a gross of baseball cards contains 144 packs of cards. each pack contains 8 baseball cards how many cards do you have in all?

Answers

Answer 1

912 cards in all

If there are 114 packs of cards and 8 in each you multiply 114 by 8 and get 912.

Answer 2
Final answer:

To find the total number of baseball cards, multiply the number of packs (144) by the number of cards in each pack (8), resulting in a total of 1,152 cards.

Explanation:

If a gross of baseball cards contains 144 packs of cards and each pack contains 8 baseball cards, the total number of cards would be calculated by multiplying the number of packs by the number of cards in each pack.

To get the total number of baseball cards.

144 packs x 8 cards/pack = 1,152 cards

Hence, a gross of baseball cards contains 1,152 cards in total.

Learn more about Multiplication here:

https://brainly.com/question/35502092

#SPJ2


Related Questions

A company manufactures bicycles at a cost of $50 each. If the company's fixed costs are $700, express the company's costs as a linear function of x, the number of bicycles produced.

Answers

Answer:

[tex]y = 700 + 50x[/tex]

Step-by-step explanation:

Hello, great question. These types are questions are the beginning steps for learning more advanced Algebraic Equations.

If the company has a fixed cost (fixed being a keyword) of $700, then that cost will be a steady value before they even start to manufacture the bicycles. Afterwards they have to spend $50 on each bicycle they produce. Since we do not know the amount of bicycles that have been produced we can use the variable x to represent this.

[tex]y = 700 + 50x[/tex]

The equation above states that the company pays $700 plus $50 for every bike produced which comes out to a total of y.

When studying radioactive​ material, a nuclear engineer found that over 365​ days, 1,000,000 radioactive atoms decayed to 973 comma 635 radioactive​ atoms, so 26 comma 365 atoms decayed during 365 days. a. Find the mean number of radioactive atoms that decayed in a day. b. Find the probability that on a given​ day, 51 radioactive atoms decayed.

Answers

Answer:

A. number of decayed atoms = 73.197

Step-by-step explanation:

In order to find the answer we need to use the radioactive decay equation:

[tex]N(t)=N0*e^{kt}[/tex] where:

N0=initial radioactive atoms

t=time

k=radioactive decay constant

In our case, when t=0 we have 1,000,000 atoms, so:

[tex]1,000,000=N0*e^{k*0}[/tex]

[tex]1,000,000=N0[/tex]

Now we need to find 'k'. Using the provied information that after 365 days we have 973,635 radioactive atoms, we have:

[tex]973,635=1,000,000*e^{k*365}[/tex]

[tex]ln(973,635/1,000,000)/365=k[/tex]

[tex] -0.0000732=k[/tex]

A. atoms decayed in a day:

[tex]N(t)=1,000,000*e^{-0.0000732t}[/tex]

[tex]N(1)=1,000,000*e^{-0.0000732*1}[/tex]

[tex]N(1)= 999,926.803[/tex]

Number of atoms decayed in a day = 1,000,000 - 999,926.803 = 73.197

B. Because 'k' represents the probability of decay, then the probability that on a given day 51 radioactive atoms decayed is k=0.0000732.

Express as the sum or difference of logarithms. log311y

Answers

Final answer:

The function log311y can be expressed as the sum of two logarithms, log3(11) + log3(y), according to the product rule of logarithms.

Explanation:

The function log311y represents the logarithm base 3 of the product of the numbers 11 and y. Using the rules of logarithms, we can rewrite this expression as a sum of two logarithms.

According to the product rule of logarithms, the logarithm of a product is the sum of the logarithms of the component numbers. Applying this rule to our expression, log311y becomes:

log3(11) + log3(y)

This is the sum of the logarithm base 3 of 11 and the logarithm base 3 of y. In conclusion, the function log311y can be expressed as the sum of the separate logarithms: log3(11) + log3(y).

Learn more about Logarithms here:

https://brainly.com/question/37245832

#SPJ6

Final answer:

The logarithm log3(11y) can be broken down into two simpler logarithms, log3(11) and log3(y), by using properties of logarithms. This is the sum of the two simpler logarithms.

Explanation:

To express the logarithm log3(11y) as the sum or difference of logarithms, we will utilize the properties of logs:

The logarithm of a product is the sum of the logarithms of the numbers (log(xy) = log(x) + log(y)).The logarithm of a number raised to an exponent is the product of the exponent and the logarithm of the number.The logarithm of a quotient is the difference of the logarithms of the numbers.

Applying these properties to the given logarithm, we find:

log3(11y) = log3(11) + log3(y)

Thus, the original logarithm has been expressed as a sum of two simpler logarithms.

Learn more about Logarithms here:

https://brainly.com/question/37287488

#SPJ6

A student standing on the edge of a cliff throws a rock downward at a speed of 7.5 m/s at an angle 40° below the horizontal. It takes the rock 2.4 seconds to hit the ground. How tall is the cliff?

Answers

Answer:

42.05 m

Step-by-step explanation:

(see attached)

Find the range of the function f of x equals the integral from negative 6 to x of the square root of the quantity 36 minus t squared

Answers

[tex]f(x)=\displaystyle\int_{-6}^x\sqrt{36-t^2}\,\mathrm dt[/tex]

The integrand is defined for [tex]36-t^2\ge0[/tex], or [tex]-6\le t\le6[/tex], so the domain should be the same, [tex]-6\le x\le6[/tex].

When [tex]x=-6[/tex], the integral is 0.

The integrand is non-negative for all [tex]x[/tex] in the domain, which means the value of [tex]f(x)[/tex] increases monotonically over this domain. When [tex]x=6[/tex], the integral gives the area of the semicircle centered at the origin with radius 6, which is [tex]\dfrac\pi26^2=18\pi[/tex], so the range is [tex]\boxed{0\le f(x)\le 18\pi}[/tex].

Final answer:

The range of the function f(x) is the integral from -6 to x of the square root of the quantity 36 minus t squared is [0, 6*π] because the total area of the semicircle is the maximum value.

Explanation:

The function f(x) is the integral from -6 to x of the square root of the quantity 36 minus t squared. This is a known geometrical shape, which is a semicircle with radius 6. To find the range of this function, we need to know the possible outcomes of this function. In general, for a semicircle of radius r, the values of the square root of the quantity r squared minus t squared will vary from 0 to r, both inclusive. So, if you consider the function from -6 to 6, the range would be [0, 6*π] because the total area of the semicircle is the maximum value.

Learn more about Range of Function here:

https://brainly.com/question/28030873

#SPJ11

The radius of a 10 inch right circular cylinder is measured to be 4 inches, but with a possible error of ±0.1 inch. Use linear approximation or differentials to determine the possible error in the volume of the cylinder. Include units in your answer.

Answers

Answer:

502.4 ± 30.14 in^3

Step-by-step explanation:

r = 4 in, h = 10 in

error = ± 0.1 inch

Volume of a cylinder, V = π r² h

Take log on both the sides

log V = log π + 2 log r + log h

Differentiate both sides

dV/V = 0 + 2 dr/r + dh /h

dV/V = 2 (± 0.1) / 4 + (± 0.1) / 10

dV/V = ± 0.05 ± 0.01 = ± 0.06 .... (1)

Now, V = 3.14 x 4 x 4 x 10 = 502.4 in^3

Put in equation (1)

dV = ± 0.06 x 502.4 = ± 30.144

So, V ± dV = 502.4 ± 30.14 in^3

if I've gained 35 pounds in 186 days, how many pounds per day?

Answers

Answer:

.188 pounds per day

Step-by-step explanation:

Given

35 pounds gained in 186 days

Divide the amount of pounds gained by the total number of days

35/186 = .188

Answer

Approximately .188 pounds per day.

A Game of Thrones fan predicts there is a 70% chance that her favorite character will survive the next season and a 75% chance that her second favorite character will die. There is also a 16% chance that both characters will die. What’s the probability that the second character will die given that the first character dies? What kind of probability is this called?

Answers

Final answer:

The probability that the second character will die given that the first character dies is 53.33%. This is known as conditional probability.

Explanation:

To find the probability that the second character will die given that the first character dies, we use the concept of conditional probability.

The formula for conditional probability is P(B|A) = P(A and B) / P(A), where P(B|A) is the probability of event B occurring given that event A has occurred, P(A and B) will be the probability of both events A and B occurring, and P(A) is the probability of event A occurring.

In this scenario, event A is the first character dying, and event B is the second character dying. The student has already stated there is a 70% chance that the first character will survive, which means there is a 30% (100% - 70%) chance that the first character will die.

They've also stated a 16% chance that both characters will die. Applying the formula gives us P(B|A) = P(A and B) / P(A) = 0.16 / 0.30 = 0.5333, or 53.33%.

Therefore, the probability that the second character will die given that the first character dies is 53.33%. This kind of probability is called conditional probability.

Consider the sequence 1, 5, 12, 22, 35, 51, . . . (with a0 = 1). By looking at the differences between terms, express the sequence as a sequence of partial sums. Then find a closed formula for the sequence by computing the nth partial sum.

Answers

Final answer:

The given sequence can be expressed as a sequence of partial sums by finding the differences between terms and adding them to the previous term. The closed formula for the nth partial sum is Sn = n/2(3n - 1), where Sn represents the nth partial sum.

Explanation:

To express the given sequence as a sequence of partial sums, we can find the differences between consecutive terms:



5 - 1 = 4

12 - 5 = 7

22 - 12 = 10

35 - 22 = 13

51 - 35 = 16



From these differences, we can observe that each term in the sequence is obtained by adding the difference to the previous term. Therefore, the sequence can be written as a sequence of partial sums:



1, 1+4, 1+4+7, 1+4+7+10, 1+4+7+10+13, ...



To find a closed formula for the nth partial sum, we can use the formula for the sum of an arithmetic series:



Sn = n/2(a1 + an), where Sn represents the nth partial sum, a1 is the first term, and an is the nth term.



For the given sequence, a1 = 1 and the difference between consecutive terms is 3, so the nth term can be represented as an = 1 + 3(n-1). Substituting these values into the formula, we get:



Sn = n/2(1 + 1 + 3(n-1)) = n/2(2 + 3(n-1)) = n/2(3n - 1).

Learn more about Sequences here:

https://brainly.com/question/36944481

#SPJ11

Tyree is determining the distance of a segment whose endpoints are A(–4, –2) and B(–7, –7).



Step 1:


Step 2:


Step 3:


Step 4:


Step 5:


Therefore, d = 2.





Which best describes the accuracy of Tyree’s solution?


a Tyree’s solution is accurate.


b Tyree’s solution is inaccurate. In step 1, he substituted incorrectly.


c Tyree’s solution is inaccurate. In step 2, he simplified incorrectly.


d Tyree’s solution is inaccurate. In step 3, he added incorrectly.

Answers

Answer:

Option b Tyree’s solution is inaccurate. In step 1, he substituted incorrectly.

Step-by-step explanation:

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]A(-4,-2)\\B(-7,-7)[/tex]

step 1

substitute the values in the formula

[tex]d=\sqrt{(-7-(-2))^{2}+(-7-(-4))^{2}}[/tex]

step 2

Simplify

[tex]d=\sqrt{(-7+2)^{2}+(-7+4)^{2}}[/tex]

step 3

[tex]d=\sqrt{(-5)^{2}+(-3)^{2}}[/tex]

step 4

[tex]d=\sqrt{25+9}[/tex]

step 5

[tex]d=\sqrt{34}[/tex]

therefore

Tyree’s solution is inaccurate. In step 1, he substituted incorrectly.

Sarah and Max must decide how to split up 8 cookies. Sarah (we'll call her player 1) makes a proposal to Max (we'll call him player 2), of how many cookies each of them should receive. We assume that each kid is trying to maximize the amount of cookies they receive, and that they must follow the rules below: If Max accepts the proposal, they split the cookies according to that agreement. If Max doesn't accept the proposal, he tells their dad. Their dad will eat 4 of the cookies and then split the rest evenly. Assume that if Max is indifferent between accepting and rejecting, he will always accept the offer. How many cookies will Sarah offer Max

Answers

She would offer to split the cookies evenly, so they each get 4.

If she offered Max less than 4, he would not accept and their dad would eat half, so each person would only get 2 cookies each.

If she offered Max more than 4, then she doesn't maximize the amount she would get.

. Break downs occur on a 20-years-old car with rate λ= 0.5 breakdowns/week. The owner of the car is planning to have a trip on his car for 2 weeks. What is the probability that there will be no breakdown on his car in the trip? [ The rate = ? per two weeks]

Answers

Answer: 0.3679

Step-by-step explanation:

The formula for Poisson distribution  :-

[tex]P(x)=\dfrac{e^{-\lambda}\lambda^{x}}{x!}[/tex]

Let x be the number of breakdowns.

Given : The rate of breakdown per week :  0.5

Then , for 2 weeks period the number of breakdowns = [tex]\lambda=0.5\times2=1[/tex]

Then , the probability that there will be no breakdown on his car in the trip is given by :-

[tex]P(x)=\dfrac{e^{-1}1^{0}}{0!}=0.367879441171\approx0.3679[/tex]

Hence, the required probability : 0.3679

Graph the equation by plotting three
points. If all three are correct, the line
will appear.
-y = -x + 1

Answers

Answer:

  (0, -1), (1, 0), (2, 1)

Step-by-step explanation:

I find this easier to do after multiplying the equation by -1:

  y = x - 1

Pick any value for x, then subtract 1 from it to find the corresponding value of y.

The slope of the _________________ is determined by the relative price of the two goods, which is calculated by taking the price of one good and dividing it by the price of the other good. Opportunity cost productive efficiency budget constraint production possibilities frontier

Answers

Answer:

The answer is - budget constraint

Step-by-step explanation:

The slope of the budget constraint is determined by the relative price of the two goods, which is calculated by taking the price of one good and dividing it by the price of the other good.  

A budget constraint happens when a consumer demonstrates limited consumption patterns by a certain income.

Find the amount of time needed for the sinking fund to reach the given accumulated amount. (Round your answer to two decimal places.) $295 monthly at 5.2% to accumulate $25,000.

Answers

Answer:

8.82 years.

Step-by-step explanation:

Since, the monthly payment formula is,

[tex]P=\frac{PV(r)}{1-(1+r)^{-n}}[/tex]

Where, PV is the present value of the loan,

r is the rate per month,

n is number of months,

Here,

PV =  $ 25,000,

Annual rate = 5.2 % = 0.052 ⇒ Monthly rate, r = [tex]\frac{0.052}{12}[/tex]

( 1 year = 12 months )

P = $ 295,

By substituting the values,

[tex]295=\frac{25000(\frac{0.052}{12})}{1-(1+\frac{0.052}{12})^{-n}}[/tex]

By the graphing calculator,

We get,

[tex]n = 105.84[/tex]

Hence, the time ( in years ) = [tex]\frac{105.84}{12}=8.82[/tex]

what are the values of x and y such that ABCD=PQRS?

Answers

Answer:

  T(x, y) = T(0, -8)

Step-by-step explanation:

The first reflection can be represented as ...

  (x, y) ⇒ (-x, y)

__

The rotation about the origin is the transformation ...

  (x, y) ⇒ (-x, -y)

so the net effect of the first two transforms is ...

  (x, y) ⇒ (x, -y)

__

Then the reflection across y=4 alters the y-coordinate:

  (x, y) ⇒ (x, 8-y)

so the net effect of the three transforms is ...

  (x, y) ⇒ (x, 8+y)

__

In order to bring the figure back to place, we must translate it down 8 units using ...

  (x, y) ⇒ (x, y-8) . . . . net effect: (x, y) ⇒ (x, (8+y)-8) = (x, y)

The translation is by 0 units in the x-direction and -8 units in the y-direction.

6. Let A and B be nxn matrices . Compute (A + B) (A + B). Explain all steps.

Answers

Answer:

(A+B)(A+B)=A.A+B.A+A.B+B.B

Step-by-step explanation:

Given that matrices A and B are nxn matrices

We need to find (A+B)(A+B)

For understanding the multiplication of matrices let'take A is mxn and B is pxq matrices,we can multiple only when n=p,so our Ab matrices will be mxq.

We know that that in matrices AB is not equal to BA.

Now find  

(A+B)(A+B)=A.A+B.A+A.B+B.B

So from we can say that (A+B)(A+B) is not equal to A.A+2B.A+B.B because AB is not equal to BA in matrices.

So (A+B)(A+B)=A.A+B.A+A.B+B.B

5. Let A = (x, y), B = {1,2). Find the Cartesian products of A and B: A x B? (Hint: the result will be a set of pairs (a, b) where a E A and b e B)

Answers

Answer: A x B = {(x,1), (x,2), (y,1), (y,2)}

Step-by-step explanation:

The Cartesian product of any two sets M and N is the set of all possible ordered pairs such that the elements of M are first values and the elements of N are the second values.

The Cartesian product of sets M and N is denoted by M × N.

For Example : M = {x,y} and N={a,b}

Then , M × N ={(x,a), (x,b), (y,a), (y,b)}

Given : Let A = {x, y}, B = {1,2}

Then , the Cartesian products of A and B will be :

A x B = {(x,1), (x,2), (y,1), (y,2)}

Hence, the Cartesian products of A and B = A x B = {(x,1), (x,2), (y,1), (y,2)}

WHAT IS THE PROBABILITY OF GETTING EITHER JACK OR A THREE WHEN DRAWING A SINGLE CARD FROM A DECK OF 52 CARDS? WHAT IS THE PROBABILITY THAT THE CARD IS EITHER A JACK OR A THREE?

Answers

Answer:

2/13

Step-by-step explanation:

there are 4 jacks and 4 threes in a standard poker deck.

4+4 is 8

8/52=2/13

The probability of drawing either a Jack or a three from a standard deck of 52 cards is 2/13, because there are 8 such cards in a deck and the total number of cards in the deck is 52.

The question asks for the probability of drawing either a Jack or a three from a standard deck of 52 cards. To solve this, we need to count how many Jacks and threes there are in a deck. Since each suit (hearts, diamonds, clubs, and spades) includes one Jack and one three, there are 4 Jacks and 4 threes in a standard deck. Therefore, there are 8 cards that satisfy the condition (either a Jack or a three).



Since the total number of cards in the deck is 52, the probability of drawing either a Jack or a three is calculated as the number of favorable outcomes (drawing a Jack or a three) divided by the total number of outcomes (drawing any card from the 52-card deck). Thus, the probability is:



Probability = (Number of Jacks + Number of threes) / Total number of cards = (4 + 4) / 52 = 8 / 52 = 2 / 13


Therefore, the probability of drawing either a Jack or a three from a standard deck of 52 cards is 2/13.

A person pulls horizontally with a force of 64 N on a 14-kg box. There is a force of friction between the box and the floor of 36 N. Find the acceleration of the box in m/s2 Show your work

Answers

The net force is what remains of the pull when we subtract the friction force:

[tex]F = 64-36 = 28N[/tex]

Now, use the law

[tex]F=ma[/tex]

and solve it for the acceleration

[tex]a = \dfrac{F}{m}[/tex]

to get the result:

[tex]a = \dfrac{28}{14}=2[/tex]

Answer:

2 m/s²

Step-by-step explanation:

F = applied force in the horizontal direction = 64 N

f = frictional force acting between the box and the floor = 36 N

m = mass of the box = 14 kg

a = acceleration of the box = ?

Force equation along the horizontal direction is given as

F - f = ma

Inserting the values

64 - 36 = 14 a

28 = 14 a

a =  [tex]\frac{28}{14}[/tex]

a = 2 m/s²

x + y + w = b

2x + 3y + z + 5w = 6

z + w = 4

2y + 2z + aw = 1

For what values a, b (constants) is the system:

(a) inconsistent?

(b) consistent w/ a unique sol'n?

(c) consistent w/ infinitely-many sol'ns?

Answers

Answer:

(a) a=6 and b≠[tex]\frac{11}{4}[/tex]

(b)a≠6

(c) a=6 and b=[tex]\frac{11}{4}[/tex]

Step-by-step explanation:

writing equation in agumented matrix form

[tex]\begin{bmatrix}1 &1 & 0 &1 &b\\ 2 &3 & 1 &5 &6\\ 0& 0 & 1 &1 &4\\ 0& 2 & 2&a &1\end{bmatrix}[/tex]

now [tex]R_{2} =R_{2}-2\times R_{1}[/tex]

[tex]\begin{bmatrix}1 &1& 0 &1 &b\\ 0 &1& 1 &3 &6-2b\\ 0& 0 & 1 &1 &4\\ 0& 2 & 2&a &1\end{bmatrix}[/tex]

now [tex]R_{4} =R_{4}-2\times R_{2}[/tex]

[tex]\begin{bmatrix}1 &1& 0 &1 &b\\ 0 &1& 1 &3 &6-2b\\ 0& 0 & 1 &1 &4\\ 0& 0 & 0 &a-6 &4b-11\end{bmatrix}[/tex]

a) now for inconsistent

rank of augamented matrix ≠ rank of matrix

for that  a=6 and b≠[tex]\frac{11}{4}[/tex]

b) for consistent w/ a unique solution

rank of augamented matrix = rank of matrix

  a≠6

c) consistent w/ infinitely-many sol'ns

  rank of augamented matrix = rank of matrix < no. of variable

for that condition

 a=6 and b=[tex]\frac{11}{4}

then rank become 3 which is less than variable which is 4.

Let A = {b, c, d, f, g}, B = {a, b, c}.

a) Find (A u B)

b) Find (A n B)

c) A – B

d) B – A

Answers

[tex]A\cup B=\{a,b,c,d,f,g\}\\A\cap B=\{b,c\}\\A\setminus B=\{d,f,g\}\\B\setminus A=\{a\}[/tex]

A company produces two types of solar panels per​ year: x thousand of type A and y thousand of type B. The revenue and cost​ equations, in millions of​ dollars, for the year are given as follows.

​R(x,y) = 6x + 8y
​C(x,y) =x^2 − 3xy + 8y^2 + 14x − 50y − 4

Determine how many of each type of solar panel should be produced per year to maximize profit. The company will achieve a maximum profit by selling nothing solar panels of type A and selling nothing solar panels of type B.

Answers

Answer:

x=2, y=4.

2 thousand of A panels and 4 of B.

Step-by-step explanation:

First, the profit is determined by the revenue minus the cost, so built a profit equation with that information.

[tex]P(x,y)=R(x,y)-C(x,y)\\ P(x,y)=6x+8y-x^{2}+3xy-8y^{2} -14x+50y+4\\ P(x,y)=-8x+58y-x^{2} -8y^{2} +3xy+4[/tex]

Then, use the partial derivative criteria to determine which is the maximum.

The partial derivative criteria says that in the local maximum or minimum, the partial derivatives are equal to zero, so:

[tex]P_{x}=-8-2x+3y=0\\  P_{y} =58-16y+3x=0[/tex]

So, let's solve the equation system:

First, isolate x:

Eq. 1 [tex]2x=3y-8[/tex]

Eq. 2[tex]3x=16y-58[/tex]

Multiply equation 1 by (-3) and equation 2 by 2:

[tex]-6x=-9y+24\\ 6x=32y-116[/tex]

Sum the equations:

[tex]0=23y-92\\ y=\frac{92}{23}=4[/tex]

Find x with eq. 1 or 2:

[tex]x=\frac{3y-8}{2}= \frac{3*4-8}{2}=2[/tex]

Final answer:

To maximize profit, we need to find the values of x and y that satisfy the equations for R(x,y) and C(x,y), then substitute them into the profit equation. The maximum profit is achieved at x = 8, y = 3.

Explanation:

To maximize profit, we need to find the values of x and y that maximize the equation P(x,y) = R(x,y) - C(x,y), where P(x,y) represents the profit.

Substitute the equations for R(x,y) and C(x,y) into the profit equation and simplify. We will get: P(x,y) = -x^2 + 9xy - 6y^2 + 6x + 58y + 4.

To find the maximum value of P(x,y), we need to find the critical points. Use partial derivatives to find the critical points and check which ones give the maximum value for profit. The critical point that gives the maximum profit is x = 8, y = 3.

Learn more about Profit Maximization here:

https://brainly.com/question/33809682

#SPJ11

Find an equation of the vertical line through (-6, -9) in the form ax+ byc, where a, b, and c are integers with no factor common to all three, and az0. The equation is (Type an equation.)

Answers

Answer:

The equation of the vertical line through (-6, -9) is 1x+0y=-6.

Step-by-step explanation:

The standard form of a line is

[tex]ax+by=c[/tex]

where a, b, and c are integers with no factor common to all three, and a>0.

If a vertical line passes through the point (a,b), then the equation of vertical line is x=a.

It is given that the vertical line passes through the point (-6,-9). Here a=-6 and b=-9, so the equation of the vertical line through (-6, -9) is

[tex]x=-6[/tex]

[tex]1x+0y=-6[/tex]

The standard form of the line is 1x+0y=-6. where the value of a,b c are 1, 0, -6 respectively.

Therefore the equation of the vertical line through (-6, -9) is 1x+0y=-6.

Find the mean for the following group of data items. 4.1, 8.9, 3.2, 1.9, 7.3, 6.3, 6.7, 8.6, 3.2, 2.3, 5.9 (Round to 3 decimal places as needed.) The mean is

Answers

Answer:

The mean is 5.309.

Step-by-step explanation:

Given group of data,

4.1, 8.9, 3.2, 1.9, 7.3, 6.3, 6.7, 8.6, 3.2, 2.3, 5.9,

Sum = 4.1+ 8.9 + 3.2 + 1.9 + 7.3 + 6.3 + 6.7 + 8.6 + 3.2 + 2.3 + 5.9 = 58.4,

Also, number of observations in the data = 11,

We know that,

[tex]Mean=\frac{\text{Sum of all observation}}{\text{Total observations}}[/tex]

Hence, the mean of given data = [tex]\frac{58.4}{11}=5.30909\approx 5.309[/tex]

Find the derivative of the function at P 0 in the direction of A. ​f(x,y,z) = 3 e^x cos(yz)​, P0 (0, 0, 0), A = - i + 2 j + 3k

Answers

The derivative of [tex]f(x,y,z)[/tex] at a point [tex]p_0=(x_0,y_0,z_0)[/tex] in the direction of a vector [tex]\vec a=a_x\,\vec\imath+a_y\,\vec\jmath+a_z\,\vec k[/tex] is

[tex]\nabla f(x_0,y_0,z_0)\cdot\dfrac{\vec a}{\|\vec a\|}[/tex]

We have

[tex]f(x,y,z)=3e^x\cos(yz)\implies\nabla f(x,y,z)=3e^x\cos(yz)\,\vec\imath-3ze^x\sin(yz)\,\vec\jmath-3ye^x\sin(yz)\,\vec k[/tex]

and

[tex]\vec a=-\vec\imath+2\,\vec\jmath+3\,\vec k\implies\|\vec a\|=\sqrt{(-1)^2+2^2+3^2}=\sqrt{14}[/tex]

Then the derivative at [tex]p_0[/tex] in the direction of [tex]\vec a[/tex] is

[tex]3\,\vec\imath\cdot\dfrac{-\vec\imath+2\,\vec\jmath+3\,\vec k}{\sqrt{14}}=-\dfrac3{\sqrt{14}}[/tex]

Please help me with this

Answers

Answer:

Option 1: triangle HFG is congruent to triangle KIJ

Step-by-step explanation:

F and I are same as they are on 90 degrees.

In figure 1, from I to K is the height of the triangle.

In figure 2, from F to H is the height of the triangle.

Therefore, IK is congruent to FH

In figure 1, I to J is the base of the triangle from 90 degrees.

In figure 2, F to G is the base of the triangle from 90 degrees.

Therefore, IJ is congruent to FG

Therefore, triangle HFG is congruent to triangle KIJ.

The first option is correct.

!!


Tim has one apple.

Jerry has one apple as well.

Jerry gives Tim his one apple.

How many apples does Tim have now? How about Jerry?

Answers

Answer:

Tim has 2 apples, Jerry has no apple.

Step-by-step explanation:

Given that Tim has 1 apple.

Jerry has 1 apple as well.

After Jerry gives Tim one apple,

Tim has 1 + 1 = 2 apples, and  Jerry has 1 - 1 = 0

Tim has 2 apples, Jerry has no apple.

We are given three coins: one has heads in both faces, the second has tails in both faces, and the third has a head in one face and a tail in the other. We choose a coin at random, toss it, and it comes head. What is the probability that the opposite face is tails?

Answers

Answer: 0.33

Step-by-step explanation:

Let,

E1 be the coin which has heads in both facesE2 be the coin which has tails in both facesE3 be the coin which has a head in one face and a tail in the other.

In this question we are using the Bayes' theorem,

where,

P(E1) = P(E2) = P(E3) = [tex]\frac{1}{3}[/tex]

As there is an equal probability assign for choosing a coin.

Given that,

it comes up heads

so, let A be the event that heads occurs

then,

P(A/E1) = 1

P(A/E2) = 0

P(A/E3) =  [tex]\frac{1}{2}[/tex]

Now, we have to calculate the probability that the opposite side of coin is tails.

that is,

P(E3/A) = ?

∴ P(E3/A) = [tex]\frac{P(E3)P(A/E3)}{P(E1)P(A/E1) + P(E2)P(A/E2) + P(E3)P(A/E3) }[/tex]

= [tex]\frac{(1/3)(1/2)}{(1/3)(1) + 0 + (1/2)(1/3)}[/tex]

= [tex]\frac{1}{6}[/tex] × [tex]\frac{6}{3}[/tex]

= [tex]\frac{1}{3}[/tex]

= 0.3333 ⇒ probability that the opposite face is tails.

Given a double-headed coin, a double-tailed coin, and a regular coin, the probability that the opposite face is tails after tossing a head is 33.33%, assuming we picked one coin randomly and tossed it to see a head.

The student is asking about a problem involving conditional probability, with the specific condition that one of the sides that came up is a head. We are given three coins: a double-headed coin, a double-tailed coin, and a regular coin. The aim is to calculate the probability that the opposite face is tails given that the tossed coin shows heads.

First, we need to consider the total number of heads that can come up when choosing any coin. This yields two heads from the double-headed coin, and one head from the regular coin, resulting in three possible heads. However, only the regular coin has a tail on the opposite side.

Consequently, the probability that the opposite face is tails given that a head has been tossed is 1 out of 3, or 33.33%.

point) Suppose that the trace of a 2 x 2 matrix A is tr(A)= -9 and the determinant is det(A) 18. Find the eigenvalues of A. The eigenvalues of A are (Enter your answers as a comma separated list.)

Answers

Answer with explanation:

Matrix A= (2 × 2) Matrix

Trace A= -9

Also,Determinant A= |A|=18

⇒Characteristics Polynomial is given by

Δ(A)=A² -A ×trace (A)+Determinant (A)

=A²+9 A+18

=(A+6)(A+3)

So, eigenvalues can be obtained by substituting :

 Δ(A)=0

(A+6)(A+3)=0

A= -6 ∧ A= -3

Two Eigenvalues are = -6, -3

Other Questions
Find a compact form for generating function of the sequence 4, 4, 4, 4, 1, 0, 1, 0, 1, 0, 1, 0, If the light is green as you approach an intersection, you should:A. Cover your brakesB. Expect it to change soonC. Speed up to enter the intersection Skeletal traction is applied directly to the bone and uses opposing forces to create the traction. Nursing care of the patient with skeletal traction include:a. All lines be free of tangles.b. Weight ordered is in continuous use.c. patient is given a trapeze bar to help mobility in the bed.d. Linens are changed only as need.e. Unaffected foot is kept against the footboard. The stairway shown is made out of solid concrete. The height of each step is four inches and the width is 10 inches. The length is 6 inches. What is the volume, in cubic inches, of the concrete used to create this stairway? PLEASE HELP!! MAKE SURE THEIR IS TWO POINTS PLEASEWhy were communist command economies unable to compete with free market economies in terms of production and efficiency during the Cold War? Describe at least two reasons to support your argument. Write an application that can hold five integers in an array. Display the integers from first to last, and then display the integers from last to first. If ax7yb is a term from the expansion of (x + y)12, describe how to determine its coefficient a and missing exponent b without writing the entire expansion. In what way does James Baldwin use a narrative structure?OA. The essay tells a story about race relations in Harlem.B. The essay gives background information about the 1943 HarlemRiot.OC. The essay questions the inequality between races.OD. The essay emphasizes themes of healing and forgiveness in theface of conflict myra's stamp collection consisted of 120 stamps in october. By the following march, her collection had grown to 138 stamps. By how much did her collection increase between october and march Determine the measure of arc CED. A. 180 B. 99 C. 198 D. 81 Name the target organ or gland of the following hormones:a. TSH - b. Oxytocin -c. Oxytocin - d. ACTH -e. FSH -f. Thyrotropin-releasing hormone - Discuss the relationship between smoking and various lung diseases. Choose 2 diseases only. How can you help someone that is in an abusive relationship? Help me find the answer to this piecewise problem!! 20 Points !!!! What is generally true about the particles in a gas? Gas particles are closer together and have stronger attraction between them than the particles in a solid. Gas particles are closer together and able to conduct electricity better than the particles in a plasma. Gas particles are farther apart and able to conduct electricity better than the particles in a liquid. Gas particles are farther apart and have weaker attraction between them than the particles in a solid. - 7.5x - 1.2y = -2.7- 1.5x + 1.2y = -3.3 Find the diagonal of the rectangular solid with the given measures. (Part of the answer is provided for you.) l = 18, w = 10, h = 2 A circle has a radius of 20 inches. Find the length of the arc intercepted by a central angle of 45. Leave answers in terms of . Take a look at the painting. What suggests that the artist of the painting is most likely an American? A. George Washington is depicted in the painting. B. The American soldiers are seen applauding C. The person hoisting the flag is an American D. The American flag occupies much of the space. A car drives over the top of a hill that has a radius of 40 m. ? Part A What maximum speed can the car have without flying off the road at the top of the hill?