A gas consists of 1024 molecules, each with mass 3 × 10-26 kg. It is heated to a temperature of 300 K, while the volume is held constant. 1) If the gas is confined to a vertical tube 5 × 103 m high, what is the ratio of the pressure at the top to the pressure at the bottom?

Answers

Answer 1

Answer:

The ratio of the pressure at the top to the pressure at the bottom is [tex]\dfrac{701}{1000}[/tex]

Explanation:

Given that,

Number of molecules [tex]n= 10^24[/tex]

Mass [tex]m= 3\times10^{-26}\ kg[/tex]

Temperature = 300 K

Height [tex]h = 5\times10^{3}[/tex]

We need to calculate the  ratio of the pressure at the top to the pressure at the bottom

Using barometric formula

[tex]P_{h}=P_{0}e^{\dfrac{-mgh}{kT}}[/tex]

[tex]\dfrac{P_{h}}{P_{0}}=e^{\dfrac{-mgh}{kT}}[/tex]

Where, m = mass

g = acceleration due to gravity

h = height

k = Boltzmann constant

T = temperature

Put the value in to the formula

[tex]\dfrac{P_{h}}{P_{0}}=e^{\dfrac{-3\times10^{-26}\times9.8\times5\times10^{3}}{1.3807\times10^{-23}\times300}}[/tex]

[tex]\dfrac{P_{h}}{P_{0}}=\dfrac{701}{1000}[/tex]

Hence, The ratio of the pressure at the top to the pressure at the bottom is [tex]\dfrac{701}{1000}[/tex]

Answer 2

Answer:

Top pressure : Bottom pressure = 701 : 1000

Explanation:

Number of molecules = n = 10^24

Height = h = 5 × 10^3 m

Mass = m = 3 × 10^-26 kg  

Boltzman’s Constant = K = 1.38 × 10^-23 J/K

Temperature = T = 300K  

The formula for barometer pressure is given Below:

Ph = P0 e^-(mgh/KT)

Ph/P0 = e^-(3 × 10^-26 × 9.81 × 5 × 10^3)/(1.38 × 10^-23)(300)

Ph/P0 = e^-0.355

Ph/P0 = 1/e^0.355

Ph/p0 =0.7008 = 700.8/1000 = 701/1000

Hence,

Top pressure : Bottom pressure = 701 : 1000


Related Questions

If a 76.2 kg patient is exposed to 52.6 rad of radiation from a beta source, then what is the dose (mrem) absorbed by the person's body?

Answers

Answer:

The dose absorbed by the person's body is 52600 mrem.

Explanation:

Given that,

Radiation = 52.6 rad

We need to calculate the absorbed dose

We know that,

The equivalent dose is equal to the absorbed radiation for beta source.

So, The patient is exposed 52.6 rad of radiation.

Therefore, The absorbed radiation is equal to the exposed 52.6 rad of radiation.

[tex]1 rad = \dfrac{1\ rem}{1000\ mrem}[/tex]

So, radiation absorbed = 52.6 rad

[tex]radiation\ absorbed =52.6\times1000\ mrem[/tex]

[tex]radiation\ absorbed = 52600\ mrem[/tex]

Hence, The dose absorbed by the person's body is 52600 mrem.

A 16.0 kg sled is being pulled along the horizontal snow-covered ground by a horizontal force of 25.0 N. Starting from rest, the sled attains a speed of 1.00 m/s in 8.00 m. Find the coefficient of kinetic friction between the runners of the sled and the snow. You Answered

Answers

Answer:

[tex]\mu_k = 0.15[/tex]

Explanation:

according to the kinematic equation

[tex]v^{2} - u^{2} = 2aS[/tex]

Where

u is initial velocity  = 0 m/s

a = acceleration

S is distance = 8.00 m

final velocity = 1.0 m/s

[tex]a = \frac {v^{2}}{2S}[/tex]

[tex]a = \frac {1{2}}{2*8.6}[/tex]

a = 0.058 m/s^2

from newton second law

Net force = ma

[tex]f_{net} = ma[/tex]

F - f = ma

2[tex]5 - \mu_kN = ma[/tex]

[tex]25 - \mu_kmg = ma[/tex]

[tex]\frac {25 - ma}{mg} =\mu_k[/tex]

[tex]\frac {25 - 16*0.058}{16*9.81} = 0.15[/tex]

[tex]\mu_k = 0.15[/tex]

Two forces are applied to a 5.0-kg crate; one is 3.0 N to the north and the other is 4.0 N to the east. The magnitude of the acceleration of the crate is: a. 1.0 m/s^2 b. 2.8 m/s^2 c.7.5 m/s^2 d. 10.0 m/s^2

Answers

Answer:

The acceleration of the crate is 1 m/s²

Explanation:

It is given that,

Mass of the crate, m = 5 kg

Two forces applied on the crate i.e. one is 3.0 N to the north and the other is 4.0 N to the east. So, there resultant force is :

[tex]F_{net}=\sqrt{3^2+4^2} =5\ N[/tex]

We need to find the acceleration of the crate. It is given by using the second law of motion as :

[tex]a=\dfrac{F_{net}}{m}[/tex]

[tex]a=\dfrac{5\ N}{5\ kg}[/tex]

a = 1 m/s²

So, the acceleration of the crate is 1 m/s². Hence, this is the required solution.  

The magnitude of the acceleration of a crate with forces of 3.0 N north and 4.0 N east applied to it is 1.0 m/s². This is found using the Pythagorean theorem to calculate the resultant force and Newton's Second Law to calculate acceleration.

The forces are 3.0 N to the north and 4.0 N to the east on a 5.0-kg crate. Since the forces are perpendicular, we can use the Pythagorean theorem to find the resultant force. The resultant force (Fr) is √(3.02 + 4.02) N, which is 5.0 N. According to Newton's Second Law, F = ma, hence acceleration (a) is Fr divided by the mass (m). Calculating acceleration: a = 5.0 N / 5.0 kg = 1.0 m/s2. Therefore, the correct answer is a. 1.0 m/s2.

What is the force on your eardrum if its area is 1.00 cm^2, and you are swimming 3.0 m below water level?

Answers

Answer:

Force on eardrum

       [tex]F=29400\times 1\times 10^{-4}=2.94N[/tex]

Explanation:

Force = Pressure x Area

Pressure = hρg

Height, h = 3 m

ρ = 1000 kg/m³

g = 9.8 m/s²

Pressure = hρg = 3 x 1000 x 9.8 = 29400 N/m²

Area = 1 cm²

Force on eardrum

       [tex]F=29400\times 1\times 10^{-4}=2.94N[/tex]

The maximum magnitude of the magnetic field of an electromagnetic wave is 13.5 μΤ. (3396) Problem 3: 笄What is the average total energy density (in μ1m3) of this electromagnetic wave? Assume the wave is propagating in vacuum.

Answers

Answer:

The average total energy density of this electromagnetic wave is [tex]72.5\ \mu\ J/m^3[/tex].

Explanation:

Given that,

Magnetic field [tex]B = 13.5\mu T[/tex]

We need to calculate the average total energy density

Using formula of energy density

[tex]Energy\ density =\dfrac{S}{c}[/tex]....(I)

Where, S = intensity

c = speed of light

We know that,

The intensity is given by

[tex]S = \dfrac{B^2c}{2\mu_{0}}[/tex]

Put the value of S in equation (I)

[tex]Energy\ density =\dfrac{\dfrac{B^2c}{2\mu_{0}}}{c}[/tex]

[tex]Energy\ density = \dfrac{(13.5\times10^{-6})^2}{2\times4\pi\times10^{-7}}[/tex]

[tex]Energy\ density = 0.0000725\ J/m^3[/tex]

[tex]Energy\ density = 72.5\times10^{-6}\ J/m^3[/tex]

[tex]Energy\ density = 72.5\ \mu\ J/m^3[/tex]

Hence, The average total energy density of this electromagnetic wave is [tex]72.5\ \mu\ J/m^3[/tex].

A typical adult ear has a surface area of 2.90 × 10-3 m2. The sound intensity during a normal conversation is about 2.19 × 10-6 W/m2 at the listener's ear. Assume that the sound strikes the surface of the ear perpendicularly. How much power is intercepted by the ear?

Answers

Answer:

[tex]6.35\cdot 10^{-9} W[/tex]

Explanation:

The relationship between power and intensity of a sound is given by:

[tex]I=\frac{P}{A}[/tex]

where

I is the intensity

P is the power

A is the area considered

In this problem, we know

[tex]A=2.90\cdot 10^{-3}m^2[/tex] is the surface area of the ear

[tex]I = 2.19\cdot 10^{-6} W/m^2[/tex] is the intensity of the sound

Re-arranging the equation, we can find the power intercepted by the ear:

[tex]P=IA=(2.19\cdot 10^{-6} W/m^2)(2.90\cdot 10^{-3} m^2)=6.35\cdot 10^{-9} W[/tex]

A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 7.2 m from this surface, the potential is150 V What is the radius of the sphere?

Answers

Answer:

The radius of the sphere is 3.6 m.

Explanation:

Given that,

Potential of first sphere = 450 V

Radial distance = 7.2 m

If the potential of sphere =150 V

We need to calculate the radius

Using formula for potential

For 450 V

[tex]V=\dfrac{kQ}{r}[/tex]

[tex]450=\dfrac{kQ}{r}[/tex]....(I)

For 150 V

[tex]150=\dfrac{kQ}{r+7.2}[/tex]....(II)

Divided equation (I) by equation (II)

[tex]\dfrac{450}{150}=\dfrac{\dfrac{kQ}{r}}{\dfrac{kQ}{r+7.2}}[/tex]

[tex]3=\dfrac{(r+7.2)}{r}[/tex]

[tex]3r=r+7.2[/tex]

[tex]r=\dfrac{7.2}{2}[/tex]

[tex]r=3.6\ m[/tex]

Hence, The radius of the sphere is 3.6 m.

The radius of the sphere whose surface has a potential difference of  450 V is 3.6 m.

What is the radius of the sphere?

We know that the potential difference can be written as,

[tex]V = k\dfrac{Q}{R}[/tex]

We know that at  R= R, Potential difference= 450 V,

[tex]450 = k\dfrac{Q}{R}[/tex]

Also, at R = (R+7.2), Potential difference = 150 V,

[tex]150 = k\dfrac{Q}{(R+7.2)}[/tex]

Taking the ratio of the two,

[tex]\dfrac{450}{150} = \dfrac{kQ}{R} \times \dfrac{(R+7.2)}{kQ}\\\\\dfrac{450}{150} = \dfrac{(R+7.2)}{R}\\\\R = 3.6\ m[/tex]

Hence, the radius of the sphere whose surface has a potential difference of  450 V is 3.6 m.

Learn more about Potential differences:

https://brainly.com/question/118936

The same 1710 kg artificial satellite is placed into circular orbit at the same altitude of 2.6x10° m around an exoplanet with the same radius as the Earth, but twice the mass. a. What is the orbital speed of the satellite? b. What is the period of the satellite? C. What is the kinetic energy of the satellite? d. What is the total energy of the satellite?

Answers

Given:

mass of satellite, m = 1710 kg

altitude, h = [tex]2.6\times 10^{6} m[/tex]

G =  [tex]6.67\times 10^{-11} [/tex]

we know

mass of earth, [tex]M_{E}[/tex] =  [tex]5.972\times 10^{24} kg[/tex]

Here, according to question we will consider

[tex]2M_{E}[/tex] =  [tex]11.944\times 10^{24} kg[/tex]

radius of earth,  [tex]R_{E}[/tex] =  [tex]6.371\times 10^{6} m[/tex]

Formulae Used and replacing [tex]M_{E}[/tex] by  [tex]2M_{E}[/tex] :

1). [tex]v = \sqrt{\frac{2GM_{E}}{R_{E} + h}}[/tex]

2). [tex]T = \sqrt{\frac{4\pi ^{2}(R_{E} + h)^{3}}{2GM_{E}}}[/tex]

3). [tex]KE = \frac{1}{2}mv^{2}[/tex]

4). [tex]Total Energy, E = -\frac{2GM_E\times m}{2(R_{E} + h)}[/tex]

where,

v = orbital velocity of satellite

T = time period

KE = kinetic energy

Solution:

Now, Using Formula (1), for orbital velocity:

 [tex]v = \sqrt{\frac{6.67 \times 10^{-11} \times 11.944 \times 10^{24}}{6.371 \times 10^{6} + 2.6 \times 10^{6}}[/tex]

v =  [tex]9.423 \times 10^{3}[/tex]  m/s

Using Formula (2) for time period:

[tex]T = \sqrt{\frac{4\pi ^{2}(6.371\times 10^{6} + 2\times 10^{6})^{3}}{6.67\times 10^{-11}\times 9.44\times 10^{24}}}[/tex]

[tex]T = 6.728\times 10^{3} s[/tex]

Now, Using Formula(3) for kinetic energy:

[tex]KE = \frac{1}{2}(9.44\times 10^{24})(9.42\times 10^{3})^{2}[/tex]

[tex]KE = \frac{1}{2}(1710)(9.42\times 10^{3})^{2} = 7.586\times 10^{10} J[/tex]

Now, Using Formula(4) for Total energy:

[tex]E = -\frac{6.67\times 10^{-11}\times 9.44\times 10^{24}\times 1710}{2( 6.371\times 10^{6} + 2.6\times 10^{6})}[/tex]

[tex]E = - 7.59\times 10^{10} J[/tex]

What is the kinetic energy of the rocket with mass 15,000 kg and speed of 5200 m/s? A. 2.01 x 10^11 J B. 2.02x 10^11 J C. 2.03 x 10^11 J D. 2.04 x 10^11 J

Answers

C. [tex]E_{k}=2.03x10^{11}J[/tex]

The kinetic energy of a body is the ability to perform work due to its movement given by the equation [tex]E_{k}=\frac{1}{2}mv^{2}[/tex].

To calculate the kinetic energy of a rocket with mass 15000kg and speed of 5200m/s:

[tex]E_{k}=\frac{1}{2}(15000kg)(5200m/s)^{2}=202800000000J=2.03x10^{11}J[/tex]

The shortest air column inside a resonator vibrates with a frequency of 250 Hz, if the next harmonic is 750 Hz, and the speed of sound is 343 m/s.
a. Is this resonator closed at one end or open at both ends? Explain.
b. Find the length of the resonator.

Answers

Answer:

Part a)

the two frequencies are in ratio of odd numbers so it must be closed at one end

Part b)

L = 34.3 cm

Explanation:

Part a)

Since the shortest frequency is known as fundamental frequency

It is given as

[tex]f_o = 250 Hz[/tex]

next higher frequency is given as

[tex]f_1 = 750 Hz[/tex]

since the two frequencies here are in ratio of

[tex]\frac{f_1}{f_o} = \frac{750}{250} = 3 : 1[/tex]

since the two frequencies are in ratio of odd numbers so it must be closed at one end

Part b)

For the length of the pipe we can say that fundamental frequency is given as

[tex]f_o = \frac{v}{4L}[/tex]

here we have

[tex]250 = \frac{343}{4(L)}[/tex]

now we will have

[tex]L = \frac{343}{4\times 250}[/tex]

[tex]L = 34.3 cm[/tex]

A cylinder is fitted with a piston, beneath which is a spring, as in the drawing. The cylinder is open to the air at the top. Friction is absent. The spring constant of the spring is 3600 N/m. The piston has a negligible mass and a radius of 0.028 m. (a) When the air beneath the piston is completely pumped out, how much does the atmospheric pressure cause the spring to compress? (b) How much work does the atmospheric pressure do in compressing the spring?

Answers

Answer:

a) 0.0693 m

b) Work done = 8.644 J

Explanation:

Given:

Spring constant, k = 3600 N/m

Radius of the piston, r = 0.028 m

Now, we know that the atmospheric pressure at STP = 1.01325 × 10⁵ Pa  = 101325 Pa

Now,

The force ([tex]F_P[/tex]) due to the atmospheric pressure on the piston will be:

[tex]F_P[/tex] = Pressure × Area of the piston

on substituting the values we get,

[tex]F_P[/tex] = 101325 × πr²

F = 101325 × π × (0.028)² = 249.56 N

also,

Force on spring is given as:

F = kx

where,

x is the displacement in the spring

 on substituting the values we get,

 249.56 N = 3600N/m × x

or

x = 0.0693 m

thus, the compression in the spring will be = 0.0693 m

b) Applying the concept of conservation of energy

we have,

Work done by the atmospheric pressure in compressing the spring = Potential energy gained  by the spring

mathematically,

[tex]W = \frac{1}{2}kx^2[/tex]

 on substituting the values we get,

[tex]W = \frac{1}{2}\times 3600\times (0.0693)^2[/tex]

W = 8.644 J

a) x = 0.0693 m

b) W = 8.644 J

Given :

Spring constant, K = 3600 N/m

Radius of the piston, r = 0.028 m

Solution :

Now the atmospheric pressure at STP = 1.01325 × 10⁵ Pa  = 101325 Pa

Force due to the atmospheric pressure on the piston is,

Force = Pressure × Area of the piston

on substituting the values we get,

[tex]\rm F_P = 101325\times \pi r^2[/tex]

[tex]\rm F_P = 249.56\;N[/tex]

a) We know that the force on spring is given by,

F = Kx

where, k is spring constant and x is the displacement in the spring.

[tex]249.56 = 3600\times x[/tex]

[tex]\rm x = 0.0693\;m[/tex]

b) We know that the Work Done is given by,

[tex]\rm W= \dfrac{1}{2} k x^2[/tex]

[tex]\rm W = 0.5\times 3600\times (0.0693)^2[/tex]

W = 8.644 J

For more information, refer the link given below

https://brainly.com/question/22599382?referrer=searchResults

A 300 g bird is flying along at 6.0 m/s and sees a 10 g insect heading straight towards it with a speed of 30 m/s. The bird opens its mouth wide and swallows the insect. a. What is the birds speed immediately after swallowing the insect? b. What is the impulse on the bird? c. If the impact lasts 0.015 s, what is the force between the bird and the insect?

Answers

Answer:

(a): The bird speed after swallowing the insect is V= 4.83 m/s

(b): The impulse on the bird is I= 0.3 kg m/s

(c): The force between the bird and the insect is F= 20 N

Explanation:

ma= 0.3 kg

va= 6 m/s

mb= 0.01kg

vb= 30 m/s

(ma*va - mb*vb) / (ma+mb) = V

V= 4.83 m/s (a)

I= mb * vb

I= 0.3 kg m/s  (b)

F*t= I

F= I/t

F= 20 N (c)

Final answer:

This physics problem uses the principle of conservation of momentum to calculate the bird's speed after swallowing the insect, the impulse experienced by the bird, and the force between the bird and the insect.

Explanation:

This is a physics problem relating to the conservation of momentum. Let's start by defining some facts, where m bird = 0.3 kg and v bird = 6.0 m/s are the mass and speed of the bird before the incident and m insect = 0.01 kg and v insect = 30 m/s are the mass and speed of the insect.

a. To find the bird's speed immediately after swallowing the insect, we need to apply the conservation of momentum principle: initial total momentum = final total momentum, which can be written as m bird * v bird + m insect * v insect = (m bird + m insect) * v final.

b. The impulse on the bird equals the change in momentum of the bird, thus equals to the final momentum of the bird - initial momentum of the bird.

c. The force between the bird and the insect is obtained from the definition of impulse: Force * time = impulse, or Force = Impulse/time.

Learn more about Conservation of Momentum here:

https://brainly.com/question/30801640

#SPJ3

If the axes of the two cylinders are parallel, but displaced from each other by a distance d, determine the resulting electric field in the region R>R3, where the radial distance R is measured from the metal cylinder's axis. Assume d<(R2−R1). Express your answer in terms of the variables ρE, R1, R2, R3, d, R, and appropriate constants.

Answers

Answer:

E =  ρ ( R1²) / 2 ∈o R

Explanation:

Given data

two cylinders are parallel

distance = d

radial distance = R

d < (R2−R1)

to find out

Express answer in terms of the variables ρE, R1, R2, R3, d, R, and constants

solution

we have two parallel cylinders

so area is 2 [tex]\pi[/tex] R × l

and we apply here gauss law that is

EA = Q(enclosed) / ∈o   ......1

so first we find  Q(enclosed) = ρ Volume

Q(enclosed) = ρ ( [tex]\pi[/tex] R1² × l )

so put all value in equation 1

we get

EA = Q(enclosed) / ∈o

E(2 [tex]\pi[/tex] R × l)  = ρ ( [tex]\pi[/tex] R1² × l ) / ∈o

so

E =  ρ ( R1²) / 2 ∈o R

Final answer:

The resulting electric field in the specified region can be calculated using Gauss' Law. The equation for the electric field in that region is [tex]E = 2\pi R_1^2ho_E[/tex].

Explanation:

The resulting electric field in the region R>R3 is:

[tex]E = 2\pi R_1^2ho_E[/tex]

where R_1 is the radius of the inner cylinder, and ρ_E is the charge density. This expression is obtained by applying Gauss' Law for the region where R1 < r < R2.

Which is not a simple harmonic motion (S.H.M.) (a) Simple Pendulum (b) Projectile motion (c) None (d) Spring motion

Answers

Answer:

b) Projectile MOTION

Explanation:

SHM is periodic motion or to and fro motion of a particle about its mean position in a straight line

In this type of motion particle must be in straight line motion

So here we can say

a) Simple Pendulum : it is a straight line to and fro motion about mean position so it is a SHM

b) Projectile motion : it is a parabolic path in which object do not move to and fro about its mean position So it is not SHM

d) Spring Motion : it is a straight line to and fro motion so it is also a SHM

So correct answer will be

b) Projectile MOTION

Final answer:

Projectile motion is not a simple harmonic motion because it does not meet the conditions for SHM.

Explanation:

Simple Harmonic Motion (SHM) is a special type of periodic motion where the restoring force is proportional to the displacement. The three conditions that must be met to produce SHM are: a linear restoring force, a constant force constant, and no external damping forces. Based on these conditions, the answer to the question is (b) Projectile motion, as it does not meet the conditions for SHM. A projectile follows a parabolic path and does not have a linear restoring force.

Choose the statement(s) that is/are true about an electric field. (i) The electric potential decreases in the direction of an electric field. (ii) A positive charge experiences a force in the direction of an electric field. (iii) An electron placed in an electric field will move opposite to the direction of the field.

Answers

Answer:

A positive charge experiences a force in the direction of an electric field.

Explanation:

Electric field is defined as the electric force acting per unit positive charge. Mathematically, it is given by :

[tex]E=\dfrac{F}{q}[/tex]

We know that like charges repel each other while unlike charges attract each other. The direction of electric field is in the direction of electric force. For a positive charge the field lines are outwards and for a negative charge the electric field lines are inwards.

So, the correct option is (b) "A positive charge experiences a force in the direction of an electric field".

Absolute pressure in tank is P1 = 260 kPa and local ambient absolute pressure is P2 =100 kPa. If liquid density in pipe is 13600 kg/m3 , compute liquid height, h=..?.. m ? Use g =10 m/s2

Answers

Answer:

1.176m

Explanation:

Local ambient pressure(P1) = 100 kPa

Absolute pressure(P2)=260kPa

Net pressure=absolute pressure-local ambient absolute pressure

Net pressure=P1(absolute pressure)-P2(local ambient absolute pressure)

Net pressure=260-100=160kPa

Pressure= ρgh

160kPa=13600*10*h

h=[tex]\frac{160000}{136000}[/tex]

h=1.176m

A golf club (mass 0.5kg) hits a golf ball (mass 0.03kg) with a constant force of 25N over a time of 0.02 seconds. What is the magnitude of the impulse delivered to the ball? Select one: o a. 0.05 Ns b. 1250 Ns C.1.67 x102 Ns d.12.5Ns o e.8.00 x 104 Ns

Answers

Answer:

0.5 Ns

Explanation:

When a large force acting on a body for a very small time it is called impulsive force.

Impulse = force × small time

Impulse = 25 × 0.02 = 0.5 Ns

It is a vector quantity

A 0.15 kg baseball is pushed with 100 N force. what will its acceleration be?

Answers

Answer:

The acceleration of the ball is 666.67 m/s²

Explanation:

It is given that,

Mass of the baseball, m = 0.15 kg

Applied force to it, F = 100 N

We need to find the acceleration of the ball. It can be calculated using Newton's second law of motion as :

F = ma

[tex]a=\dfrac{F}{m}[/tex]

[tex]a=\dfrac{100\ N}{0.15\ kg}[/tex]

[tex]a=666.67\ m/s^2[/tex]

So, the acceleration of the ball is 666.67 m/s². Hence, this is the required solution.

A girl is standing on a trampoline. Her mass is 65 kg and she is able to jump 3 m. What is the spring constant for the trampoline? (logger pro?)

Answers

Answer:

k = 212.55 newton per meter

Explanation:

A girl is standing on a trampoline. Her mass is 65 kg and she is able to jump 3 meters.

We have to find the spring constant.

Since by Hooke's law,

F = -kx

Where F = force applied by the spring

k = spring constant

x = displacement

And we know force applied by the spring will be equal to the weight of the girl.

So, F = mg

Therefore, (-mg) = -kx

65×(9.81) = k×(3)

k = [tex]\frac{(65)(9.81)}{3}[/tex]

k = 212.55 N per meter

Therefore, spring constant of the spring is 212.55 Newton per meter.

A coil is made of 150 turns of copper wire wound on a cylindrical core. If the mean radius of the turns is 6.5 mm and the diameter of the wire is 0.4 mm, calculate the resistance of the coil!

Answers

Answer:

0.84 Ω

Explanation:

r = mean radius of the turn = 6.5 mm

n = number of turns of copper wire = 150

Total length of wire containing all the turns is given as

L = 2πnr

L =  2 (3.14)(150) (6.5)

L = 6123 mm

L = 6.123 m

d = diameter of the wire = 0.4 mm = 0.4 x 10⁻³ m

Area of cross-section of the wire is given as

A = (0.25) πd²

A = (0.25) (3.14) (0.4 x 10⁻³)²

A = 1.256 x 10⁻⁷ m²

ρ = resistivity of copper = 1.72 x 10⁻⁸ Ω-m

Resistance of the coil is given as

[tex]R = \frac{\rho L}{A}[/tex]

[tex]R = \frac{(1.72\times 10^{-8}) (6.123))}{(1.256\times 10^{-7}))}[/tex]

R = 0.84 Ω

A sign is held in equilbrium by 7 vertically hanging ropes attached to the ceiling. If each rope has an equal tension of 53 Newtons, what is the mass of the sign in kg?

Answers

Answer:

37.86 kg

Explanation:

The weight of sign board is equally divided on each rope. It means the tension in all the ropes is equal to the weight of the sign board in equilibrium condition.

Tension in each rope = 53 N

Tension in 7 ropes = 7 x 53 N = 371 N

Thus, The weight of sign = 371 N

Now, weight = m g

where m is the mass of sign.

m = 371 / 9.8 = 37.86 kg

A system gains 757 kJ757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ.+176 kJ. How much work is done? ????=w= kJkJ Choose the correct statement. Work was done on the system. Work was done by the system.

Answers

•If a system gains 757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ. How much work is done is  - 581 kJ

•The correct statement is: Work was done by  the system

Let Change in internal energy ΔU = 176 kJ

Let Heat gained by the system (q) = 757 kJ

Using the  First law of thermodynamics

ΔU = q + w

Where:

ΔU  represent  change in internal energy

q represent  heat added to system and w is work done.

Let plug in the formula

176 kJ = 757 kJ + w

w = 176 kJ - 757 kJ

w= - 581 kJ

Based on the above calculation the negative sign means  that work is done by the system

Inconclusion:

•If a system gains 757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ. How much work is done is  - 581 kJ

•The correct statement is: Work was done by  the system

Learn more here:

https://brainly.com/question/20309171?referrer=searchResults

Final answer:

The amount of work done by the system, based on given heat gain and change in internal energy is 581 kJ, meaning the work was done by the system.

Explanation:

The question asks about the amount of work done by or on a system in the field of thermodynamics. According to the first law of thermodynamics, the change in internal energy of a system (ΔU) is equal to the heat added to the system (Q) minus the work done by the system (W), or written as ΔU = Q - W. In this case, the heat added to your system was 757 kJ and the change in internal energy of the system was +176 kJ.

So we have: 176 kJ = 757 kJ - W. Subtracting 757 kJ from both sides of the equation would give us W = 757 kJ - 176 kJ. This results in the value of W = 581 kJ. Conclusively, since W is positive, we say that work was done by the system.

Learn more about Thermodynamics here:

https://brainly.com/question/35546325

#SPJ3

A proton experiences a force of 3.5x 10^-9 N when separated from a second charge by a distance of 1.6 mm. a) What is the size of the second charge? b) How many fundamental charges make up this charge in part a)?

Answers

Answer:

(a) 6.22 x 10^-6 C

(b) 3.8 x 10^13

Explanation:

Let the second charge is q2 = q

q1 = 1.6 x 10^-19 C

F = 3.5 x 10^9 N

d = 1.6 mm = 1.6 x 10^-3 m

(a) Use the formula of Coulomb's law

F = K q1 x q2 / d^2

3.5 x 10^-9 = 9 x 10^9 x 1.6 x 10^-19 x q / (1.6 x 10^-3)^2

q = 6.22 x 10^-6 C

(b)

Let the number of electrons be n

n = total charge / charge of one electron

n = 6.22 x 10^-6 / (1.6 x 10^-19) = 3.8 x 10^13

ml(d^2θ/dt^2) =-mgθ

1. From the linearized equation, justify Galileo’s observation that the period of a pendulum depends only on its length and not on the mass or on the initial displacement.

Answers

The equation of motion of a pendulum is:

[tex]\dfrac{\textrm{d}^2\theta}{\textrm{d}t^2} = -\dfrac{g}{\ell}\sin\theta,[/tex]

where [tex]\ell[/tex] it its length and [tex]g[/tex] is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for small angles ([tex]\theta \ll 1[/tex]), we can use:

[tex]\sin\theta \simeq \theta.[/tex]

Additionally, let us define:

[tex]\omega^2\equiv\dfrac{g}{\ell}.[/tex]

We can now write:

[tex]\dfrac{\textrm{d}^2\theta}{\textrm{d}t^2} = -\omega^2\theta.[/tex]

The solution to this differential equation is:

[tex]\theta(t) = A\sin(\omega t + \phi),[/tex]

where [tex]A[/tex] and [tex]\phi[/tex] are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

[tex]T = \dfrac{2\pi}{\omega} = 2\pi\sqrt{\dfrac{g}{\ell}}.[/tex]

This justifies that the period depends only on the pendulum's length.

Consider two charges, q1=3C and q2=2C 2m apart from each other. Calculate the electric force between them. Is the force attractive or repulsive?

Answers

Answer:

Electric force between the charges, [tex]F=1.35\times 10^{10}\ N[/tex]

Explanation:

It is given that,

Charge 1, q₁ = 3 C

Charge 2, q₂ = 2 C

Distance between them, r = 2 m

We need to find the electric force between them. The formula for electric force is given by :

[tex]F=k\dfrac{q_1q_2}{r^2}[/tex]

k is the electrostatic constant

[tex]F=9\times 10^9\times \dfrac{3\ C\times 2\ C}{(2\ m)^2}[/tex]

[tex]F=1.35\times 10^{10}\ N[/tex]

So, the force between the charges is [tex]1.35\times 10^{10}\ N[/tex]. Hence, this is the required solution.

Example: Alice is outside ready to begin her morning run when she sees Bob run past her with a constant speed of 10.0 m/s. Alice starts to chase after Bob after 5 seconds How far away is Bob when Alice starts running?

Answers

Answer:

The distance of bob when Alice starts running is 50 m.

Explanation:

Given that,

Speed v = 10.0 m/s

Time t = 5 sec

We need to calculate the distance

Using formula of distance

[tex]D=v\times t[/tex]

[tex]D=10\times5[/tex]

[tex]D=50\ m[/tex]

Hence, The distance of bob when Alice starts running is 50 m.

The steady-state diffusion flux through a metal plate is 7.8 × 10-8 kg/m2-s at a temperature of 1220˚C ( 1493 K) and when the concentration gradient is -500 kg/m4. Calculate the diffusion flux at 1000˚C ( 1273 K) for the same concentration gradient and assuming an activation energy for diffusion of 145,000 J/mol.

Answers

Final answer:

To calculate the diffusion flux at 1000˚C for the same concentration gradient, use the Arrhenius equation.

J ≈ 2.4 × 10-12 kg/m2-s

Explanation:

To calculate the diffusion flux at 1000˚C (1273 K) for the same concentration gradient, we can use the Arrhenius equation:

J = J0 * exp(-Q/RT)

Where J is the diffusion flux, J0 is the pre-exponential factor, Q is the activation energy for diffusion, R is the gas constant, and T is the absolute temperature.

Given that the diffusion flux at 1220˚C (1493 K) is 7.8 × 10-8 kg/m2-s and the activation energy for diffusion is 145,000 J/mol, we can calculate the diffusion flux at 1000˚C as:

J = (7.8 × 10-8) * exp(-145000/(8.314*1273))

J ≈ 2.4 × 10-12 kg/m2-s

Learn more about Diffusion here:

https://brainly.com/question/33319237

#SPJ12

Final answer:

To calculate the steady-state diffusion flux at a different temperature, use the Arrhenius equation to find the diffusion coefficients at the two temperatures, and find the ratio based on the fact that the diffusion flux is proportional to the diffusion coefficient when the concentration gradient is constant. Input the known values into the equation to solve for the unknown diffusion flux.

Explanation:

The steady-state diffusion through a metal plate can be calculated using the Arrhenius equation, which relates the diffusion coefficient (D) to temperature. The equation is D = D0e^-(Q/RT), where D0 is the pre-exponential factor, Q is the activation energy for diffusion, R is the gas constant and T is the temperature in K.

Given that the diffusion flux (J) is defined as J = -D×(dc/dx), where dc/dx is the concentration gradient. We can find that when the concentration gradient remains the same, the ratio of the two diffusion fluxes at different temperatures can be represented as J1/J2 = D1/D2.

Substitute the Arrhenius equation into the ratio, we get J1/J2 = e^(Q/R)×(1/T1-1/T2). Then you can use the given values, namely Q = 145,000 J/mol, R = 8.314 J/(mol×K), and temperatures T1 = 1493K , T2 = 1273K, as well as the known J1, to calculate J2.

Learn more about Steady-state Diffusion here:

https://brainly.com/question/9128896

#SPJ11

If there were no air resistance, a penny dropped from the top of a skyscraper would reach the ground 9.3 s later. To the nearest integer, what would the penny's speed in m/s be right as it reaches the ground if it was dropped from rest?

Answers

Answer:

To the nearest integer, the penny's speed in m/s be right as it reaches the ground if it was dropped from rest = 91 m/s

Explanation:

We have equation of motion

S = ut + 0.5at²

Here u = 0, a = g  and t = 9.3 s

We have equation of motion v = u +at

Substituting

       v = u +at

       v = 0 + 9.8 x 9.3 = 91.14 m/s

To the nearest integer, the penny's speed in m/s be right as it reaches the ground if it was dropped from rest = 91 m/s

Red light from three separate sources passes through a diffraction grating with 6.60×105 slits/m. The wavelengths of the three lines are 6.56 ×10−7m (hydrogen), 6.50 ×10−7m (neon), and 6.97 ×10−7m (argon). Part A Calculate the angle for the first-order diffraction line of first source (hydrogen). Express your answer using three significant figures.

Answers

Answer:· Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference pattern is observed on a screen that is 2.74 m from the grating. In the first-order spectrum, maxima for two different wavelengths are separated on the screen by 3.16 m. What is the difference between these wavelengths? . I know to apply the equation din(theta) = m*wavelength but I'm not sure how to find all the missing variables or to get the difference in wavelengths

Consider a torque ~τ that is constant in both magnitude and direction, and acts on a rigid body of mass 10 kg at a point 1 m from the pivot. How much work does the torque do on the rigid body, if it turns through an angle of 180◦ while the torque is acting? Assume the acceleration due to gravity is 10 m/s2 .

Answers

Answer:

314 Joule

Explanation:

m = 10 kg, g = 10 m/s^2, d = 1 m, angle turn = 180 degree = π radian

work = torque x angle turn

torque = force x perpendicular distance

torque = m x g x d = 10 x 10 x 1 = 100 Nm

work = 100 x π

work = 100 x 3.14 = 314 Joule

Final answer:

The work done by a constant torque on a rigid body rotating through an angle of 180° can be found by multiplying the torque by the angle. The torque can be calculated using the equation τ = Iα, where I is the moment of inertia and α is the angular acceleration. Substituting the given values, we find that the work done by the torque on the rigid body is 18000 kg·m^2·rad/s^2.

Explanation:

The work done by a torque on a rigid body is given by the formula W = τθ, where τ is the torque and θ is the angle through which the body rotates. In this case, the torque is constant in both magnitude and direction, so we can use W = τθ. Given that the torque is constant and the body turns through an angle of 180°, we can calculate the work done as follows:

Since τ is constant, we can write W = τθ = τ (180° - 0°). The work done by the torque is equal to the torque multiplied by the change in angle. Substitute the given values into the formula: W = (τ) (180° - 0°) = (τ) (180°). The work done by the torque is equal to the torque multiplied by 180°.

To find the value of the torque, we need to use the equation τ = Iα, where I is the moment of inertia and α is the angular acceleration. In this case, the rigid body has a mass of 10 kg and a distance of 1 m from the pivot. The moment of inertia for a point mass rotating about a fixed axis is given by I = m(r^2), where m is the mass and r is the perpendicular distance from the axis. Substitute the given values into the formula: I = (10 kg)((1 m)^2) = 10 kg·m^2. Since α = a/r and the acceleration due to gravity is 10 m/s^2, we have α = (10 m/s^2)/(1 m) = 10 rad/s^2.

Substitute the values of τ and α into the equation τ = Iα: τ = (10 kg·m^2)(10 rad/s^2) = 100 kg·m^2·rad/s^2. Therefore, the torque is 100 kg·m^2·rad/s^2.

Finally, substitute the values of τ and θ into the equation W = τθ: W = (100 kg·m^2·rad/s^2 )(180°) = 18000 kg·m^2·rad/s^2.

Other Questions
The Texas Department of Public Safety issues driver's licenses and identification cards that have specific security features. A valid driver's license issued after April 2009 has which of thefollowing features on the front of the card?Texas Capital printed on the left side of the cardTexas Capital printed on the right side of the cardAlamo printed on the right side of the cardState map printed on the right side of the card Fui a El Corte Ingls, un almacn (department store) que (1) (quedar) un poco lejos de mi hotel. (2) (haber) mucho trfico y yo no (3) (querer) tomar un taxi. Fui a la parada, pero el autobs no (4) (venir), as que decid caminar por La Castellana. Al llegar, vi a muchas personas que (5) (estar) comprando ropa. (6) (haber) muchsimas gangas. Todo el mundo me (7) (saludar) muy amablemente. No (8) (pensar) comprar nada, pero al final compr unos cuantos regalos. Tambin (9) (haber) restaurantes cerca del Each of the 27 turtles in the pet store needs to be fed. There is one bag of turtle food that weighs 84 ounces. If each turtle gets the same amount of food, how many ounces of turtle food will each turtle get? Carla is looking forward to playing the best softball team in the league. Which term describes Carlas outlook? The North American Plate is moving west at a rate of approximately 20 mm/yr. How long will it take for New York to move 10 longitude west of its current position? (Assume 110 km/longitude at New York's latitude.) Why should we care? What difference does it make if some species are extinguished, if even half of all the species on earth disappear? Let me count the ways. New sources of scientific information will be lost. Vast potential biological wealth will be destroyed. Still undeveloped medicines, crops, pharmaceuticals, timber, fibers, pulp, soil-restoring vegetation, petroleum substitutes, and other products and amenities will never come to light. It is fashionable in some quarters to wave aside the small and obscure, the bugs and weeds, forgetting that an obscure moth from Latin America saved Australias pastureland from overgrowth by cactus, that the rosy periwinkle provided the cure for Hodgkins disease and childhood lymphocytic leukemia, that the bark of the Pacific yew offers hope for victims of ovarian and breast cancer, that a chemical from the saliva of leeches dissolves blood clots during surgery, and so on down a roster already grown long and illustrious despite the limited research addressed to it. Which techniques does Wilson use in this excerpt to convey important information to his readers? Solve the matrix equation by using inverse matrices.[2 -2] * [x] = [-18][-1 3] * [y] = [13 ] Maggie had a bag of peanuts that weighed 2.84 pounds. She took some of the peanuts out of the bag. The bag then weighed 1.24 pounds. What was the weight of the peanuts that Maggie took out of the bag? A wheel of moment of inertia of 5.00 kgm2 starts from rest and accelerates under a constant torque of 3.00 Nm for 8.00 s. What is the wheel's rotational kinetic energy at the end of 8.00 s? Which of these countries has the most coastline? Which phrase represents the algebraic expression 5x - 9?the product of five times a number and ninethe difference of nine times a number and fivethe sum of five times a number and fivethe difference of five times a number and nineWhats the answer After being passed up for a promotion and then getting into a heated argument with his son, a man disappears. He shows up two weeks later in another town with no memory of who he is or how he got there. He appears to be suffering from ______ What effect does the clock rate of a computer have on the execution speed of an instruction? Goshen Company's contribution format income statement for the most recent month is given below: Sales (42,000 units) $ 1,218,000 Variable expenses 852,600 Contribution margin 365,400 Fixed expenses 292,320 Net operating income $ 73,080 The industry in which Goshen Company operates is quite sensitive to cyclical movements in the economy. Thus, profits vary considerably from year to year according to general economic conditions. The company has a large amount of unused capacity and is studying ways of improving profits.Required:New equipment has come on the market that would allow Goshen Company to automate a portion of its operations. Variable expenses would be reduced by $8.70 per unit. However, fixed expenses would increase to a total of $657,720 each month. Prepare two contribution format income statements, one showing present operations and one showing how operations would appear if the new equipment is purchased. (Input all amounts as positive values except losses which should be indicated by minus sign.) On a touchdown attempt, 95.00 kg running back runs toward the end zone at 3.750 m/s. A 113.0 kg line-backer moving at 5.380 m/s meets the runner in a head-on collision. If the two players stick together, a) what is their velocity immediately after collision? b) What is the kinetic energy of the system just before the collision and a moment after the collision? The two most common color models are the RGB and CMYK color models. Discuss the advantages and disadvantages of these color models. Find the amount of time needed for the sinking fund to reach the given accumulated amount. (Round your answer to two decimal places.) $295 monthly at 5.2% to accumulate $25,000. An ideal gas experiences a change of internal energy of 284 J/kg when its temperature is increased by 12oC (at a constant volume). What is its specific heat When a warehouse opened, it had an inventory of 6,000 items. Every month, the inventory increases by 3,000 items.Which graph has the most appropriate scales and units for this situation? Which set of ordered pairs could be generated by an exponential function?(0,0), (1, 1), (2,8), (3, 27)(0, 1), (1, 2), (2,5), (3, 10)(0,0), (1,3), (2, 6), (3,9)(0, 1), (1,3), (2, 9), (3, 27)