A marine biologist is preparing a deep-sea submersible for a dive. The sub stores breathing air under high pressure in a spherical air tank that measures 74.0 wide. The biologist estimates she will need of air for the dive. Calculate the pressure to which this volume of air must be compressed in order to fit into the air tank. Write your answer in atmospheres. Round your answer to significant digits.

Answers

Answer 1

Complete Question

A marine biologist is preparing a deep-sea submersible for a dive. The sub stores breathing air under high pressure in a spherical air tank that measures 74.0 wide. The biologist estimates she will need 2600 L of air for the dive. Calculate the pressure to which this volume of air must be compressed in order to fit into the air tank. Write your answer in atmospheres. Round your answer to significant digits.

Answer:

The pressure required is [tex]P_2= 12.2 \ atm[/tex]

Explanation:

Generally the volume of a sphere is mathematically denoted as

             [tex]V_s = \frac{4}{3} * \pi r^3[/tex]

Substituting [tex]r = \frac{d}{2} = \frac{74}{2} = 37cm[/tex]

          [tex]V_s = \frac{4}{3} * 3.42 * (37)^2[/tex]

               [tex]V_s = 2.121746 *10^5 cm^3[/tex]

Converting to Liters

               [tex]V_s = \frac{2.121746 *10^5}{1000}[/tex]

                [tex]V_s= 212.1746L[/tex]

Assume that the pressure at which the air is given to the diver is 1 atm when the air was occupying a volume of 2600L

So

From Charles law

               [tex]P_1V_1 = P_2 V_s[/tex]

Substituting  [tex]V_1 =2600 L[/tex] ,   [tex]P_1 = 1 atm[/tex] , [tex]V_s =212.1746L[/tex] , and making [tex]P_2[/tex] the subject we have

                 [tex]P_2 = \frac{P_1 * V_1}{V_s}[/tex]

                     [tex]= \frac{1 * 2600}{212.1746}[/tex]

                    [tex]P_2= 12.2 atm[/tex]

               


Related Questions

The price of gold on April 15,2000 was $282/t.oz. How much did 100.0cm^3 of gold cost that day if 1.00 t.oz=28.4 grams?

Answers

Answer:

price ($) Au = $ 19183.94

Explanation:

april 15,2000:

∴ price Au = $ 282/t.oz

∴ 1.00 t.oz = 28.4 g

∴ V Au = 100.0 cm³  ⇒  price ($) = ?

∴ δ Au = 19.32 g/cm³

⇒ mass Au = (100.0 cm³)*(19.32 g/cm³)

⇒ m Au = 1932 g

⇒ price ($) = (1932 g Au)*(1.00 t.oz/28.4 g Au)*( $ 282/t.oz)

⇒ price ($) = $ 19183.94

Final answer:

To calculate the cost of 100.0cm3 of gold on April 15, 2000, convert the volume to grams, then to troy ounces, and multiply by the price per troy ounce.

Explanation:

To calculate the cost of 100.0cm3 of gold on April 15, 2000, we need to convert the volume of gold to grams and then to troy ounces. First, convert 100.0cm3 to grams by multiplying it by the density of gold (19.3 g/cm3). This gives us 1930 grams. Next, convert grams to troy ounces by dividing by the conversion factor of 28.4 grams per troy ounce. This gives us approximately 67.96 troy ounces. Finally, multiply the number of troy ounces by the price per troy ounce to find the cost. Therefore, 100.0cm3 of gold on April 15, 2000 would have cost $19,191.12.

Learn more about Calculating the cost of gold here:

https://brainly.com/question/31784557

#SPJ11

Time and concentration data were collected for the reaction A ⟶ products A⟶products t (s) [A] (M) 0 0.52 0.52 20 0.43 0.43 40 0.35 0.35 60 0.29 0.29 80 0.23 0.23 100 0.19 0.19 The blue curve is the plot of the data. The straight orange line is tangent to the blue curve at t = 40 s. t=40 s. Approximate the instantaneous rate of this reaction at time t = 40 s.

Answers

Answer:

instantaneous rate at 40 s= 0.0035 M /s.

Explanation:

Instantaneous rate at 40 s is the slope of the line (tangent to the curve)

=  Δp/Δt

From, the straight orange line

ΔP = (0.48 - 0.16) M.

Δt = (92 -0) s

Now, instantaneous rate at 40 s

=  0.48 - 0.16/92 - 0

instantaneous rate at 40 s= 0.0035 M /s.

Answer:

0.0035

Explanation:

check the picture

What is the scaling factor of the molar mass of
this compound, having an empirical formula of
CH20, is 150 g/mol?

Answers

Final answer:

The scaling factor is determined by dividing the compound's actual molar mass (150 g/mol) by the molar mass of its empirical formula CH2O (30 g/mol), which results in a factor of 5. The molecular formula of the compound is C5H10O5.

Explanation:

The student's question is asking about the scaling factor of a compound's molar mass based on its empirical formula. The empirical formula is CH2O, which has a molar mass of 30 g/mol (C = 12, H = 1 x 2 = 2, O = 16). If the compound's actual molar mass is 150 g/mol, we divide the actual molar mass by the empirical formula's molar mass to find the scaling factor.

Scaling factor = Actual molar mass / Empirical formula molar mass

= 150 g/mol / 30 g/mol

= 5

Thus, the actual compound's formula is obtained by multiplying each subscript in the empirical formula by the scaling factor of 5. Therefore, the molecular formula of the compound is C5H10O5.

Learn more about Scaling Factor here:

https://brainly.com/question/33786301

#SPJ12

What is the molarity of a solution containing 56 grams of solute in 959 mL of solution? (molar mass of solute is 26 g/mol)

Answers

Answer:

Molarity = 2.25M

Explanation:

n= m/M= 56/26=2.15mol, V= 959ml= 0.959L

n=C×V

2.15= C× 0.959

Simplify

C= 2.25M

Answer:

2.2M

Explanation:

Consider the volumes of benzaldehyde and acetone that you used for your scaled-down version of the lab (as described on the Aldol Condensation page and in the Aldol Lab quiz), and consider how these reactants are added to the reaction mixture. There is a potential problem associated with the preparation and addition of the benzaldehyde/acetone mixture, which would be exacerbated by the scaling down of the reaction. What is this problem, and why would this become a bigger problem at smaller scale

Answers

Answer:

Aldol condensation is possible only when their is alpha Hydrogen atom is present. It ia present only in the acetophenone and not in benzaldehyde.

Explanation:

Wavelength (nm)n2E (J) 404.7 435.8 546.1 579.0 Show your work (or send in a separate sheet with your work on it): Q1: A sodium vapor lamp is similar to a mercury vapor lamp. Sodium displays a single visible emission line at 589.3 nm. Why is it better to use a mercury vapor lamp for calibration purposes

Answers

Answer: Please see answer below

Explanation:

Mecury vapor lamp is better to use than Sodium vapor light, this is because  because

---The Filaments of the lamp in sodium  emit fast moving electrons, which causes valence electrons of the sodium atoms to excite to higher energy levels which when electrons after being excited, relax by emitting yellow light which concentrates on the the  monochromatic bright yellow part of the visible spectrum which is about  580-590 or about (589nm) which will fall incident on the calibrations making it difficult to see

While

In Mercury vapor lamp, The emitted  electrons from the filaments, after having been excited  by high voltage, hit the mercury atoms but the excited electrons of mercury atoms relax and emits an  ultraviolet  uv invisible lights falling on the mecury vapour lamp to produce white light  covering  a wide range of  (380-780 nm) which is visible that is why it is used for calibrations purposes in  lightening applications.

Which of the following is/are a true statement about 1 mole samples of oxygen,
hydrogen, and nitrogen gas at STP?

I. Only oxygen and hydrogen are diatomic molecules.
II. All 3 samples occupy the same volume.
III. All 3 samples have the same mass.

A) I only
B) II only
C) I and II only
D) II and III only
E) I, II and III

Answers

i think it could possibly could be D

The rovibrational transition of 1H 35Cl with v = 0 to 1, J = 11 to 10 occurs at 2757.89 cm-1 , and the transition with v = 0 to 1, J = 10 to 9 occurs at 2779.07 cm-1 . From this information, i) calculate the spring constant of the vibrational potential (assuming the harmonic approximation and rigid rotor approximation) and ii) the equilibrium length of the HCl bond.

Answers

Answer:

Explanation:

find the solution below

What is the heat energy released?

Estimate the heat energy released when one mole of the of the fuel molecule acetylene C2H2 undergoes complete combustion with oxygen to form carbon dioxide and water.

Answers

Thermal energy (also called heat energy) is produced when a rise in temperature causes atoms and molecules to move faster and collide with each other. The energy that comes from the temperature of the heated substance is called thermal energy.

Copper was the first metal to be produced from its ore because it is the easiest to smelt, that is, to refine by heating in the presence of carbon. The ore was likely malachite (Cu2(OH)2CO3). What is the mass percent of copper in malachite?

Answers

Answer:

57.5%

Explanation:

The mass percent of copper in malachite (Cu2(OH)2CO3) can be determined as follow:

Molar Mass of malachite (Cu2(OH)2CO3) = (2x63.5) + 2(16 +1) + 12 + (16x3) = 127 + 2(17) + 12 + 48 = 127 + 34 + 12 + 48 = 221g/mol

Mass of Cu in Cu2(OH)2CO3 = 2 x 63.5 = 127g

The percentage by mass of Cu in Cu2(OH)2CO3 is given by:

Mass of Cu/Molar Mass of Cu2(OH)2CO3 x 100

=> 127/221 x 100

=> 57.5%

Therefore, 57.5% by mass of Cu is contained in malachite Cu2(OH)2CO3

What is the name of this compound?
CH3CH2OCH2CH2CH3

Answers

Answer:

(B) ethyl-propyl-ether

Explanation:

ethyl-propyl-ether

a step by step explanation

As the compound has ether as functional group the name of the compound is ethyl propyl ether.

Functional group is defined as a substituent or group of toms or an atom which causes chemical reactions.Each functional group will react similarly regardless to the parent carbon chain to which it is attached.This helps in prediction of chemical reactions.

The reactivity of functional group can be enhanced by making modifications in the functional group .Atoms present in functional groups are linked to each other by means of covalent bonds.They are named along with organic compounds according to IUPAC nomenclature.

The compound has ether as functional group,thus  the name of the compound is ethyl propyl ether.

Learn more about functional group,here:

https://brainly.com/question/33836452

#SPJ6

2. Incoming wastewater, with BOD5 equal to 200 mg/L, is treated in a well-run secondary treatment plant that removes 90 percent of the BOD. You are to run a five-day BOD test with a standard 300-mL bottle, using a mixture of treated sewage and dilution water (no seed). Assume the initial DO is 9.2 mg/L. a. Roughly what maximum volume of treated wastewater should you put in the bottle if you want to have at least 2.0 mg/L of DO at the end of the test (filling the rest of the bottle with water). (answer in mL)

Answers

Answer:

10.8 ml

Explanation:

The BOD is an empirical test to determine the molecular oxygen used during a specified incubation period (usually five days), for the biochemical degradation of organic matter (carbonaceous demand) and the oxygen used to oxidise inorganic matter.

See attached file

The maximum volume of treated wastewater that will be in the bottle is 10.8 mL.

The given parameters;

wastewater density = 200 mg/Lstandard volume = 300 mLinitial DO = 9.2 mg/L

The dilution factor (P) is calculated as follows;

[tex]200 \ mg/L= \frac{9.2 \ mg/L \ - \ 2\ mg/L}{P} \\\\P = \frac{7.2 \ mg/L}{200 \ mg/L} \\\\P = 0.036[/tex]

The maximum  volume of treated wastewater that will be in the bottle to have at least 2.0 mg/L DO;

[tex]0.036 = \frac{V_w}{300 \ mL} \\\\V_w = 0.036 \times 300 \ mL\\\\V_w = 10.8 \ mL[/tex]

Thus, the maximum volume of treated wastewater that will be in the bottle is 10.8 mL.

Learn more here:https://brainly.com/question/15878181

Ethers react with HI to form two cleavage products. One of the products might react further with HI. In the first box below draw the two major products that could be recovered after treatment with one equivalent of HI. In the second box draw the two major products that could be recovered after treatment with excess HI. (If a product of the first step does not undergo additional reaction with excess HI, repeat its structure in the second box.)

Answers

Answer:

Explanation:

the solution is solved below

When ethers react with HI, treatment with one equivalent of HI produces an alcohol and an alkyl iodide as major products. Treatment with excess HI yields both alkyl iodides as major products.

Ethers react with HI to form two cleavage products. When treated with one equivalent of HI, the major products that could be recovered are an alcohol and an alkyl iodide. The alcohol is formed by the substitution of the ether oxygen with a hydrogen atom from HI, and the alkyl iodide is formed by the substitution of one of the alkyl groups of the ether with iodine.

When treated with excess HI, the major products that could be recovered are both alkyl iodides. The initial products from the first step do not further react but are still recovered.

Learn more about Ethers reacting with HI here:

https://brainly.com/question/33791556

#SPJ3

A simple equation relates the standard free‑energy change, ΔG∘′, to the change in reduction potential. ΔE0′. ΔG∘′ = −nFΔE0′ The n represents the number of transferred electrons, and F is the Faraday constant with a value of 96.48 kJ⋅mol^(−1)⋅V^(−1). Use the standard reduction potentials provided to determine the standard free energy released by reducing O2 with FADH2. FADH2 + 1/2O2 → FAD + H2O
given that the standard reduction potential for the reduction of oxygen to water is +0.82 V and for the reduction of FAD to FADH2 is +0.03 V.

Answers

Answer :  The value of standard free energy is, -152.4 kJ/mol

Explanation :

The given balanced cell reaction is:

[tex]FADH_2+\frac{1}{2}O_2\rightarrow FAD+H_2O[/tex]

The half reaction will be:

Reaction at anode (oxidation) : [tex]FADH_2\rightarrow FAD+2H^++2e^-[/tex]     [tex]E^0_{Anode}=+0.03V[/tex]

Reaction at cathode (reduction) : [tex]\frac{1}{2}O_2+2H^++2e^-\rightarrow H_2O[/tex]     [tex]E^0_{Cathode}=+0.82V[/tex]

First we have to calculate the standard electrode potential of the cell.

[tex]E^o=E^o_{cathode}-E^o_{anode}[/tex]

[tex]E^o=(+0.82V)-(+0.03V)=+0.79V[/tex]

Relationship between standard Gibbs free energy and standard electrode potential follows:

[tex]\Delta G^o=-nFE^o_{cell}[/tex]

where,

[tex]\Delta G^o[/tex] = standard free energy = ?

n = number of electrons transferred = 2

F = Faraday constant = [tex]96.48kJ.mol^{-1}V^{-1}[/tex]

[tex]E^o_{cell}[/tex]  = standard electrode potential of the cell = 0.79 V

Now put all the given values in the above formula, we get:

[tex]\Delta G^o=-(2)\times (96.48kJ.mol^{-1}V^{-1})\times (0.79V)[/tex]

[tex]\Delta G^o=-152.4kJ/mol[/tex]

Therefore, the value of standard free energy is, -152.4 kJ/mol

Final answer:

To calculate the standard free energy change for the reduction of O2 with FADH2, we first calculate the difference in reduction potentials to find ΔE0′. We then substitute the values into the relation ΔG∘′ = −nFΔE0′, with n=2 and Faraday constant F=96.48 kJ⋅mol‾¹⋅V‾¹. The calculated ΔG∘′ is -152.4384 kJmol‾¹.

Explanation:

The standard free energy change, ΔG∘′, is related to the change in reduction potential, ΔE0′, by the equation ΔG∘′ = −nFΔE0′. To find the standard free energy released by the reduction of O2 with FADH2, we first need to find ΔE0′.

ΔE0′ is given by the difference in reduction potentials of the two half reactions involved. In this case, the reduction of O2 to H2O (+0.82 V) and the reduction of FAD to FADH2 (+0.03 V). Therefore, ΔE0′ = E(O2/H2O) - E(FAD/FADH2) = +0.82 V - (+0.03 V) = +0.79 V.

Inserting the values into the equation, and knowing that the number of transferred electrons (n) is 2 and the Faraday constant (F) is 96.48 kJ⋅mol‾¹⋅V‾¹, we get ΔG∘′ = −2 * 96.48 kJ⋅mol‾¹⋅V‾¹ * (+0.79 V) = -152.4384 kJmol‾¹. Thus, the standard free energy released by reducing O2 with FADH2 is -152.4384 kJmol‾¹.

Learn more about Standard Free Energy Change here:

https://brainly.com/question/31431702

#SPJ11

Drag each title to the correct location identify each process as carbon source or carbon sink

Answers

Answer:

PLATO Answer

Explanation:

Underneath Photosynthesis Is Carbon Sink

Underneath Animals Is Carbon Sink

Underneath Combustion Is Carbon Source

Final answer:

Among the given options, only the title 'a' correctly identifies the processes as carbon sources and sinks. Burning fossil fuels is a carbon source, while oceans are a carbon sink. The other titles misinterpret the roles of various processes in the carbon cycle.

Explanation:

The correct title to location identifications for each process as carbon source or sink are as follows:

a. Carbon sources, such as burning fossil fuels, produce carbon while carbon sinks, such as oceans, absorb carbon.b. Incorrect, as carbon sources like volcanic activity produce carbon, they don't absorb it. And carbon sinks such as vegetation absorb carbon, they don't produce it.c. Incorrect, as carbon sources like vegetation produce carbon, they do not absorb it. Carbon sinks, like volcanic activity, in reality, does not absorb carbon, they produce it.d. Incorrect, because carbon sources (for example, volcanic activity) produce carbon and don't absorb it, and carbon sinks (for example, burning fossil fuels) actually absorb carbon, rather than producing it.

Learn more about Carbon Cycle here:

https://brainly.com/question/2076640

#SPJ2

For Kinetic Trial 2, Alicia was distracted when the color change occurred but decided to record the time lapse read from her watch. Will this distraction cause an increase or decrease in he slop of the log (rate) vs log [I-]0? Explain.

Answers

Final answer:

The distraction during Kinetic Trial 2 will not affect the slope of the log (rate) vs log [I-]0. The relationship between the log of the rate and the log of the initial concentration of I- is determined by the reaction kinetics and is not influenced by external factors like distractions.

Explanation:

The distraction that Alicia experienced when the color change occurred during Kinetic Trial 2 will not affect the slope of the log (rate) vs log [I-]0.

This is because the distraction only affected the timing of the color change, not the actual reaction rate.

The relationship between the log of the rate and the log of the initial concentration of I- is determined by the reaction kinetics and is not influenced by external factors like distractions.

Problem PageQuestion Suppose an iron atom in the oxidation state formed a complex with three hydroxide anions and three water molecules. Write the chemical formula of this complex.

Answers

The Question is incomplete here is the complete question " Suppose an iron atom in the oxidation state +3 formed a complex with three hydroxide anions and three water molecules. Write the chemical formula of this complex.

Answer:

{Fe(OH)3(H20)3}

Explanation:

Oxidation state is the electron gained or lost by and atom, So if iron is in +3 state in formula it must have lost three electron.

We know that OH posses the oxidation state of -1 and water have zero oxidation state. SO, Let's take iron equal to y and find its oxidation state in the formula

y + 3 ( - 1 ) + 3 ( 0 ) = 0

y - 3 + 0 = 0

y-3=0

y= + 3

Hence it's proved that iron has +3 oxygen state.

A variation of the acetamidomalonate synthesis can be used to synthesize serine. The process involves the following steps: Ethoxide ion deprotonates diethyl acetamidomalonate, forming enolate anion 1; Enolate anion 1 makes a nucleophilic attack on formaldehyde, forming tetrahedral intermediate 2; Protonation of the oxyanion forms alcohol 3; Acid hydrolysis yields dicarboxyamino alcohol 4; Decarboxylation leads to the final amino acid. Write out the mechanism on a separate sheet of paper, and then draw the structure of dicarboxyamino alcohol 4.

Answers

Answer:

See detailed mechanism in the image attached

Explanation:

The mechanism shown in detail below is the synthesis of serine in steps.

The first step is the attack of the ethoxide ion base on the diethyl acetamidomalonate substrate giving the enolate and formaldehyde.

The second step is the protonation of the oxyanion from (1) above to form an alcohol as shown.

Acid hydrolysis of the alcohol formed in (3) above yields a tetrahedral intermediate, a dicarboxyamino alcohol.

Decarboxylation of this dicarboxyamino alcohol yields serine, the final product as shown in the image attached.

Calculate the final concentration of ONPG (in mM) if you add 1.42 mL of 3.3 mM ONPG and dilute to a final volume of 10 mL with PBS buffer. Report your final answer to two places after the decimal.

Answers

Answer : The final concentration of ONGP is, 0.47 mM

Explanation :

Formula used :

[tex]M_1V_1=M_2V_2[/tex]

where,

[tex]M_1\text{ and }V_1[/tex] are the initial molarity and volume

[tex]M_2\text{ and }V_2[/tex] are the final molarity and volume

We are given:

[tex]M_1=3.3mM\\V_1=1.42mL\\M_2=?\\V_2=10mL[/tex]

Now put all the given values in above equation, we get:

[tex]3.3mM\times 1.42mL=M_2\times 10mL\\\\M_2=0.47mM[/tex]

Hence, the final concentration of ONGP is, 0.47 mM

How many mL of 0.50 M NaOH solution are required to completely titrate 15.0 mL of 0.20 M HNO3 solution?

Answers

Answer:6.0 ML

Explanation:

A 1.31 mol sample of CO2 gas is confined in a 31.4 liter container at 19.0 �C.

If the volume of the gas sample is decreased to 15.7 L holding the temperature constant, the number of molecule-wall collisions per unit area per unit timewill

A. remain the same

B. not enough information to answer the question

C. increase

D. decrease

2. A 1.18 mol sample of CO2 gas is confined in a 27.8 liter container at 14.5 �C.


If the volume of the gas sample is increased to 55.7 L holding the temperature constant, the average kinetic energy will

A. remain the same

B. decrease

C. increase

D. not enough information to answer the question

3.A 0.855 mol sample of Xe gas is confined in a 20.5 liter container at 19.6 �C.


If the volume of the gas sample is decreased to 10.3 L, holding the temperature constant, the pressure will increase. Which of the following kinetic theory ideas apply?

Choose all that apply.

A. With less available volume, the molecules hit the walls of the container more often.

B. At lower volumes molecules have higher average speeds.

C. With higher average speeds, on average the molecules hit the walls of the container with more force.

D. For a given gas at constant temperature, the force per collision is constant. Some other factor must cause the pressure increase.

E. None of the Above

Answers

Ideal gas law is valid only for ideal gas not for vanderwaal gas. The equation used for ideal gas is PV=nRT. The  number of molecule-wall collisions per unit area per unit time will remain the same.

What is ideal gas equation?

Ideal gas equation is the mathematical expression that relates pressure volume and temperature.

Mathematically the relation between Pressure, volume and temperature can be given as

PV=nRT

where,

P = pressure of gas

V= volume of gas

n =number of moles of gas

T =temperature of gas

R = Gas constant = 0.0821 L.atm/K.mol

If the volume of the gas sample is decreased to 15.7 L holding the temperature constant, the number of molecule-wall collisions per unit area per unit time will remain the same.

Therefore, the number of molecule-wall collisions per unit area per unit time will remain the same.

To learn more about ideal gas equation, here:

https://brainly.com/question/14826347

#SPJ5

You are given mixture made of 290 grams of water and 14.2 grams of salt. Determine the % by mass of salt in the salt solution.

Answers

Answer:

Solution is 4.67% by mass of salt

Explanation:

% by mass is the concentration that defines the mass of solute in 100g of solution.

In this case we have to find out the mass of solution with the data given:

Mass of solution = Mass of solute + Mass of solvent

Solute:  Salt → 14.2 g

Solvent: Water → 290 g

Solution's mass = 14.2 g + 290g = 304.2 g

% by mass = (mass of solute / mass of solution) . 100

(14.2 g / 304.2g) . 100 = 4.67 %

The 1H NMR spectrum of an unknown acid has the following peaks: δ (ppm) = 12.71 (1H, s), 8.04 (2H, d), 7.30 (2H, d), 2.41 (3H, s) Which structure best fits this spectral information?

Answers

Answer:

The most appropriate structure given the sparse spectral data is 4-acetyl benzoic acid (see attached).

Explanation:

It is difficult to accurately elucidate the structure of this compound without its chemical formula. But from the 1H NMR spectral data shows a total of 8 hydrogen atoms:

12.71 (1H. s) -  confirms presence of carboxylic acid proton, C=O-OH8.04 (2H, d) - confirms aromatic hydrogen7.30 (2H, d) - confirms aromatic hydrogen2.41 (3H,s) - confirms C=C hydrogen or ketone O=C-RCH3

The attached files show the structure and the neighboring hydrogen atoms.

The most likely structure i 4-acetyl benzoic acid

An unknown liquid has a pH lower than 7, conducts electricity poorly, and tastes sour, what kind of solution is the unknown?

Answers

Answer:

Weak Acid solution

Explanation:

Acidic substances usually have a pH of 0.1-6.9 or it is usually less than 7. Acidic substances too have a very unique sour taste.

However it is understood that it conducts electricity poorly which means the acid doesn’t readily dissociate in water. This makes it a weak acid and an example is Acetic acid.

Magnesium metal reacts with gaseous oxygen in a combination reaction. Write a balanced equation to describe this reaction. Include states of matter in your answer. Click in the answer box to open the symbol palette.

Answers

Answer: 2Mg (s) + O2 (g) ----> 2MgO (s)

Explanation:

Lets write the equation of the reaction.

Mg(s) + O2 (g) ----> MgO (s)

Counting the number of atoms for each element we have:

Left hand side: Mg =1 O = 2

Right hand side : Mg = 1, O =2

To balance this equation input "2" as coefficient for "MgO" on the right hand side and "2", as coefficient for "Mg" on the left hand side of the equation. Hence our balanced equation will be

2Mg (s) + O2 (g) -----> 2MgO (s)

Final answer:

The balanced chemical equation for the combination reaction between magnesium metal and gaseous oxygen to form magnesium oxide is: 2Mg (s) + O₂(g) → 2MgO (s). This reaction follows the conservation of mass.

Explanation:

The reaction between magnesium metal and gaseous oxygen is a combination reaction in which magnesium is oxidized. When magnesium (Mg) combines with oxygen (O₂), it forms magnesium oxide (MgO). The equation representing this exothermic reaction is written as:

2Mg (s) + O₂(g) → 2MgO (s)

This reaction adheres to the law of conservation of mass, meaning the total mass of the reactants equals the total mass of the products. During the reaction, magnesium atoms lose electrons (are oxidized) and the oxygen molecule gains electrons.

A tank at is filled with of dinitrogen difluoride gas and of carbon dioxide gas. You can assume both gases behave as ideal gases under these conditions. Calculate the mole fraction and partial pressure of each gas, and the total pressure in the tank. Be sure your answers have the correct number of significant digits. dinitrogen difluoride molar fraction: partial pressure: carbon dioxide mole fraction: partial pressure: Total pressure in tank:

Answers

Answer:

For N₂F₂:

Molar fraction = 0.84

Partial pressure = 1.12 atm

For SF₄:

Molar fraction = 0.16

Partial pressure = 0.208 atm

Explanation:

It seems your question is missing the values required to solve the problem. However, an internet search showed me the following values for your question. If the values in your problem are different, your answer will be different as well, however the solving method will remain the same:

" A 5.00L tank at 0.7°C is filled with 16.5g of dinitrogen difluoride gas and 5.00g of sulfur tetrafluoride gas. You can assume both gases behave as ideal gases under these conditions. "

First we calculate the moles of each gas, using their molar mass:

16.5 g N₂F₂ ÷ 66 g/mol = 0.25 mol N₂F₂5.00 g SF₄ ÷ 108 g/mol = 0.0463 mol SF₄

Total mol number = 0.25 + 0.0463 = 0.2963 mol

Mole Fraction N₂F₂ = 0.25/0.2963 = 0.84Mole Fraction SF₄ = 0.0463/0.2963 = 0.16

Now we use PV=nRT to calculate the partial pressure of each gas:

P = ?

V = 5.00 L

T = 0.7 °C ⇒ 0.7 + 273.16 = 273.86 K

For N₂F₂:

P * 5.00 L = 0.25 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 273.86 KP = 1.12 atm

For SF₄:

P * 5.00 L = 0.0463 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 273.86 KP = 0.208 atm

Final answer:

To calculate the mole fraction, you divide the number of moles of a gas by the sum of the moles of all gases in the mixture. The partial pressure of a gas is the pressure that the gas would exert if it were alone in the container. The total pressure in the tank is the sum of the partial pressures of each gas.

Explanation:

The mole fraction of a gas is the ratio of the moles of that gas to the total moles of all gases in the mixture. To calculate the mole fraction of dinitrogen difluoride (N2F2), divide the moles of N2F2 by the sum of the moles of N2F2 and CO2:

Mole fraction of N2F2 = moles of N2F2 / (moles of N2F2 + moles of CO2)

To calculate the mole fraction of carbon dioxide (CO2), divide the moles of CO2 by the sum of the moles of N2F2 and CO2:

Mole fraction of CO2 = moles of CO2 / (moles of N2F2 + moles of CO2)

The partial pressure of a gas is the pressure that the gas would exert if it were alone in the container. To calculate the partial pressure of N2F2, multiply its mole fraction by the total pressure in the tank:

Partial pressure of N2F2 = mole fraction of N2F2 * total pressure

To calculate the partial pressure of CO2, multiply its mole fraction by the total pressure in the tank:

Partial pressure of CO2 = mole fraction of CO2 * total pressure

The total pressure in the tank is the sum of the partial pressures of N2F2 and CO2:

Total pressure = partial pressure of N2F2 + partial pressure of CO2

At 330 K the vapor pressure of pure n-pentane is 1.92 atm and the vapor pressure of pure n-octane is 0.07 atm. If 330K is the normal boiling point for a solution of these two substances, what will the mole fractions of each substance be in that solution

Answers

Answer: mole fractions are

For n-pentane = 0.965

For n-octane = 0.035

Explanation: pressure exerted by each gas is,

n-pentane = 1.92atm

n-octane = 0.07atm

Total pressure exerted = 1.92 + 0.07

= 1.99atm.

Recall that the partial pressure exerted by each gas is the product of its mole fraction and the total pressure, that is,

Pres. n-pentane = n x pressure(total)

1.92 = n x 1.99

n = 1.92/1.99 = 0.965 for n-pentane

For n-octane,

n = 1 - 0.965 = 0.035 for n-octane.

Gaseous ammonia (NH3) reacts with gaseous oxygen to form gaseous nitrogen monoxide and gaseous water. Express your answer as a chemical equation. Identify all of the phases in your answer.

Answers

Answer:

The chemical equation is given as:

[tex]4NH_3(g)+5O_2(g)\rightarrow 4NO(g)+6H_2O(g)[/tex]

Explanation:

When gaseous ammonia reacts with gaseous oxygen it gives nitrogen monoxide gas and water vapors as product.

The chemical equation is given as:

[tex]4NH_3(g)+5O_2(g)\rightarrow 4NO(g)+6H_2O(g)[/tex]

According to reaction, 4 moles of ammonia reacts with 5 moles of oxygen gas to give 4 moles of nitrogen monoxide gas and 6 moles of water vapor.

To write the skeletal equation, begin by writing the chemical formula for each reactant and product.

Reactants:

1. Ammonia's chemical formula is given as  NH3.

2. Gaseous oxygen exists as a diatomic molecule with the chemical formula  O2.

Products:

1. Nitrogen monoxide has the chemical formula of  NO.

2. The chemical formula for water is  H2O.

Therefore, the skeletal equation is written as:

NH3(g)+O2(g)→NO(g)+H2O(g)

Now count the number of each atom on each side of the equation to determine if the equation is balanced.

Reactants

1N atom

3H atoms

2O atoms

Products

1N atom

2H atoms

2O atoms

Begin by balancing the number of hydrogen atoms by adding a coefficient of 2 to  NH3 and a coefficient of 3 to  H2O. Next, balance the number of nitrogen atoms by adding a coefficient of 2 to  NO. Now there are two oxygen atoms on the reactant's side and five oxygen atoms on the product's side of the reaction. Since only whole number coefficients should be used, all coefficients need to be increased by a factor of two to balance the oxygen atoms. Thus the coefficient for  NH3 is 4, the coefficient for  H2O is 6, and the coefficient for  NO is 4. Finally, balance the oxygen atoms by adding a coefficient of 5 to  O2. The balanced equation is:

4NH3(g)+5O2(g)→4NO(g)+6H2O(g)

Thermal decomposition of 5.0 metric tons of limestone to lime and carbon dioxide requires 9.0 x 106 kJ of heat. Convert this energy to joules A. 9.0 x 108 J B. 9.0 x 104 J C. 9.0 x 103 J D. 9.0 x 109 J E. None of these is within 5% of the correct answer

Answers

Answer : The correct option is, (D) [tex]9.0\times 10^9J[/tex]

Explanation :

As we are given that the energy require for decomposition is, [tex]9.0\times 10^6kJ[/tex].

Now we have to calculate the energy in joules.

Conversion used :

1 kJ = 1000 J

As, 1 kJ of energy = 1000 J

So, [tex]9.0\times 10^6kJ[/tex] of energy = [tex]\frac{9.0\times 10^6kJ}{1kJ}\times 1000J[/tex]

                                          = [tex]9.0\times 10^9J[/tex]

Therefore, the energy in joules is, [tex]9.0\times 10^9J[/tex]

Thermal decomposition of 5.0 metric tons of limestone to lime and carbon dioxide requires 9.0 × 10⁹ Joules of heat.

What is energy?

Enegy is the quantitative property which is used by any system to perform any work.

Chemical reactions generally involves energy in the form of heat energy and given amount of energy is 9.0 × 10⁶ kJ.

We know that:

1 kJ = 1000 J

So, 9.0 × 10⁶ kJ = 9.0 × 10⁶ kJ  × 1000

9.0 × 10⁶ kJ = 9.0 × 10⁹ J

Hence, option (D) is correct i.e. 9.0 × 10⁹ J.

To know more about heat energy, visit the below link:

https://brainly.com/question/19666326

When of alanine are dissolved in of a certain mystery liquid , the freezing point of the solution is lower than the freezing point of pure . On the other hand, when of potassium bromide are dissolved in the same mass of , the freezing point of the solution is lower than the freezing point of pure . Calculate the van't Hoff factor for potassium bromide in . Be sure your answer has a unit symbol, if necessary, and is rounded to the correct number of significant digits.

Answers

Answer:

The factor is 2

Explanation:

Van't Hoff factor is defined as the ratio between the species of a solute before the addition to the solvent and particles produced when the substance is dissolved. It is used, principally, in colligative properties.

Before solution, potassium bromide, KBr, has just one specie, that is, KBr. When KBr is dissolved (As a salt):

KBr(aq) → K⁺(aq) + Br⁻(aq)

There are produced two species, K⁺ and Br⁻. By definition of Van't Hoff factor, for this salt, the factor is 2.

Other Questions
The illustration shows the path of a laser leaving a laser pointer. At what point is the laser being absorbed? Mrs. Vamer deposited q dollars in a bank account that has been earning annual interest The total value of theaccount is based on the function f(x) = 1.025%, where x represents the number of years the money has been in the account If no deposits or withdrawals are made after the initial deposit, which equation represents the total value ofthe account 5 years from now? When Samira was an infant, she was usually calm, uninhibited, and sociable and typically showed interest rather than fear when exposed to new people, novel experiences, and unfamiliar objects. In terms of Kagan's classification of temperamental patterns, Samira is likely to be categorized as a(n): A 100.0 mL sample of 0.20 M HF is titrated with 0.10 M KOH. Determine the pH of the solution after the addition of 75.0 mL of KOH. The Ka of HF is 3.5 10-4 If GDP is going down, what part of the business cycle is the economy in? Which is a TRUE statement about price premiums for differentiated products? Consumers are relatively insensitive to premium prices. Consumers are highly sensitive to price premiums. Consumers are ambivalent to price premiums. None of these What enzyme is lacking in the Escherichia coli strain used by Okazaki in the experiments leading to his discovery of the DNA fragments that will form the lagging strand? a) DNA polymerase b) telomerase c) DNA ligase d) pyrophosphatase CHOOSE ALL THAT APPLYWhich of the following is true about the carbon dioxide cycle?Carbon dioxide is a waste produce of respiration The atmosphere stores more carbon dioxide than the oceanCarbon dioxide is added to the atmosphere by burning fossil fuels Plants use oxygen to make food during photosynthesis ANSWER QUICK From a large-scale screen of many plants of Collinsia grandiflora, a plant with three cotyledons was discovered (normally, there are two cotyledons). This plant was crossed with a normal pure-breeding wild-type plant, and 600 seeds from this cross were planted. There were 298 plants with two cotyledons and 302 with three cotyledons. What can be deduced about the inheritance of three cotyledons I need help. Look at pictureChoose 1 answer:A. -4.63 x 10^13B. -28.7C. -1.65D. -0.14 Have three witches each holding a broom and a spoon. Witches say witch plus witch plus witch =45. Three brooms say broom plus broom plus a broom =21 and three spoons say spoon plus spoon plus spoon = 12 then final question is a plain witch plus broom x spoon equal a ? Whats answer? Glaucoma can be detected at a(n)Cavities, plaque, and tartar can be detected at a(n)Plaque is formed fromin the mouth and can cause cavitiesDuring a dental cleaning, a technician will the patient's teeth to clean in between them. Use the graph to determine the correct relationship between the mean and median. A)mean < median B)median < mean C)median = mean D)mean < median < 6 What is the product of 3a + 5 and 2a2 + 4a 2?6a3 + 22a2 + 14a 10 6a3 + 22a2 + 26a 10 18a3 + 10a2 + 14a 10 28a3 + 14a 10 equations F= -kx F= m x a or F= m x g g= -9.8 m/s2 When a 0.50 kg-object is attached to a vertically supported spring, it stretches 0.10 m from the equilibrium position. Find k for the spring.A.49B.-49C..050D.-0.05 Who were persecuted by the numbers laws in Germany The_______of the House or Senate is responsible for running the meetings of the legislature and moderatingdebate on legislation.A. pageB. clerkC. speakerD. sergeant at armsPlease select the best answer from the choices provided I want to be a veterinarian and am looking for advice Can someone help me please Q1) Describe three ways food chains can be disrupted