6.67 x10^-11 N m^2/kg^2.

Answers

Answer:

118.06 days

Explanation:

d = distance of the center of moon from surface of planet = 2.315 x 10⁵ km = 2.315 x 10⁸ m

R = radius of the planet = 4.15 x 10³ km = 4.15 x 10⁵ m

r = center to center distance between the planet and moon = R + d

M = mass of the planet = 7.15 x 10²² kg

T = Time period of revolution around the planet

Using Kepler's third law

[tex]T^{2}=\frac{4\pi ^{2}r^{3}}{GM}[/tex]

[tex]T^{2}=\frac{4\pi ^{2}(R + d)^{3}}{GM}[/tex]

[tex]T^{2}=\frac{4(3.14)^{2}((4.15\times 10^{5}) + (2.315\times 10^{8}))^{3}}{(6.67\times 10^{-11})(7.15\times 10^{22})}[/tex]

T = 1.02 x 10⁷ sec

we know that , 1 day = 24 h = 24 x 3600 sec = 86400 sec

T = [tex](1.02 \times 10^{7} sec)\frac{1 day}{86400 sec}[/tex]

T = 118.06 days

The weight of a car of mass 1.20 × 103 kg is supported equally by the four tires, which are inflated to the same gauge pressure. What gauge pressure in the tires is required so the area of contact of each tire with the road is 1.00 × 102 cm2? (1 atm = 1.01 × 105 Pa.)

Answers

Answer:

[tex]P = 2.94 \times 10^5 Pa[/tex]

Explanation:

Normal force due to four tires is counter balancing the weight of the car

So here we will have

[tex]4F_n = mg[/tex]

[tex]F_n = \frac{mg}{4}[/tex]

[tex]F_n = \frac{1.20 \times 10^3 \times 9.81}{4}[/tex]

[tex]F_n = 2943 N[/tex]

now we know that pressure in each tire is given by

[tex]P = \frac{F}{A}[/tex]

Here we know that

[tex]A = 1.00 \times 10^2 cm^2 = 1.00 \times 10^{-2} m^2[/tex]

[tex]P = \frac{2943}{1.00 \times 10^{-2}}[/tex]

[tex]P = 2.94 \times 10^5 Pa[/tex]

Answer:

P = 294300Pa or 42.67psi by conversion.

Explanation:

Since Four tyres were inflated, we have that area of the four tyres are

4×1×10²cm²

Pressure is given as:

P = f/a but f = mg

P = m×g/a

Therefore,

P = 1.20x10³kg × 9.81m/s² / (4 ×1x10² cm²)

P = 1.20x10³kg×9.81m/s² / (0.04m²)

P = 294300Pa or 42.67psi by conversion.

g Complete the following statements. (a) A substance that conducts electricity but whose conduction is not temperature dependent is called Correct: Your answer is correct. . (b) An example of a conductor is . (c) An example of a semiconductor is . (d) An example of an insulator is .

Answers

Answer:

Explanation:

(a) It is called conductors.

The conductors are the materials which can allow the current to pass through it.

(b) The example of conductor is copper, iron, etc.

The best conductor of electricity is silver.

(c) The example of semiconductor is silicon, germanium, etc.

The semiconductors are the materials which are insulators at normal temperature, but if the temperature increases, the conductivity of semiconductor increases.

(d) An example of insulator is wood.

Insulators are the materials which do not allow the current to pass through them.

You make a simple instrument out of two tubes which looks like a flute and extends like a trombone. One tube is placed within another tube to extend the length of the instrument. There is an insignificantly small hole on the side of the instrument to blow on. Other than this, the instrument behaves as a tube with one end closed and one end open. You lengthen the instrument just enough so it emits a 1975Hz tone when you blow on it, which is the 4th allowed wave for this configuration. The speed of sound in air at STP is 343m/s.

The instrument's sound encounters warmer air which doubles its speed. What is the new amplitude of this sound, in m, if the original sound has an amplitude of 0.5m?

The instrument's sound encounters warmer air which doubles its speed. What is the new wavelength of this sound in m?

The instrument's sound encounters warmer air which doubles its speed. What is the new frequency of this sound in Hz?

What length do you have to extend the instrument to for it to make this sound in m?

What is the fundamental frequency of the instrument at this length in Hz?

Your friend has a similar instrument which plays a tone of 2034.25 Hz right next to yours so they interfere. What will the frequency of the combined tone be in Hz?

You play your instrument in a car travelling at 12m/s away from your friend travelling on a bicycle 4m/s away from you. What frequency does your friend hear in Hz?

Answers

Explanation:

We know

the frequency of the tube with one end open and the other end closed follows the given relations as

[tex]f_{1}[/tex] : [tex]f_{2}[/tex] : [tex]f_{3}[/tex] : [tex]f_{4}[/tex] = 1 : 3 : 5 : 7

∴ the 4th allowed wave is [tex]f_{4}[/tex] = 7 [tex]f_{1}[/tex]

                                                                   = [tex]\frac{7v}{4l}[/tex]

We know  [tex]f_{4}[/tex] = 1975 Hz and v = 343 m/s ( as given in question )

∴[tex]l = \frac{7\times v}{4\times f_{4}}[/tex]

 [tex]l = \frac{7\times 343}{4\times 1975}[/tex]

           = 0.303 m

We know that v = [tex]f_{4}[/tex] x [tex]λ_{4}[/tex]

[tex]\lambda _{4}= \frac{v}{f_{4}}[/tex]

[tex]\lambda _{4}= \frac{343}{1975}[/tex]

                            = 0.17 m

Now when the warmer air is flowing, the speed gets doubled and the mean temperature increases. And as a result the wavelength increases but the amplitude and the frequency remains the same.

So we can write

v ∝ λ

or  [tex]\frac{v_{1}}{v_{2}}= \frac{\lambda _{1}}{\lambda _{2}}[/tex]

Therefore, the wavelength becomes doubled = 0.17 x 2

                                                                             = 0.34 m

Now the new length of the air column becomes doubled

∴ [tex]l^{'}[/tex] = 0.3 x 2

                        = 0.6 m

∴ New speed, [tex]v^{'}[/tex] = 2 x 343

                                               = 686 m/s

∴ New frequency is [tex]f^{'}=\frac{v^{'}}{4\times l^{'}}[/tex]

                                 [tex]f^{'}=\frac{686}{4\times 0.6}[/tex]

                                               = 283 Hz

∴ The new frequency remains the same.

Now we know

[tex]v_{s}[/tex] = 12 m/s, [tex]v_{o}[/tex] = 4 m/s, [tex]f_{o}[/tex] = 1975 Hz

Therefore, apparent frequency is [tex]f^{'}=f^{o}\left ( \frac{v+v_{s}}{v+v_{o}} \right )[/tex]

[tex]f^{'}=1975\left ( \frac{343+12}{343+4} \right )[/tex]

            = 2020.5 Hz

Jogger A has a mass m and a speed v, jogger B has a mass m/3 and a speed 3v, jogger C has a mass 4m and a speed v/3, and jogger D has a mass 3m and a speed v/2. Rank the joggers in order of increasing kinetic energy. Indicate ties where appropriate.

Answers

in increasing order of kinetic energy, the joggers are: A, D, C, B

To rank the joggers in order of increasing kinetic energy, we'll use the formula for kinetic energy:

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

Where:

- ( m ) is the mass of the jogger

- ( v ) is the speed of the jogger

Let's calculate the kinetic energy for each jogger:

1. Jogger A:

[tex]\[ KE_A = \frac{1}{2} m v^2 \][/tex]

2.Jogger B:

[tex]\[ KE_B = \frac{1}{2} \left(\frac{m}{3}\right) (3v)^2 = \frac{1}{2} \left(\frac{m}{3}\right) 9v^2 = \frac{9}{2} \left(\frac{1}{3} m v^2\right) = \frac{9}{2} KE_A \][/tex]

3. Jogger C:

[tex]\[ KE_C = \frac{1}{2} (4m) \left(\frac{v}{3}\right)^2 = \frac{1}{2} (4m) \left(\frac{1}{9}\right) v^2 = \frac{2}{9} (4m v^2) = \frac{8}{9} KE_A \][/tex]

4. Jogger D:

[tex]\[ KE_D = \frac{1}{2} (3m) \left(\frac{v}{2}\right)^2 = \frac{1}{2} (3m) \left(\frac{1}{4}\right) v^2 = \frac{3}{8} (m v^2) = \frac{3}{4} KE_A \][/tex]

Now, let's rank the joggers based on their kinetic energies:

- Jogger A: [tex]\( KE_A \)[/tex]

- Jogger D: [tex]\( KE_D = \frac{3}{4} KE_A \)[/tex]

- Jogger C: [tex]\( KE_C = \frac{8}{9} KE_A \)[/tex]

- Jogger B: [tex]\( KE_B = \frac{9}{2} KE_A \)[/tex]

So, in increasing order of kinetic energy, the joggers are: A, D, C, B

What is the approximate energy required to raise the temperature of 1.00 L of hydrogen by 90 °C? The pressure is held constant and equal to 1 atm.

Answers

Answer:

Q = 116.8 J

Explanation:

Here given that the temperature of 1 L hydrogen is increased by 90 degree C at constant pressure condition.

So here we will have

[tex]Q = n C_p \Delta T[/tex]

here we know that

n = number of moles

[tex]n = \frac{1}{22.4}[/tex]

[tex]n = 0.0446[/tex]

for ideal diatomic gas molar specific heat capacity at constant pressure is given as

[tex]C_p = \frac{7}{2}R[/tex]

now we have

[tex]Q = (0.0446)(\frac{7}{2}R)(90)[/tex]

[tex]Q = 116.8 J[/tex]

What is the best coefficient of performance for a refrigerator that cools an environment at -26.0°C and has heat transfer to another environment at 50.0°C?

Answers

Answer:

COP = 4.25

Explanation:

It is given that,

Cooling temperature, [tex]T_c=-26^{\circ}C=273-26=247\ K[/tex]

Heating temperature, [tex]T_h=50^{\circ}C=323\ K[/tex]

We need to find the coefficient of performance. It is given by :

[tex]COP=\dfrac{T_h}{T_h-T_c}[/tex]

[tex]COP=\dfrac{323}{323-247}[/tex]

COP = 4.25

So, the best coefficient of performance of a refrigerator is 4.45 Hence, this is the required solution.

How fast would the International Space Station (ISS) have to travel to maintain a circular orbit a distance of 1400 km above the earth?

Answers

Answer:

The International Space Station move at 7.22 km/s.

Explanation:

Orbital speed of satellite is given by  [tex]v=\sqrt{\frac{GM}{r}}[/tex], where G is gravitational constant, M is mass of Earth and r is the distance to satellite from centre of Earth.

r = R + h = 6350 + 1400 = 7750 km = 7.75 x 10⁶ m

G = 6.673 x 10⁻¹¹ Nm²/kg²

M = 5.98 x 10²⁴ kg

Substituting

              [tex]v=\sqrt{\frac{6.673\times 10^{-11}\times 5.98\times 10^{24}}{7.75\times 10^6}}=7223.86m/s=7.22km/s[/tex]

  The International Space Station move at 7.22 km/s.      

Compute the torque about the origin of the gravitational force F--mgj acting on a particle of mass m located at 7-xî+ yj and show that this torque is independent of the;y coordinate.

Answers

Answer:

Explanation:

Force, F = - mg j

r = - 7x i + y j

Torque is defined as the product f force and the perpendicular distance.

It is also defined as the cross product of force vector and the displacement vector.

[tex]\overrightarrow{\tau }=\overrightarrow{r}\times \overrightarrow{F}[/tex]

[tex]\overrightarrow{\tau }=(- 7 x i + yj)\times (-mgj)[/tex]

[tex]\overrightarrow{\tau  }= 7 m g x k

Here, we observe that the torque is independent of y coordinate.

Write a balanced half-reaction for the reduction of solid manganese dioxide to manganese ion in acidic aqueous solution. Be sure to add physical state symbols where appropriate.

Answers

Answer:  [tex]MnO_2(s)+4H^+(aq)+2e^-\rightarrow Mn^{2+}(aq)+2H_2O(l)[/tex]

Explanation:

Reduction is a process where electrons are gained and acidic solution means presence of [tex]H^+[/tex] ions.

Reduction of [tex]MnO_2[/tex] to [tex]Mn^{2+}[/tex]

Mn is in +4 oxidation state in [tex]MnO_2[/tex] which goes to +2 state in [tex]Mn^{2+}[/tex] by gain of 2 electrons.

[tex]MnO_2(s)\rightarrow Mn^{2+}(aq)[/tex]

In order to balance oxygen atoms:

[tex]MnO_2(s)\rightarrow Mn^{2+}(aq)+2H_2O[/tex]

In order to balance hydrogen atoms:

[tex]MnO_2(s)+4H^+(aq)\rightarrow Mn^{2+}(aq)+2H_2O(l)[/tex]

In order to balance charges:

[tex]MnO_2(s)+4H^+(aq)+2e^-\rightarrow Mn^{2+}(aq)+2H_2O(l[/tex]

Thus the net balanced half reaction for the reduction of solid manganese dioxide to manganese ion in acidic aqueous solution is:

[tex]MnO_2(s)+4H^+(aq)+2e^-\rightarrow Mn^{2+}(aq)+2H_2O(l)[/tex]

Final answer:

To balance the reduction of solid manganese dioxide (MnO2) to manganese ion (Mn2+) in acidic aqueous solution, the balanced half-reaction is MnO2(s) + 4H+(aq) + 2e- → Mn2+(aq) + 2H2O(l).

Explanation:

To balance the reduction of solid manganese dioxide (MnO2) to manganese ion (Mn2+) in acidic aqueous solution, we can follow these steps:

1. Write the half-reaction for reduction, adjusting the physical states of the reactants and products:

MnO2(s) + 4H+(aq) + 2e- → Mn2+(aq) + 2H2O(l)

2. Balance the number of Mn and O atoms on each side of the equation:

MnO2(s) + 4H+(aq) + 2e- → Mn2+(aq) + 2H2O(l)

3. Balance the H atoms by adding H+ ions:

MnO2(s) + 4H+(aq) + 2e- → Mn2+(aq) + 2H2O(l)

4. Balance the charges by adding electrons:

MnO2(s) + 4H+(aq) + 2e- → Mn2+(aq) + 2H2O(l)

Therefore, the balanced half-reaction for the reduction of solid manganese dioxide to manganese ion in acidic aqueous solution is:

MnO2(s) + 4H+(aq) + 2e- → Mn2+(aq) + 2H2O(l)

A box of mass 8 kg slides across a frictionless surface at an initial speed 1.5 m/s into a relaxed spring of spring constant 69 N/m. How long is the box in contact with the spring before it bounces off in the opposite direction?

Answers

Answer:

1.1 sec

Explanation:

m = mass of the box = 8 kg

k = spring constant of the spring = 69 N/m

v = initial speed of the box = 1.5 m/s

t = time period of oscillation of box in contact with the spring

Time period is given as

[tex]t = \pi \sqrt{\frac{m}{k}}[/tex]

Inserting the values

[tex]t = (3.14) \sqrt{\frac{8}{69}}[/tex]

t = 1.1 sec

An electric coffee maker has a heating element that operates at 120 V and with a current of 2.00 A. Assuming the water absorbs all the energy delivered to the heating element, calculate the time interval (in s) during which the temperature of 0.489 kg of water rises from room temperature (23.0°C) to the boiling point. (The specific heat of water is 4,186 J/(kg · °C).)

Answers

Answer:

10.95 minute

Explanation:

V = 120 V, I = 2 A, m = 0.489 kg, c = 4186 J/kgC, T1 = 23 C , T2 = 100 C

Let time be the t.

Heat energy is equal to electrical energy

m x c (T2 - T1) = V x I x t

0.489 x 4186 x (100 - 23) = 120 x 2 x t

t = 656.73 second

t = 10.95 minute

A boat floats with 25% of its volume under water. a. What is the boatâs density?
b. If the boat was made from 500 kg of metal, what is the volume of the boat? (Assume the air in the boat has negligible mass and density)
c. What mass of cargo will cause the boat to float 75% below the water?

Answers

Answer:

(a) 250 kg/m^3

(b) 2 m^3

(c) 1000 kg

Explanation:

(a) Let V be the total volume of the boat.

Volume immersed = 25 % of total volume = 25 V / 100   = V / 4

Let the density of boat is d.

Density of water = 1000 kg/m^3

Use the principle of flotation

Buoyant force on the boat = weight of the boat

Volume immersed x density of water x g = Volume x density of boat x g

V / 4 x 1000 x g = V x d x g

d = 250 kg/m^3

(b)

mass = 500 kg

density = 250 kg/m^3

V = mass / density = m / d = 500 / 250 = 2 m^3

(c) Let the mass of cargo is m.

Volume immeresed = 75 % of total volume = 75 x 2 / 100 = 1.5 m^3

Buoyant force = weight of boat + weight of cargo

1.5 x 1000 x g = 500 g + m g

1500 = 500 + m

m = 1000 kg

Calculate the magnitude of the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child). (b) Calculate the magnitude of the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29×1011 m.

Answers

Answer:

(a). The magnitude of the gravitational force is [tex]7\times10^{-7}\ N[/tex]

(b). The magnitude of the gravitational force is [tex]1.35\times10^{-6}\ N[/tex]

Explanation:

Given that,

Mass of baby = 4.20 kg

Mass of father = 100 kg

Distance = 0.200 m

We need to calculate the gravitational force

Using gravitational formula

[tex]F = \dfrac{G\times m_{b}m_{f}}{r^2}[/tex]

Put the value in to the formula

[tex]F=\dfrac{6.67\times10^{-11}\times4.20\times100}{0.200^2}[/tex]

[tex]F=7\times10^{-7}\ N[/tex]

(b). We need to calculate the gravitational force

Using gravitational formula

[tex]F = \dfrac{G\times m_{b}m_{f}}{r^2}[/tex]

Put the value in to the formula

[tex]F=\dfrac{6.67\times10^{-11}\times4.20\times1.9\times10^{27}}{(6.29\times10^{11})^2}[/tex]

[tex]F=1.35\times10^{-6}\ N[/tex]

Hence, (a). The magnitude of the gravitational force is [tex]7\times10^{-7}\ N[/tex]

(b). The magnitude of the gravitational force is [tex]1.35\times10^{-6}\ N[/tex]

The magnitude of the gravitational force is 7×10⁻⁷ N and the magnitude of the gravitational force due to Jupiter is 1.35×10⁻6 N

What is gravitational potential energy?

Gravitational potential energy is the energy which a body posses because of its position.

The gravitational potential energy of a body is given as,

[tex]G=\dfrac{Fr^2}{Mm}[/tex]

Here, (m) is the mass of the body, (F) is the gravitational force and (r) is the height of the body.

The mass of baby is 4.20 kg and mass of father is 100 kg. The distance between them is 0.200 m. Put the values in the above formula as,

[tex]6.67\times10^{-11}=\dfrac{F(0.200)^2}{100(4.20)}\\F=7\times10^{-7}\rm \; N[/tex]

(b) The magnitude of the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.29×1011 m.

Put the values in the above formula again as,

[tex]6.67\times10^{-11}=\dfrac{F(6.29\times10^{11})^2}{(1.9\times10^{27})(4.20)}\\F=1.35\times10^{-6}\rm \; N[/tex]

Thus, the magnitude of the gravitational force is 7×10⁻⁷ N and the magnitude of the gravitational force due to Jupiter is 1.35×10⁻6 N.

Learn more about the gravitational potential energy here;

https://brainly.com/question/15896499

Other Questions
Consider a simple tension member that carries an axial load of P=22.44N. Find the total elongation in the member due to the load. Assume that the member is made of steel, which has a modulus of elasticity of E=204.00 N/mm2. Also assume that the member is 3048 mm long and has a cross-sectional area of 1290 mm2 what's the sum of a number k and 7 "the fromula for the perminter of a rectangle is given by P= 2L +2W where l is the length and w is the width. Assume the ermiter of a rectangular plot of land is 480 ft. The length is twice the width. Find the length of rectangular plot of land Walking is not the most exciting form of exercise a person can take on for fitness. Yet it is low impact and requires no fancy equipment. That makes walking a simple activity for those new to exercise. Walking is less likely than other exercises to cause injury to leg tendons and muscles. All it requires is a good pair of sneakersno cables, stylish outfits, or weights required. Of course, a person could increase the benefit of a workout by adding weights or speed walking. Which of the following sentences comes closest to stating the main idea in this paragraph? . A mechanism that relates to an error or exception condition generated within the currently running process, such as an illegal file access attempt, is called (A) Interrupt (B) Trap (C) Swapping (D) Pre-emption (E) None of the above sum of first nth term of the seris 2^2+4^2+6^2+8^2+.........n terms is 5 kilograms of coffee are going going to be shared equally among 4 people.How many kilograms of coffee does each person get?Choose 1 Answer: please help im confused The given line passes through the points (0, -3) and (2, 3).What is the equation, in point-slope form of the line that isparallel to the given line and passes through the point (-1, -1)? Major deposits of gold and silver are located in which of the following states A spoon of salt is added to water. Which of these will increase how fast the salt dissolves? Check all ofthe boxes that apply.adding another spoon of saltstirring the salt and watercooling the watercrushing the salt so the grains are smalleradding more water During the industrial revolution life changed in what basic way? Which of the following statements is FALSE? A. Emergency plans ensure that all resources can be obtained through internal sources within the jurisdiction. B. Emergency plans delineate roles and responsibilities. C. Emergency plans clarify how functions and activities are to be coordinated and how they complement one another. D. Emergency plans communicate what should happen, why it is done, and what to expect from it. Which of the following are units of air pressure? Select all that apply.1.isobar2.millibar3.kilopascal4.barometer5.atmosphere6.millimeter of mercury Do you guys the answer for number 3 A 62.0-kg woman runs up a flight of stairs having a rise of 4.28 m in a time of 4.20 s. What average power did she supply? a) 63.2 W b) 619 W c) 596 W d) 629 W e) 609 W Determine the vertex of the function f(x) = 3(x 2)2 + 1. Which is a non-Mendelian trait? A. A trait with a very dominant form B. A trait with two alleles C. A trait with no clearly dominant allele D. A trait controlled by one gene Four buses carrying 148 students from the same school arrive at a football stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on her bus. (a) Which of E[X] or E[Y] do you think is larger? Why? (b) Compute E[X] and E[Y]. Where there is a collision we try to find some otherplace in our array. This approach is calld.a) open addressingb) closed hashingc) open addressing and closed hasingd) none of the aboe.