A loop of wire lies flat on the horizontal surface in an area with uniform magnetic field directed vertically up. The loop of wire suddenly contracts to half of its initial diameter. As viewed from above induced electric current in the loop is:

Answers

Answer 1

Answer:

To oppose applied magnetic field current will flow in anticlockwise direction

Explanation:

Given:

Uniform magnetic field directed vertically upward.

Current will flow in clockwise direction

Here loop of wire is suddenly contracts to half so diameter of loop is reduced.

Hence less number of magnetic field line pass through the loop. This change in magnetic field lines lead to flow of current.

Now from lenz law flow of induced current will oppose the cause of its production

Therefore, to oppose applied magnetic field current will flow in anticlockwise direction.


Related Questions

A salad spinner is used to dry lettuce that has been recently washed. For the salad spinners to operate properly, the lettuce should be evenly distributed in the basket of the salad spinner. Otherwise, after you spin the basket and remove your hand, the salad spinner will wobble and slip on the kitchen counter.
You're curious how unbalanced your salad spinner can be before it starts to slip on the counter.
-You measure the dimensions of your salad spinner and determine that the basket has a diameter of 32.2 cm and a height of 21.0 cm.
-You place the salad spinner on a kitchen scale and determine that the mass of the salad spinner is 449 g.
-The bottom of the salad spinner is rubberized. Consulting friction coefficient tables, you estimate that the coefficient of friction between the bottom of the salad spinner and your kitchen counter is 0.83.
-You search online for information about the rotational speed of your spinner. You come across a journal article about students at Rice University who modified a salad spinner to create an inexpensive medical centrifuge to diagnose anemia in remote or low-resource areas. The article states that the maximum rotational speed of their salad spinner is 600 rpm. Your salad spinner is similar to the one featured in the article.
Suppose you place some lettuce into one side of the basket, pump the salad spinner until the basket is spinning at top speed and then remove your hand.
What is the maximum amount of lettuce that can be in the basket such that the salad spinner does not slip when you remove your hand?

Answers

The maximum amount of lettuce that dimensions can be in the basket such that the salad spinner does not slip when you remove your hand is 62.58 kg.

What is dimensions?

Dimensions are the physical measurement of an object in terms of length, width, and height. They are used in various fields such as mathematics, engineering, and architecture. Dimensions are also used to describe the shape of an object, like a cube or a sphere.

The maximum amount of lettuce that can be in the basket is determined, Where Ff is the maximum static friction force (3470.54 N) and r is the radius of the salad spinner's basket (16.1 cm).

τ = 3470.54 x 0.161 = 559.21 Nm

To calculate the maximum amount of lettuce that can be in the basket, we need to calculate the rotational inertia (I) of the salad spinner

I = mr2

Where m is the mass of the salad spinner (449 g) and r is the radius of the salad spinner's basket (16.1 cm).

I = 449 x 0.1612 = 7.51 kg m2

The rotational inertia is the measure of how difficult it is to change the angular velocity of a spinning object.

α = τ / I

Where τ is the maximum rotational torque (559.21 Nm) and I is the rotational inertia (7.51 kg m2).

α = 559.21 / 7.51 = 74.37 rad/s2

The maximum amount of lettuce that can be in the basket without causing the spinner to slip is determined by the equation m = I/t, where m is the maximum mass of lettuce and I is the rotational inertia of the spinner (7.51 kg m2).

m = I/t

Where I is the rotational inertia of the spinner (7.51 kg m2) and t is the time it takes for the spinner to reach its final angular velocity (0.12 s).

m = 7.51 / 0.12 = 62.58 kg

Therefore, the maximum amount of lettuce that can be in the basket such that the salad spinner does not slip when you remove your hand is 62.58 kg.

To learn more about dimensions

https://brainly.com/question/30486920

#SPJ1

Determine the absolute pressure on the bottom of a swimming pool 30.0 m by 8.9 m whose uniform depth is 1.9 m . Express your answer using two significant figures. P = nothing N/m2 Request Answer Part B Determine the total force on the bottom of a swimming pool. Express your answer using two significant figures. F = nothing N Request Answer Part C What will be the pressure against the side of the pool near the bottom? Express your answer using two significant figures. P = nothing N/m2 Request Answer Provide Feedback

Answers

Answer:

A)P = 1.2 × 10⁵Pa

B)F = 3.2 × 10⁷N

C) P = 1.2 × 10⁵Pa

Explanation:

Part A)

The relative pressure at the bottom of a column of fluid is given by

[tex]p_r = \rho g h[/tex]

where

[tex]\rho[/tex] is the fluid density

g is the gravitational acceleration  

h is the height of the column of fluid

At the bottom of the swimming pool, h=1.9 m, and the water density is  

[tex]\rho[/tex] = 1000 kg/m^3, therefore the relative pressure is

[tex]p_r = (1000 kg/m^3)(9.81 m/s^2)(1.9 m)=1.86 \cdot 10^4 Pa[/tex]

To find the absolute pressure, we must add to this the atmospheric pressure, [tex]p_a[/tex] :

[tex]p= p_r + p_a\\= 1.86 \cdot 10^4 Pa + 1.01 \cdot 10^5 Pa \\=1.2 \times 10^5 Pa[/tex]

part B

Total force acting on the bottom

force = pressure * area

area of pool = 30.0 m × 8.9 m

= 267m²

Force F =

1.2 × 10⁵ * 267m² N

= 32040000 N

F = 3.2 × 10⁷N

Part C

The pressure acting on the side wall will be

now the pressure at the side of the pool at the bottom is simply equal to absolute pressure as they are at same level

P = 1.2 × 10⁵

A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.50km/s in the +x-direction experiences a force of 2.06�10-16N in the +y-direction, and an electron moving at 4.40km/s in the -z-direction experiences a force of 8.40�10-16N in the +y-direction.

Part A

What is the magnitude of the magnetic field?

B = T
Part B

What is the direction of the magnetic field? (in the xz-plane)

theta = from the -z-direction
Part C

What is the magnitude of the magnetic force on an electron moving in the -y-direction at 3.70km/s ?

F = N
Part D

What is the direction of this the magnetic force? (in the xz-plane)

theta = from the -x-direction

Answers

Answer:

Explanation:

velocity of proton  v = 1.5 x 10³ i  m /s

charge on proton e = 1.6 x 10⁻¹⁹ C

Let the magnetic field be B = Bx i + Bz k

force on charged particle ( proton )

F = e ( v x B )

2.06  x10⁻¹⁶ j = 1.6 x 10⁻¹⁹ [ 1.5 x 10³ i x ( Bx i + Bz k) ]

2.06  x10⁻¹⁶ j = - 1.6 x 10⁻¹⁹ x 1.5 x 10³  Bz j) ]

2.06  x10⁻¹⁶ = - 1.6 x 10⁻¹⁹ x 1.5 x 10³  Bz

Bz = -  .8583  

force on charged particle ( electron )

F = e ( v x B )

8.40  x10⁻¹⁶ j = -1.6 x 10⁻¹⁹ [ - 4.4 x 10³ k  x ( Bx i + Bz k) ]

8.4  x10⁻¹⁶ j =  1.6 x 10⁻¹⁹ x 4.4 x 10³  Bx j ]

- 8.4  x10⁻¹⁶ =  1.6 x 10⁻¹⁹ x 4.4 x 10³  Bx

Bx =  - 1.19

Magnetic field = - 1.19 i - .8583 k

magnitude = √ (1.19² + .8583²)

= 1.467 T

If it is making angle θ with x - axis in x -z plane

Tanθ = (.8583 / 1.19 )

36⁰ .

C )

v = - 3.7 x 10³j m /s

e = - 1.6 x 10⁻¹⁶ C

Force = F = e ( v x B )

= -1.6 x 10⁻¹⁹ [ -3.7 x 10³ j  x ( Bx i + Bz k) ]

=  - 1.6 x 10⁻¹⁹ x 3.7 x 10³  Bx  k -1.6 x 10⁻¹⁹ x 3.7 x 10³Bzi ]

=    5.08 i - 7.04 k

Tanθ = 54 ° .

A parallel-plate capacitor is charged until it carries charge + q +q on one plate and charge − q −q on the other plate. The capacitor is then disconnected from the power supply and isolated. What is the direction of the magnetic field that surrounds the charged capacitor? The magnetic field is directed counterclockwise as viewed from the plate with positive charge + q +q toward the plate with negative charge − q −q. There is no magnetic field. The magnetic field is directed counterclockwise as viewed from the plate with negative charge − q −q toward the plate with positive charge + q +q. The magnetic field is directed toward the plate with positive charge + q +q inside the capacitor and toward the plate with negative charge − q −q outside of the capacitor. The magnetic field is directed toward the plate with negative charge − q −q inside the capacitor and toward the plate with positive charge + q +q outside of the capacitor.

Answers

Answer:

There is no magnetic field.

Explanation:

Since th capacitor is charged and isolated, magnetic field doesn't exist.

For magnetic field to exist, there must be flow of charge.

Moving from boron to carbon, the intensity of the bulb Moving from boron to carbon, the intensity of the bulb blank because Z increases from blank to blank. The thickness of the frosting blank because the core electron configuration is the same for both atoms. because Z increases from Moving from boron to carbon, the intensity of the bulb blank because Z increases from blank to blank. The thickness of the frosting blank because the core electron configuration is the same for both atoms. to Moving from boron to carbon, the intensity of the bulb blank because Z increases from blank to blank. The thickness of the frosting blank because the core electron configuration is the same for both atoms.. The thickness of the frosting Moving from boron to carbon, the intensity of the bulb blank because Z increases from blank to blank. The thickness of the frosting blank because the core electron configuration is the same for both atoms. because the core electron configuration is the same for both atoms.

Answers

Complete Question

The complete Question is shown on the first and second uploaded image

     

Answer:

The underlined words are the answers

Part A

Moving from boron to carbon, the intensity of the bulb Increases  because Z increases from 5 to 6 , The thickness of the frosting stays the  same because the core electron configuration is the same for both atoms

Part B

Moving from boron to aluminum the intensity of the bulb Increases because Z increases  from 5 to 13 . The thickness of the frosting also increases because Al has the core configuration of Ne, while B has the core configuration of He

Explanation:

Here Z denotes the atomic number

        Ne denoted the element called Neon and its electronic  configuration is

                     [tex]1s^2 \ 2s^2 \ 2p^6[/tex]

    He denoted the element called Helium  and its electronic  configuration is

                     [tex]1s^2[/tex]

     B denoted the element called Boron   and its electronic  configuration is

                [tex]1s^2 \ 2s^2\ 2p^1[/tex]

Looking at its electronic configuration we can see that the core is He

I,e              [tex][He]\ 2s^2 2p^1[/tex]

Al denoted the element called Aluminium  and its electronic configuration is    

             [tex]1s^2 \ 2s^2 \ 2p^2 \ 3s^2 \ 3p^1[/tex]

Looking at its electronic configuration we can see that the core is Ne

I,e              [tex][Ne]\ 3s^2 \ 3p^1[/tex]

               

You leave the doctor's office after your annual checkup and recall that you weighed 688 N in her office. You then get into an elevator that, conveniently, has a scale. Find the magnitude and direction of the elevator's acceleration if the scale readsQ: Find the magnitude of the elevator's acceleration if the scale reads 726 NQ: Find the direction of the elevator's acceleration if the scale reads 726 NQ: Find the magnitude of the elevator's acceleration if the scale reads 598 NQ: Find the direction of the elevator's acceleration if the scale reads 598 N

Answers

Answer:

Explanation:

weight of the person = 688 N

a) reading while in the elevator using the scale was  726 N

since when the elevator is going upward the floor of the elevator and the the scale pushes against the person leading to the person experiences a normal force greater than the weight as a result of the acceleration of the elevator and also

F = ma  and W, weight = mg

mass of the body = weight / g = 688 / 9.8 = 70.20 kg

net force on the body = force of normal - weight of the body = 726 - 688 = 38 N

ma = 38 N

70.20 kg × a ( acceleration) = 38 N

a = 38 / 70.20 = 0.54 m/s² and the elevator is moving upward

b) net force, ma = force of normal - weight of the body = 598 - 688 = -90 N

a = -90 / 70.20 = -1.282 m/s² and the elevator is coming downward

A 63.0 \mu F capacitor is connected to a generator operating at a low frequency. The rms voltage of the generator is 4.00 V and is constant. A fuse in series with the capacitor has negligible resistance and will burn out when the rms current reaches 15.0 A. As the generator frequency is increased, at what frequency will the fuse burn out

Answers

Answer:

[tex]f=9.5\ KHz[/tex]

Explanation:

AC Circuit

When connected to an AC circuit, the capacitor acts as an impedance of module

[tex]\displaystyle Z=\frac{1}{wC}[/tex]

Where w is the angular frequency of the power source and C is the capacitance.

If the capacitor is the only element connected to a circuit, then the Ohm's law establishes that

[tex]V=Z.I[/tex]

Where V and I are the rms voltage and current respectively. Replacing the value of Z, we have

[tex]\displaystyle V=\frac{I}{wC}[/tex]

Solving for w

[tex]\displaystyle w=\frac{I}{VC}[/tex]

The question provides us the following values

[tex]C=63\ \mu F=63\cdot 10^{-6}\ F[/tex]

[tex]V=4\ Volt[/tex]

[tex]I=15\ A[/tex]

Plugging in the values

[tex]\displaystyle w=\frac{15}{4\cdot 63\cdot 10^{-6}}[/tex]

[tex]w=59523.81\ rad/s[/tex]

Since

[tex]w=2\pi f[/tex]

Then

[tex]\displaystyle f=\frac{59523.81}{2\pi}=9473.51\ Hz[/tex]

[tex]f=9.5\ KHz[/tex]

Final answer:

The fuse in the AC circuit with a 63.0 µF capacitor will burn out when the generator frequency is increased to approximately 1,001 Hz.

Explanation:

To find at what frequency the fuse will burn out in the circuit with a 63.0 µF capacitor and a 4.00 V rms voltage generator, we will need to calculate the capacitive reactance (XC) and then use the relationship between current, voltage, and reactance for an AC circuit.

The capacitive reactance is given by the formula XC = 1 / (2πfC), where f is the frequency in hertz (Hz), and C is the capacitance in farads. The rms current I in the circuit is given by the rms voltage V divided by XC:
I = V / XC

Setting I to the maximum allowable current of 15.0 A, we have:
15.0 A = 4.00 V / (1 / (2πf × 63.0 × 10⁻⁶ F))

Solving for f, we get:

f = 1 / (2π × 63.0 × 10⁻⁶ F × (4.00 V / 15.0 A))
f ≈ 1,001 Hz

Therefore, the fuse will burn out when the generator frequency is increased to approximately 1,001 Hz.

Suppose that the coefficient of kinetic friction between Zak's feet and the floor, while wearing socks, is 0.250. Knowing this, Zak decides to get a running start and then slide across the floor.

a) If Zak's speed is 3.00 when he starts to slide, what distance will he slide before stopping? d=1.84

b) Now, suppose that Zak's younger cousin, Greta, sees him sliding and takes off her shoes so that she can slide as well (assume her socks have the same coefficient of kinetic friction as Zak's). Instead of getting a running start, she asks Zak to give her a push. So, Zak pushes her with a force of 125 over a distance of 1.00 . If her mass is 20.0 , what distance does she slide after Zak's push ends? Remember that the frictional force acts on Greta during Zak's push and while she is sliding after the push.

Answers

a) 1.84 m

b) 1.55 m

Explanation:

a)

In this problem, the only force acting on Zak along the direction of motion (horizontal direction) is the force of friction, which is

[tex]F_f=-\mu mg[/tex]

where

[tex]\mu=0.250[/tex] is the coefficient of friction

m is Zak's mass

[tex]g=9.8 m/s^2[/tex] is the acceleration due to gravity

According to Newton's second law of motion, the net force acting on Zak is equal to the product between its mass (m) and its acceleration (a), so we have

[tex]F=ma[/tex]

Here the only force acting is the force of friction, so this is also the net force:

[tex]-\mu mg = ma[/tex]

Therefore we can find Zak's acceleration:

[tex]a=-\mu g=-(0.250)(9.8)=-2.45 m/s^2[/tex]

Since Zak's motion is a uniformly accelerated motion, we can now use the following suvat equation:

[tex]v^2-u^2=2as[/tex]

where

v = 0 is the final velocity (he comes to a stop)

u = 3.00 m/s is the initial velocity

[tex]a=-2.45 m/s^2[/tex] is the acceleration

s is the distance covered before stopping

Solving for s,

[tex]s=\frac{v^2-u^2}{2a}=\frac{0^2-3.0^2}{2(-2.45)}=1.84 m[/tex]

b)

In this second part, Zak gives a push to Greta.

We can find Greta's velocity after the push by using the work-energy theorem, which states that the work done on her is equal to her change in kinetic energy:

[tex](F-F_f)d =\frac{1}{2}mv^2-\frac{1}{2}mu^2[/tex]

where

F = 125 N is the force applied by Zak

d = 1.00 m is the distance

[tex]F_f=\mu mg[/tex] is the force of friction, where

[tex]\mu=0.250[/tex]

m = 20.0 kg is Greta's mass

[tex]g=9.8 m/s^2[/tex]

v  is Greta's velocity after the push

u = 0 is Greta's initial velocity

Solving for v, we find:

[tex]v=\sqrt{\frac{2(F-\mu mg)d}{m}}=\sqrt{\frac{2(125-(0.250)(20.0)(9.8))(1.00)}{20.0}}=2.76 m/s[/tex]

After that, Zak stops pushing, so Greta will slide and the only force acting on her will be the force of friction; so the acceleration will be:

[tex]a=-\mu g = -(0.250)(9.8)=-2.45 m/s^2[/tex]

And so using again the suvat equation, we can find the distance she slides after Zak's push ends:

[tex]s=\frac{v'^2-v^2}{2a}[/tex]

where

v = 2.76 m/s is her initial velocity

v' = 0 when she stops

Solving  for s,

[tex]s=\frac{0-(2.76)^2}{2(-2.45)}=1.55 m[/tex]

(a) The distance traveled by Zack before stopping is 1.84 m.

(b) The distance traveled by Greta after Zack's push ends is 1.56 m.

The given parameters;

coefficient of kinetic friction, [tex]\mu_k[/tex] = 0.25initial speed of Zack, u = 3 m/s

The distance traveled by Zack before stopping is calculated as follows;

The acceleration of Zack;

[tex]-F_k = ma\\\\-\mu_k mg = ma\\\\-\mu_k g = a\\\\-(0.25 \times 9.8) = a\\\\- 2.45 \ m/s^2 = a[/tex]

The distance traveled by Zack;

[tex]v^2 = u^2 + 2as\\\\when \ Zack \ stops \ v = 0\\\\0 = u^2 + 2as\\\\0 = (3)^2 +2(-2.45)s\\\\0 = 9 - 4.9s\\\\4.9s = 9\\\\\s = \frac{9}{4.9} \\\\s = 1.84 \ m[/tex]

The distance traveled by Greta is calculated as follows;

Apply law of conservation of energy to determine the velocity of Greta after the push.

[tex]Fd - F_kd = \frac{1}{2} mv^2\\\\125\times 1 - (0.25 \times 20 \times 9.8 \times 1) = (0.5 \times 20)v^2\\\\76 = 10v^2\\\\v^2 = \frac{76}{10} \\\\v ^2 = 7.6\\\\v = \sqrt{7.6} \\\\v = 2.76 \ m/s[/tex]

The acceleration of Greta;

[tex]a = -\mu_k g\\\\a = 0.25 \times 9.8\\\\a = -2.45 \ m/s^2[/tex]

The distance traveled by Greta;

[tex]v_f^2 = v^2 + 2as\\\\when \ Greta \ stops \ v_f = 0\\\\0 = v^2 + 2as\\\\-2as = v^2\\\\-2(-2.45)s = (2.76)^2\\\\4.9s = 7.62\\\\s = \frac{7.62}{4.9} \\\\s = 1.56 \ m[/tex]

Learn more here:https://brainly.com/question/8160916

A research vessel is mapping the bottom of the ocean using sonar. It emits a short sound pulse called "ping" downward. The frequency of the sound is 5920 Hz. In water sound propagates at a speed of 1485 m/s. The sound pulse is then reflected back from the bottom of the ocean and it is detected by the vessel 5.63 s after it was emitted. How deep is the ocean just below the vessel? Submit Answer Tries 0/12 What is the wavelength of this sound wave?

Answers

Answer:

d = 4180.3m

wavelengt of sound is 0.251m

Explanation:

Given that

frequency of the sound is 5920 Hz

v=1485m/s

t=5.63s

let d represent distance from the vessel to the ocean bottom.

an echo travels a distance equivalent to 2d, that is to and fro after it reflects from the obstacle.

[tex]velocity=\frac{distance}{time}\\\\ v=\frac{2d}{t} \\\\vt=2d\\\\d=\frac{vt}{2}[/tex]

[tex]d=\frac{1485*5.63}{2}\\d= 4180.3m[/tex]

wavelengt of sound is [tex]\lambda[/tex] = v/f

= (1485)/(5920)

= 0.251 m

If the opening to the harbor acts just like a single-slit which diffracts the ocean waves entering it, what is the largest angle, in degrees relative to the incident direction, that a boat in the harbor would be protected from the wave action

Answers

Answer:

The angle that the wave would be [tex]\theta = sin ^{-1}\frac{2 \lambda}{D}[/tex]

Explanation:

From the question we are told that  the  opening to  the  harbor acts just like a single-slit so a boat in the harbor that at angle equal to the second diffraction minimum would be safe and the  on at angle greater than the diffraction first minimum would be slightly affected

  The minimum is as a result of destructive interference

       And for single-slit this is mathematically represented as

               [tex]D sin \ \theta =m \lambda[/tex]

where D is the slit with

          [tex]\theta[/tex] is the angle relative to the original direction of the wave

         m is the order of the minimum j

        [tex]\lambda[/tex] is the wavelength

Now since in the question we are told to obtain the largest angle at which the boat would be safe

      And the both is safe at the angle equal to the second minimum then

    The the angle is evaluated as

           [tex]\theta = sin ^{-1}[\frac{m\lambda}{D} ][/tex]

Since for second minimum m= 2

The  equation becomes

               [tex]\theta = \frac{2 \lambda}{D}[/tex]

Assuming that the tungsten filament of a lightbulb is a blackbody, determine its peak wavelength if its temperature is 3 200 K.

Answers

Answer:

the peak wavelength when the temperature is 3200 K = [tex]9.05625*10^{-7} \ m[/tex]

Explanation:

Given that:

the temperature = 3200 K

By applying  Wien's displacement law ,we have

[tex]\lambda _m[/tex]T = 0.2898×10⁻² m.K

The peak wavelength of the emitted radiation at this temperature is given by

[tex]\lambda _m[/tex] = [tex]\frac{0.2898*10^{-2} m.K}{3200 K}[/tex]

[tex]\lambda _m[/tex]= [tex]9.05625*10^{-7} \ m[/tex]

Hence, the peak wavelength when the temperature is 3200 K = [tex]9.05625*10^{-7} \ m[/tex]

A thin uniform film of refractive index 1.750 is placed on a sheet of glass with a refractive index 1.50. At room temperature ( 18.8 ∘C), this film is just thick enough for light with a wavelength 580.9 nm reflected off the top of the film to be canceled by light reflected from the top of the glass. After the glass is placed in an oven and slowly heated to 170 ∘C, you find that the film cancels reflected light with a wavelength 588.2 nm .

Answers

Complete Question

A thin uniform film of refractive index 1.750 is placed on a sheet of glass with a refractive index 1.50. At room temperature ( 18.8 ∘C), this film is just thick enough for light with a wavelength 580.9 nm reflected off the top of the film to be canceled by light reflected from the top of the glass. After the glass is placed in an oven and slowly heated to 170 ∘C, you find that the film cancels reflected light with a wavelength 588.2 nm .

What is the coefficient of linear expansion of the film? (Ignore any changes in the refractive index of the film due to the temperature change.) Express your answer using two significant figures.

Answer:

the coefficient of linear expansion of the film is [tex]\alpha = 7.93 *10^{-5} / ^oC[/tex]

Explanation:

  From the question we are told that

     The refractive index of the film is  [tex]n_f = 1.750[/tex]

      The refractive index of the glass is [tex]n_g = 1. 50[/tex]

       The wavelength of light reflected at 18°C is [tex]\lambda _r = 580.9nm = 580.9*10^{-9}m[/tex]

      The wavelength of light reflected at 170°C is [tex]\lambda_h = 588.2 nm = 588.2 * 10^{-9}m[/tex]

For destructive interference the condition is  

         [tex]2t = \frac{m \lambda }{n_f}[/tex]

  Where m is the order of interference

              t is the thickness

               

For the smallest thickness is  when m= 1 and this is represented as

             [tex]t = \frac{\lambda }{2n_f }[/tex]

At 18°C  the thickness would be

              [tex]t_{r} = \frac{580.9 *10^{-9}}{2 * 1.750}[/tex]

              [tex]t_{r} = 166nm[/tex]\

At 170° the  thickness is  

               [tex]t_h = \frac{588.2 *10^{-9}}{2 * 1.750}[/tex]

               [tex]t_h = 168 nm[/tex]

The coefficient of linear expansion f the film is mathematically represented as

              [tex]\alpha = \frac{t_h - t_r}{t_r \Delta T}[/tex]

Substituting value

                 [tex]\alpha = \frac{168 *10^{-9} - 166 *10^{-9} }{166*10^{-9} * (170 -18)}[/tex]

                 [tex]\alpha = 7.93 *10^{-5} / ^oC[/tex]

Answer:

α=8.37 x [tex]10^{-5}[/tex] °[tex]C^{-1}[/tex]

Explanation:

Complete question : What is the coefficient of linear expansion of the film?

SOLUTION:

There is a net ( λ/2 ) phase change due to reflection for this film, therefore, destructive interference is given by

2t = m( λ/n)   where n=1.750

for smallest non-zero thickness

t= λ/2n

At 18.8°C, [tex]t_{o[/tex]=580.9 x [tex]10^{-9}[/tex]/(2 x 1.750)

[tex]t_{o[/tex]= 165.9nm

At 170°C, t= 588.2x [tex]10^{-9}[/tex]/(2x1.750)

t=168nm

t=[tex]t_{o[/tex](1 + αΔT)

=>α= (t-[tex]t_{o[/tex])/ ([tex]t_{o[/tex]ΔT)   [ΔT= 170-18.8 =151.2°C]

α= (168 x [tex]10^{-9}[/tex] - 165.9 x [tex]10^{-9}[/tex])/ (165.9 x [tex]10^{-9}[/tex] x 151.2)

α= 2.1 x [tex]10^{-9}[/tex]/ 2.508 x [tex]10^{-5}[/tex]

α=8.37 x [tex]10^{-5}[/tex] °[tex]C^{-1}[/tex]

Therefore, the coefficient of linear expansion of the film is 8.37 x [tex]10^{-5}[/tex] °[tex]C^{-1}[/tex]

A person is diving in a lake in the depth of h = 15 m. The density of the water is rho = 1.0 x103 kg/m3. The pressure of the atmosphere is P0 = 1.0 x 105 Pa. The surface area of the top of the person's head is A = 0.036 m2.

(a) Express the absolute pressure at the depth of h , Po, Q in terms of Poe, and h

Answers

Answer:

Pabs = 247150 [Pa]

Explanation:

The pressure in the depth h can be calculated by the following expression.

Pabs = Po + (rho * g * h)

Where:

g = gravity = 9.81[m/s^2]

rho = density = 1000 [kg/m^3]

h = depth = 15 [m]

Po = 100000 [Pa]

Pabs = 100000 + (1000*9.81*15)

Pabs = 247150 [Pa]

A 60.0­kg skier starts from rest at the top of a ski slope of height 62.0 . Part A If frictional forces do −1.06×10 4 of work on her as she descends, how fast is she going at the bottom of the slope?

Answers

Answer:

v = 29.35 m /s

Explanation:

potential energy at the height of 62m

= m g h , m is mass , g is acceleration due to gravity and h is height

= 60 x 9.8 x 62

= 36456 J

negative work done by friction = -10600 J

energy at the bottom = 36456 - 10600 = 25856 J

This energy will be in the form of kinetic energy . If v be velocity at the bottom

1/2 m v² = 25856

1/2 x 60 x v² = 25856

v = 29.35 m /s

1. A mass suspended from a spring oscillates vertically with amplitude of 15 cm. At what distance from the equilibrium position will the speed of the mass be 25% of its maximum speed?

Answers

Answer:

The value of the distance is [tex]\bf{14.52~cm}[/tex].

Explanation:

The velocity of a particle(v) executing SHM is

[tex]v = \omega \sqrt{A^{2} - x^{2}}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`~(1)[/tex]

where, [tex]\omega[/tex] is the angular frequency, [tex]A[/tex] is the amplitude of the oscillation and [tex]x[/tex] is the displacement of the particle at any instant of time.

The velocity of the particle will be maximum when the particle will cross its equilibrium position, i.e., [tex]x = 0[/tex].

The maximum velocity([tex]\bf{v_{m}}[/tex]) is

[tex]v_{m} = \omega A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2)[/tex]

Divide equation (1) by equation(2).

[tex]\dfrac{v}{v_{m}} = \dfrac{\sqrt{A^{2} - x^{2}}}{A}~~~~~~~~~~~~~~~~~~~~~~~~~~~(3)[/tex]

Given, [tex]v = 0.25 v_{m}[/tex] and [tex]A = 15~cm[/tex]. Substitute these values in equation (3).

[tex]&& \dfrac{1}{4} = \dfrac{\sqrt{15^{2} - x^{2}}}{15}\\&or,& A = 14.52~cm[/tex]

Evaluate the solution:
A friend proposes a solution for the folowing problem.
A violin A string is 0.33 m long and has mass 0.30 x 10^-3 kg. It vibrates a fundamental frequency of 440 Hz (concert A). What is the tension in the string?
Proposed solution: Speed depends on the tension and string mass (v = [T/m]^1/2). Thus:
T = v^2 m = (340 m/s)^2 (0.30g) = 34.680 N.
a. Evaluate the solution and identify any errors.
b. Provide a corrected solution if you find errors.

Answers

Answer:

Tension, T = 105.09 N

Explanation:

Given that,

Length of the string, l = 0.33 m

Mass of the string, [tex]m=0.3\times 10^{-3}\ kg[/tex]

Fundamental frequency, f = 440 Hz

The expression for the speed in terms of tension is given by :

[tex]v=\sqrt{\dfrac{T}{(m/l)}}[/tex]

[tex]v^2=\dfrac{Tl}{m}\\\\T=\dfrac{v^2m}{l}\\\\T=\dfrac{(340)^2\times 0.3\times 10^{-3}}{0.33}\\\\T=105.09\ N[/tex]

So, the tension in the string is 105.09 N.

Octane (C8H18) is burned with dry air. The volumetric analysis of the products on a dry basis is as below. (Fig. 15–12) Determine (a) the air–fuel ratio, (b) the percentage of theoretical air used, and (c) the amount of H2O that condenses as the products are cooled to 25°C at 100 kPa

Answers

Answer:

a. Air fuel Ratio = 19.76 kg air/kg fuel

b. % Theoretical air used = 131%

c. Amount of H2O that condenses as the products are cooled to 25°C at 100kPa = 6.59 kmol

Explanation:

A long straight wire carries a current of 40 A to the right. An electron, traveling at 2.7 10 7 m/s, is 5.3 cm from the wire. What force, magnitude and direction, acts on the electron if the electron velocity is directed toward the wire

Answers

Answer:

[tex]6.53\times10^-^1^7N[/tex]

Explanation:

The magnet of the magnetic field is 53 cm = 0.53m from wire is

[tex]B = \frac{\mu_0 I}{2\pi d}[/tex]

[tex]= \frac{(4\pi \times 10^-^7)(40)}{2 \pi (0.53)} \\\\= \frac{5.0265\times 10^-^5}{3.33} \\\\= 1.5095 \times 10^-^5[/tex]

the magnetic force exerted by the wire on the electron is

[tex]F = Bqv \sin \theta\\\\= 1.5095 \times 10^-^5 \times1.602\times10^-^1^9\times2.7\times10^7\\\\= 6.53\times10^-^1^7N[/tex]

From the right hand rule the direction of the force is parallel to the current (since the particle is electron)

Answer: f = 6.52*10^-16 N

Explanation:

if we assume that the force is directed at the y positive direction, then

B = μi / 2πr, where

μ = 4π*10^-7

B= (4π*10^-7 * 40) / 2 * π * 5.3*10^-2

B = 5.027*10^-5 / 0.333

B = 1.51*10^-4 T

Since v and B are perpendicular, then,

F = qvB

F = 1.6*10^-19 * 2.7*10^7 * 1.51*10^-4

F = 2.416*10^-23 * 2.7*10^7

F = 6.52*10^-16 N

Therefore, the magnitude of the force is, F = 6.52*10^-16 N and it moves in the i negative direction

A straight fin fabricated from 2024 Aluminum alloy (k=185 W/mK) has a base thickness of t=3 mm and a length of L=15 mm. Its base temperature is Tb=100oC, and it is exposed to a fluid for which T[infinity] =20oC and h=50 W/m2K. For the foregoing conditions and a fin of unit width, compare the fin heat rate, efficiency, and volume for rectangular, triangular, and parabolic profiles.

Answers

Final answer:

The heat rate, efficiency, and volume of a straight fin made from 2024 Aluminum alloy can be calculated using relevant formulas considering its physical dimensions, the transferred heat, and the profile of the fin. Comparisons across different profiles (rectangular, triangular, parabolic) are commonly done using numerical or graphical solution methods.

Explanation:

To compare the heat rate, efficiency, and volume for a straight fin made of 2024 Aluminum alloy with a rectangular, triangular, and parabolic profile, we first need to convert all known variables into SI units. The fin has a base thickness (t) of 3 mm or 0.003 m, a length (L) of 15 mm or 0.015 m, and it's exposed to a fluid at a temperature (T infinity) of 20C. The base temperature (Tb) of the fin is 100oC, and the heat transfer coefficient (h) is 50 W/m2K.

Heat Transfer Calculation

We can estimate the heat transfer rate (Q) by applying the formula Q = hA(Tb - T infinity), where A represents the surface area of the fin which would depend on the fin's profile. For a unit width, the area of a rectangular fin is A = wt = unit width*L, for a triangular profile A = 0.5*wt, and for a parabolic profile A = (2/3)*wt.

Fin Efficiency

Fin efficiency can be calculated by dividing the actual heat transferred by the fin by the maximum possible heat transfer. Since these are dependent on the fin's profile (shape), numerical or graphical solution methods are commonly used for calculations.

Fin Volume

Volume can be calculated as the product of the surface area and thickness, which again would depend on the fin's profile.

Understanding these differences among fin profiles is important in heat transfer management and finding ways to increase fin efficiency.

Learn more about Heat Transfer here:

https://brainly.com/question/13433948

#SPJ12

Compare the fin heat rate using equation: Qfin = √(hPkA) (Tb - T∞), efficiency using equation: η = Qfin / (hAt (Tb - T∞)) , and volumes are found to be bLt, (1/2)bLt and (2/3)bL for rectangular, triangular, and parabolic profiles, respectively.

1.) Heat Transfer Analysis of a Straight Fin

To compare the fin heat rate, efficiency, and volume for different fin profiles (rectangular, triangular, and parabolic), we need to perform the following calculations:

Step 1: Identify Knowns and Convert to SI Units

Given:

Thermal conductivity, k = 185 W/mKBase thickness, t = 3 mm = 0.003 mLength, L = 15 mm = 0.015 mBase temperature, Tb = 100°CAmbient temperature, T∞ = 20°CHeat transfer coefficient, h = 50 W/m²K

Step 2: Determine the Fin Parameter, m

The fin parameter, m, is calculated using the formula:

m = sqrt(hP / kA)

For a rectangular fin:

P = 2(bt + L) and A = bt

We adjust the perimeter and area for parabolic and triangular profiles likewise.

Step 3: Heat Transfer Rate

For each fin profile, the heat transfer rate, Qfin, is given by:

Qfin = √(hPkA) (Tb - T∞)

where A is the cross-sectional area, and P is the perimeter of the respective fin.

Step 4: Fin Efficiency

Fin efficiency, η, is determined as:

η = Qfin / (hAt (Tb - T∞))

where At is the total surface area of the fin.

Step 5: Compare Fin Volume

The volume, V, can be found by:

Rectangular: V = bLtTriangular: V = (1/2)bLtParabolic: V = (2/3)bL

After calculating these values, you can compare the heat rate, efficiency, and volume between the fin profiles to determine the most efficient design.

The human ear is sometimes called a Fourier analyzer. What does this mean and why is it an apt description? 1. Our ears can sort out the individual sine waves from a mixture of two or more sine waves, so we hear the pure tones that make up a complex tone. 2. Our ears measure the intensity of sound, which is just what a Fourier analyzer does. 3. Our ears can measure the speed of sound. 4. Our ears have nothing to do with a Fourier analyzer

Answers

Answer:

1. Our ears can sort out the individual sine waves from a mixture of two or more sine waves, so we hear the pure tones that make up a complex tone.

Explanation:

A complex tone is a sound wave that consist of two or more forms of audible sound frequencies. Sound wave is a mechanical wave that is longitudinal, and could be represented by a sine wave because of it sinusoidal manner of propagation.

A Fourier analyzer can be used to differentiate individual sine waves from a combination of two or more of it; which is as the same function performed by human ear. To the human ear, a sound wave that consist of more than one sine wave will have perceptible harmonics which would be distorted and turn to a noise.

Thus, the human ear makes it possible to hear the pure tones that make up a complex tone.

Answer:

1. A Fourier analyzer sorts out the individual sine waves from a mixture of two or more sine waves, so we hear the pure tones that make up a complex tone.

Explanation:

Fourier analysis is a technique that is used to determine which sine waves constitute a given signal, i.e. to deconstruct the signal into its individual sine waves.  It is the process of decomposing a periodic function into its constituent sine or cosine waves.

What goes on inside our ears is a mathematical process called a Fourier transform. In the ear, there's a combination of different waves, Fourier analysis identifies contributions at different frequencies, allowing us to reconstruct the individual signals that go into it.

A complex tone perceived by the air is is an individual sine wave that the ear, by acting as a Fourier analyzer, decomposes to serious of sine waves that we hear as pure tones.

maria was riding her bike at a velocity of 3 m/s to the north. Her velocity changed to 11 m/s to the north. What was her change in velocity

Answers

Maria's change in velocity while riding her bike is 8 meters per second to the north.

Since the motion is along the same direction (to the north), we do not need to consider the direction as negative or positive. Here's the calculation:

Change in velocity = Final velocity - Initial velocity

= 11 m/s - 3 m/s

= 8 m/s.

So, Maria's change in velocity is 8 meters per second to the north.

State all four factors and explain how those factors affect the resistance of a wire.

Answers

Answer:

There are four factors affecting resistance which are Temperature,Length of wire,Area of the cross section of wire and nature of the material.When there is current in a conductive material,The free electrons move through the material and occasionally collide with atoms.  

Explanation:

I HOPE ITS HELPFUL FOR YOU

Answer: its length, material, temperature, and cross section area which can also be considered as diameter.

Explanation:

At a given instant, a 3.9-A current flows in the wires connected to a parallel-plate capacitor. Part APart complete What is the rate at which the electric field is changing between the plates if the square plates are 1.60 cm on a side? Express your answer using two significant figures.

Answers

Answer:

[tex]1.7\cdot 10^{15} V m^{-1} s^{-1}[/tex]

Explanation:

The electric field between the plates of a parallel-plate capacitor is given by

[tex]E=\frac{V}{d}[/tex] (1)

where

V is the potential difference across the capacitor

d is the separation between the plates

The potential difference can be written as

[tex]V=\frac{Q}{C}[/tex]

where

Q is the charge stored on the plates of the capacitor

C is the capacitance

So eq(1) becomes

[tex]E=\frac{Q}{Cd}[/tex] (2)

Also, the capacitance of a parallel-plate capacitor is

[tex]C=\frac{\epsilon_0 A}{d}[/tex]

where

[tex]\epsilon_0[/tex] is the vacuum permittivity

A is the area of the plates

Substituting into (2) we get

[tex]E=\frac{Q}{\epsilon_0 A}[/tex] (3)

Here we want to find the rate of change of the electric field inside the capacitor, so

[tex]\frac{dE}{dt}[/tex]

If we calculate the derivative of expression (3), we get

[tex]\frac{dE}{dt}=\frac{1}{\epsilon_0 A}\frac{dQ}{dt}[/tex]

However, [tex]\frac{dQ}{dt}[/tex] corresponds to the definition of current,

[tex]I=\frac{dQ}{dt}[/tex]

So we have

[tex]\frac{dE}{dt}=\frac{I}{\epsilon_0 A}[/tex]

In this problem we have

I = 3.9 A is the current

[tex]A=(0.0160 m)\cdot (0.0160 m)=2.56\cdot 10^{-4} m^2[/tex] is the area of the plates

Substituting,

[tex]\frac{dE}{dt}=\frac{3.9}{(8.85\cdot 10^{-12})(2.56\cdot 10^{-4})}=1.7\cdot 10^{15} V m^{-1} s^{-1}[/tex]

The rate at which the electric field is changing in the parallel-plate capacitor is approximately 1.7 x 10¹⁴ V/m·s.

Current (I) = 3.9 ASide length of square plates (L) = 1.60 cm = 0.016 m

1. The area (A) of the plates:

A = L² = (0.016 m)² = 0.000256 m²

2. The displacement current (I_D) is given by:

I_D = ε₀ dΦ/dt

where

ε₀ (the permittivity of free space) ≈ 8.85 x 10⁻¹² F/mdΦ/dt = rate of change of the electric flux.

3. The electric flux (Φ) is related to the electric field (E) by:

Φ = E A

Since:

dΦ/dt = A dE/dt

4. Substitute this into the displacement current equation:

I_D = ε₀ A dE/dt

Rearranging for dE/dt:

dE/dt = I / (ε₀ A)

5. Plugging in the values:

dE/dt = 3.9 A / (8.85 x 10⁻¹² F/m * 0.000256 m²) dE/dt ≈ 1.73 x 10¹⁴ V/m·s

Thus, the rate at which the electric field is changing is approximately 1.7 x 10¹⁴ V/m·s.

A 11.0 kg satellite has a circular orbit with a period of 1.80 h and a radius of 7.50 × 106 m around a planet of unknown mass. If the magnitude of the gravitational acceleration on the surface of the planet is 20.0 m/s2, what is the radius of the planet?

Answers

Answer:

Explanation:

Expression for times period of a satellite can be given as follows

Time period T = 1.8 x 60 x 60

= 6480

T² = [tex]\frac{4\times \pi^2\times r^3}{GM}[/tex] where T is time period , r is radius of orbit , G is gravitational constant and M is mass of the satellite.

6480² = 4 x 3.14² x 7.5³ x 10¹⁸ / GM

GM = 4 x 3.14² x 7.5³ x 10¹⁸ / 6480²

= 3.96 X 10¹⁴

Expression for acceleration due to gravity

g = GM / R² where R is radius of satellite

20 = 3.96 X 10¹⁴ / R²

R² = 3.96 X 10¹⁴ / 20

= 1.98 x 10¹³ m

R= 4.45 x 10⁶ m

A student has 67-cm-long arms. What is the minimum angular velocity (in rpm) for swinging a bucket of water in a vertical circle without spilling any? The distance from the handle to the bottom of the bucket is 35 cm .

Answers

Answer:

29.61 rpm.

Explanation:

Given,

student arm length, l = 67 cm

distance of the bucket, r = 35 m

Minimum angular speed of the bucket so, the water not fall can be calculated by equating centrifugal force with weight.

Now,

[tex]mg = m r \omega^2[/tex]

[tex]\omega = \sqrt{\dfrac{g}{R}}[/tex]

R = 67 + 35 = 102 cm = 1.02 m

[tex]\omega = \sqrt{\dfrac{9.81}{1.02}}[/tex]

[tex]\omega = 3.101\ rad/s[/tex]

[tex]\omega = \dfrac{3.101}{2\pi} = 0.494\ rev/s[/tex]

[tex]\omega = 0.494 \times 60 = 29.61\ rpm[/tex]

minimum angular velocity is equal to 29.61 rpm.

Answer:

29.6 rpm

Explanation:

length of arm = 67 cm

distance of handle to the bottom = 35 cm

radius of rotation, R = 67 + 35 = 102 cm = 1.02 m

The centripetal force acting on the bucket is balanced by the weight of the bucket.

mRω² = mg

R x ω² = g

[tex]\omega = \sqrt\frac{g}{R}[/tex]

[tex]\omega = \sqrt\frac{9.8}{1.02}[/tex]

ω = 3.1 rad/s

Let f is the frequency in rps

ω = 2 x 3.14 x f

3.1 = 2 x 3.14 xf

f = 0.495 rps

f = 29.6 rpm

A hawk flew 600 meters in 60 seconds. A sparrow flew 400 meters in 30 seconds. Which bird flew faster? How fast did each bird fly?

Answers

Answer:

A sparrow flew faster. the sparrow flew 10 meters per second. The sparow flew 13.(3) meters per second

Explanation:

A sparrow flew faster than the hawk as it completes more distance in 60 seconds than that of hawk which is about 1200 meters. Speed is the distance travelled per unit time.

What is Speed?

Speed is the measure of the distance travelled by an object per unit time taken. Speed is a vector quantity. It has both magnitude and direction.

Speed of an object can be calculated as: Distance travelled divided by time taken.

Speed of hawk is 600 meters/ 60 seconds

Speed of hawk = 10 m/s

Speed of sparrow is 400 meters/ 30 seconds

Speed of Sparrow = 13.33 m/s

Learn more about Speed here:

https://brainly.com/question/28224010

#SPJ2

1.- An elevator is being lowered at a constant speed by a steel cable attached to an electric motor. Which statement is correct? A. The cable does positive work on the elevator, and the elevator does positive work on the cable. B. The cable does positive work on the elevator, and the elevator does negative work on the cable. C. The cable does negative work on the elevator, and the elevator does positive work on the cable. D. The cable does negative work on the elevator, and the elevator does negative work on the cable

Answers

Answer:

the correct one is C

Explanation:

For this exercise we must use the work definition

    W = F. s

Where the bold characters indicate vectors and the point is the scalar producer

    W = F s cos θ

Where θ is the angles between force and displacement.

Let us support this in our case. The cable creates an upward tension and with the elevator going down the angle between them is 180º so the work of the cable on the elevator is negative.

The evade has a downward force, its weight so the force goes down and the displacement goes down, as both are in the same direction the work is positive

When examining the statements the correct one is C

Final answer:

The correct statement for an elevator being lowered at constant speed is that the steel cable does negative work on the elevator, and the elevator does negative work on the cable, illustrating the principle that work can be negative if force and displacement are in opposite directions.

Explanation:

The question pertains to the work done by an elevator cable while lowering an elevator at constant speed. According to the principles of work and energy in physics, work done is defined as the force applied in the direction of motion times the distance moved. If an elevator is being lowered at a constant speed, the steel cable exerts an upward force to counteract gravity but the elevator moves downward. Therefore, the displacement of the elevator is in the opposite direction to the force exerted by the cable, resulting in the cable doing negative work on the elevator. Conversely, because the elevator is moving downwards (in the direction opposite to the force exerted by the cable), we can interpret this as the elevator doing negative work on the cable as well, due to the concept that positive work adds energy to a system while negative work removes it.

Thus, the correct statement is: D. The cable does negative work on the elevator, and the elevator does negative work on the cable. This illustrates the application of the definition of work in physics, particularly in scenarios involving opposite directions of force and motion.

A torpedo is to be designed to be 3 m long with a diameter of 0.5 m. Treating the torpedo as a cylinder, it is to be made to have a velocity of 10 m/s in sea water. Sea water has a dynamic viscosity of 0.00097 Ns/m and a density of 1023 kg/m3 . A 1:15 scale model is going to be tested in air. What velocity will be needed for the model and prototype to be similar

Answers

Answer:

The velocity that will be needed for the model and prototype to be similar is 108.97m/s  

Explanation:

length of Torpedo = 3m

diameter, [tex]d_{1} = 0.5m[/tex]

velocity of sea water, [tex]v_{1}[/tex]= 10m/s

dynamic viscosity of sea water, η[tex]_{1}[/tex] = 0.00097 Ns/m²

density of sea water, ρ[tex]_{1}[/tex] =  1023 kg/m³

Scale model = 1:15

[tex]\frac{d_{1} }{d_{2} }[/tex] = [tex]\frac{1}{15}[/tex]

Cross multiplying: d[tex]_{2}[/tex] = [tex]15d_{1} }[/tex] = 15 ×0.5 = 7.5m

Let:

velocity of air, [tex]v_{2}[/tex]

viscosity of air, η[tex]_{2}[/tex] =  0.000186Ns/m²

density of air, ρ[tex]_{2}[/tex] =  1.2 kg/m³

For the model and the prototype groups to be equal, Non-dimensional groups should be equal.

Reynold's number:   (ρ[tex]_{2}[/tex] ×[tex]v_{2}[/tex] ×d[tex]_{2}[/tex])/η[tex]_{2}[/tex] =  (ρ[tex]_{1}[/tex] ×[tex]v_{1}[/tex] ×d[tex]_{1}[/tex])/η[tex]_{1}[/tex]

[tex]v_{2}[/tex] = η[tex]_{2}[/tex]/(ρ[tex]_{2}[/tex] ×d[tex]_{2}[/tex])  ×  (ρ[tex]_{1}[/tex] ×[tex]v_{1}[/tex] ×d[tex]_{1}[/tex])/η[tex]_{1}[/tex]

[tex]v_{2}[/tex] =  [tex]\frac{0.000186}{1.2* 7.5}[/tex]×[tex]\frac{1023 *10*0.5}{0.00097}[/tex] , note: * means multiplication

[tex]v_{2}[/tex] = 108.97m/s  

velocity that will be needed for the model and prototype to be similar = 108.97m/s  

An AC generator has an output rms voltage of 100.0 V at a frequency of 42.0 Hz. If the generator is connected across a 45.0-mH inductor, find the following. (a) inductive reactance Ω (b) rms current A (c) maximum current in the circuit

Answers

Answer:

(a) 11.8692‬ ohm

(b) 12.447 A

(c) 17.6 A

Explanation:

a)  inductive reactance Z = L Ω

    = L x 2π x F

    = 45.0 x 10⁻³ x 2(3.14) x 42

    = 11.8692‬ ohm

b) rms current

    = 100 / 8.034

    = 12.447 A

c) maximum current in the circuit

    = I eff x rac2

    = 12.447 x 1.414

    = 17.6 A

An electron has a velocity of 1.50 km/s (in the positive x direction) and an acceleration of 2.00 ✕ 1012 m/s2 (in the positive z direction) in uniform electric and magnetic fields. If the electric field has a magnitude of strength of 18.0 N/C (in the positive z direction), determine the following components of the magnetic field. If a component cannot be determined, enter 'undetermined'.

Answers

Answer:

see explanation

Explanation:

Given that,

velocity of 1.50 km/s = 1.50 × 10³m/s

acceleration of 2.00 ✕ 1012 m/s2

electric field has a magnitude of strength of 18.0 N/C

[tex]\bar F= q[\bar E + \bar V \times \bar B]\\\\\bar F = [\bar E + \bar V \times ( B_x \hat i +B_y \hat j +B_z \hat z )]\\\\\\m \bar a = [\bar E + \bar V \times ( B_x \hat i +B_y \hat j +B_z \hat z )][/tex]

[tex]9.1 \times 10^-^3^1 \times 2\times 10^1^2 \hat k=-1.6\times10^-^1^9 \hat k [18\hat k+ 1.5\times 10^3 \hat i \times (B_x \hat i +B_y \hat j +B_z \hat k)][/tex][tex]42.2 \times 10^-^1^9 \hat k = -2.4 \times 10^1^6B_y \hat k + 2.4 \times 10 ^1^6 \hat j B_z\\[/tex]

[tex]B_x = undetermined[/tex]

[tex]B_y = \frac{42.2 \times 10^-^1^9}{-2.4 \times 10^-^1^6} \\\\= - 0.0176 T[/tex]

[tex]B_z = 0T[/tex]

Other Questions
What is the solution to the equation 2 (x-3) ^2 =13 help help ASAP ! Tyrone's age is 2 years less than 4 times his younger sister's age. If his younger sister's age is b years, which of the following expressions best shows Tyrone's age? 4b b 2 2b 4 4b 2 Papa Fred's Pizza has found that the menu time to deliver a pizza is 21.2 minutes with astandard deviation of 6.1 minutes. They want to have a guaranteed delivery time. In order todeliver 99% within the guaranteed time you need to find the time represented by the 99percentile. What is this value? a sealed container filled with argon gas at 35 c has a pressure of 832 torr. if the volume of the container is decreased by a factor of 2 what will happen to the pressure? you may assume the temperature remains at 35 c Expand.If necessary, combine like terms.(3+4.)(3 - 4x) = A steady increase in global temperature has been recorded between 1900 and today. Before concluding that this rise in temperature is the result of the increased burning of fossil fuels, which of the following questions would have to be answered?A. What is the CO2 content in one metric ton of fossil fuels?B. Which gases are released when burning fossil fuels?C. What, if any, temperature rise was occurring prior to 1900?D. How have humans adapted to temperature change? Natalie consumes only apples and tomatoes. Her utility function is U(x, y) = x 2y 8 , where x is the number of apples consumed and y is the number of tomatoes con-sumed. Natalies income is $320, and the prices of apples and tomatoes are $4 and $3, respectively. How many apples will she consume? How many liters of water can be boiled by burning 1 kg of propane?Round your answer to the nearest whole number. One bag of flour is sold for $1.00 to a bakery, which uses the flour to bake bread that is sold for $3.00 to consumers. A second bag of flour is sold to a consumer in a grocery store for $2.00. Taking these three transactions into account, what is the effect on GDP? please help me Find the volume of the cylinder.Either enter an exact answer in terms of \pipi or use 3.143.14 for PIRadius 2Height 5 Roll the number cube 20 times to represent 20 purchases. What is the experimental probability of receiving a 50% coupon? Write the probability as a decimal. What is the equivalent measure of 78 centiliters in milliliters? Analyze how the author uses figurative language in the quote. "An apprehensive night crawled slowly by like a wounded snake and sleep did not visit Rainsford, although the silence of a dead world was on the jungle." How does using those specific types of figurative language affect the reader's understanding of the character's feelings. Use CER to answer the question. * What is the volume of the triangular prism?A)12 cm3B)18 cm3C)24 cm3D)48 cm3 in the past year Rita watch 14 movies that he thought were very good he wants 20 movies over the whole year of the movie she watched what percentage did she think we're very good Suppose the investigator believes that virtually all values of breakdown voltage are between 40 and 70. What sample size would be appropriate for the 95% CI to have a width of 2 kV? (so that m is estimated to within 1 kV with 95% confidence) Please solve this worksheet.Please You might need:CalculatorThe following dot plot summarizes the distance Roger ran in each of his tennis matches last month. Each dotrepresents one game.Number of kilometersBI83Based on this data, what is a reasonable estimate of the probability that Roger runs less than 5 km in his nexttennis match?Choose the best answer.Choose 1 answer:22% Which equation represents the line5x - y = 3 in slope-intercept form? 3. What is a major disadvantage ofenvironmental science?A. Lack of government fundingB. Inability to control variablesC. Outdated technology