A particle is located on the x axis 4.9 m from the origin. A force of 38 N, directed 30° above the x axis in the x-y plane, acts on the particle. What is the torque about the origin on the particle? Round your answer to the nearest whole number. Use a minus sign to indicate a negative direction and no sign to indicate a positive direction.

Answers

Answer 1

Answer:

Torque is 93 Nm anticlockwise.

Explanation:

We have value of torque is cross product of position vector and force vector.

A force of 38 N, directed 30° above the x axis in the x-y plane.

        Force, F = 38 cos 30 i + 38 sin 30 j = 32.91 i + 19 j

A particle is located on the x axis 4.9 m and we have to find torque about the origin on the particle.

Position vector, r = 4.9 i

Torque, T = r x F = 4.9 i x (32.91 i + 19 j) = 4.9 x 19 k = 93.1 k Nm

So Torque is 93 Nm anticlockwise.


Related Questions

A force of 68 Newtons is applied to a wire with a diameter of 0.7 mm. What is the tensile stress (in N/m2) in the wire? Do not include units with the answer.

Answers

Answer:

7.07 x 10⁸ N/m²

Explanation:

F = Force applied to the wire = 68 N

d = diameter of the wire = 0.7 mm = 0.7 x 10⁻³ m

r = radius of the wire = (0.5) d = (0.5) (0.7 x 10⁻³) = 0.35 x 10⁻³ m

Area of cross-section of wire is given as

A = (0.25) πr²

A = (0.25) (3.14) (0.35 x 10⁻³)²

A = 9.61625 x 10⁻⁸ m²

Tensile stress is given as

[tex]P = \frac{F}{A}[/tex]

[tex]P = \frac{68}{9.61625\times 10^{-8}}[/tex]

P = 7.07 x 10⁸ N/m²

Given:

Applied Force on wire = 68 N

Diameter of wire, d = 0.7 mm = [tex]0.7\times 10^{-3}[/tex] m

Radius of wire, r = [tex]\frac{d}{2}[/tex] = 0.35 mm = [tex]0.35\times 10^{-3}[/tex] m

Formula used:

Stress =  [tex]\frac{Applied Force}{cross-sectional area}[/tex]

Explanation:

Cross-sectional area, A = [tex]\pi r^{2}[/tex]  =  [tex]\pi (0.35\times 10^{-3})^{2}[/tex]

A = [tex]3.84\times 10^{-7} m^{2}[/tex]

Using the formula for stress:

Stress =  [tex]\frac{68}{3.84\times 10^{-7}}[/tex] =  [tex]1.76\times 10^{8}[/tex]

Two cars are initially moving with speeds vA and vB. The cars are decelerated at the same rate until they come to a stop. If it takes car A four times as far to stop as car B, then how do their initial speeds compare?

Answers

Answer:

[tex]v_a = 2 v_b[/tex]

Explanation:

As we know that the speed of car A and car B is given by

[tex]v_a[/tex] & [tex]v_b[/tex]

now we know that both cars are decelerated by same deceleration and stopped finally

so the distance moved by the car is given by the equations

[tex]v_f^2 - v_i^2 = 2a d[/tex]

[tex]0 - v_a^2 = 2(-a) d_a[/tex]

[tex]d_a = \frac{v_a^2}{2a}[/tex]

similarly we have

[tex]d_b = \frac{v_b^2}{2a}[/tex]

now we know that

[tex]d_a = 4 d_b[/tex]

[tex]\frac{v_a^2}{2a} = 4 \frac{v_b^2}{2a}[/tex]

[tex]v_a = 2 v_b[/tex]

A car approaches you at a constant speed, sounding its horn, and you hear a frequency of 76 Hz. After the car goes by, you hear a frequency of 65 Hz. What is the frequency of the sound emitted by the horn? The speed of sound in air is 343 m/s.

Answers

Answer:

70 Hz

Explanation:

The Doppler equation describes how sound frequency depends on relative velocities:

fr = fs (c + vr)/(c + vs),

where fr is the frequency heard by the receiver,

fs is the frequency emitted at the source,

c is the speed of sound,

vr is the velocity of the receiver,

and vs is the velocity of the source.

Note: vr is positive if the receiver is moving towards the source, negative if away.  

Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.

When the car is approaching you:

fr = 76 Hz

vr = 0 m/s

When the car is moving away from you:

fr = 65 Hz

vr = 0 m/s

c, vs, and fs are constant.

We can write two equations:

76 = fs c / (c − vs)

65 = fs c / (c + vs)

If we divide the two equations:

76/65 = [fs c / (c − vs)] / [fs c / (c + vs)]

76/65 = [fs c / (c − vs)] × [(c + vs) / (fs c)]

76/65 = (c + vs) / (c − vs)

76 (c − vs) = 65 (c + vs)

76c − 76vs = 65c + 65vs

11c = 141vs

vs = 11/141 c

Substitute into either equation to find fs.

65 = fs c / (c + 11/141 c)

65 = fs c / (152/141 c)

65 = 141/152 fs

fs = 70 Hz

Final answer:

The question involves the Doppler effect in sound waves. To find the original frequency of the car's horn, the mean of the frequencies heard when the car was approaching and receding is calculated. This gives a result of 70.5 Hz.

Explanation:

This question involves the Doppler effect, which is a change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source. In this case, the source of the sound is the car's horn.

To calculate the actual frequency of the car's horn, you need to take the frequency you heard when the car was approaching (76 Hz) and when it was leaving (65 Hz) and find the mean of these two values. So, the frequency of the car horn is ((76+65)/2) = 70.5 Hz.

This calculation assumes that your movement is minimal compared to that of the car. As such, most of the perceived frequency change is due to the motion of the car, not the observer. Therefore, the actual frequency of the horn is somewhat between the heard frequencies when the car was approaching and receding. This happens because of the change in relative velocity between the source of sound (car) and the observer when the car goes by.

Learn more about Doppler Effect here:

https://brainly.com/question/15318474

#SPJ3

The diffusion rate for a solute is 4.0 x 10^-11 kg/s in a solvent- filled channel that has a cross-sectional area of 0.50 cm^2 and a length of 0.25 cm. What would be the diffusion rate mlt in a channel with a cross- sectional area of 0.30 cm^2 and a length of 0.10 cm?

Answers

Final answer:

To find the diffusion rate in the second channel, we can use a formula that takes into account the cross-sectional area and length of the channels. Substituting the given values and simplifying the expression will give the diffusion rate in the second channel.

Explanation:

The diffusion rate is determined by several factors, including the concentration difference, the diffusion constant, temperature, and the size of the molecules. In this case, the diffusion rate in the first channel is given as 4.0 x 10^(-11) kg/s. To find the diffusion rate in the second channel, we can use the formula:

diffusion rate = (cross-sectional area of second channel / cross-sectional area of first channel) x (length of second channel / length of first channel) x diffusion rate of first channel

Substituting the given values:

diffusion rate = (0.30 cm^2 / 0.50 cm^2) x (0.10 cm / 0.25 cm) x (4.0 x 10^(-11) kg/s)

Simplifying the expression will give the diffusion rate in the second channel.

Learn more about diffusion rate here:

https://brainly.com/question/30697046

#SPJ3

The new diffusion rate in a channel with a cross-sectional area of 0.30 cm² and a length of 0.10 cm would be 6.0 x 10⁻¹¹ kg/s.

The diffusion rate for a solute in a solvent-filled channel is directly proportional to the cross-sectional area and inversely proportional to the length of the channel. Given that the initial diffusion rate is 4.0 x 10-11 kg/s in a channel with an area of 0.50 cm² and length 0.25 cm, to calculate the diffusion rate in a new channel with a different area and length, we use the equation:

Diffusion rate (new) = (Area (new) / Area (old)) x (Length (old) / Length (new)) x Diffusion rate (old)

Substituting the given values:

Diffusion rate (new) = (0.30 cm² / 0.50 cm²) x (0.25 cm / 0.10 cm) x 4.0 x 10⁻¹¹ kg/s

Diffusion rate (new) = (0.60) x (2.50) x 4.0 x 10⁻¹¹ kg/s

Diffusion rate (new) = 6.0 x 10⁻¹¹ kg/s

This calculation shows how the diffusion rate changes when altering the channel's dimensions.

A 0.050-kg lump of clay moving horizontally at 12 m/s strikes and sticks to a stationary 0.15-kg cart that can move on a frictionless air track. Determine the speed of the cart and clay after the collision.

Answers

Answer:

Explanation:

It is given that,

Mass of lump, m₁ = 0.05 kg

Initial speed of lump, u₁ = 12 m/s

Mass of the cart, m₂ = 0.15 kg

Initial speed of the cart, u₂ = 0

The lump of clay sticks to the cart as it is a case of inelastic collision. Let v is the speed of the cart and the clay after the collision. As the momentum is conserved in inelastic collision. So,

[tex]m_1u_1+m_2u_2=(m_1+m_2)v[/tex]

[tex]v=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}[/tex]

[tex]v=\dfrac{0.05\ kg\times 12\ m/s+0}{0.05\ kg+0.15\ kg}[/tex]

v = 3 m/s

So, the speed of the cart and the clay after the collision is 3 m/s. Hence, this is the required solution.

The speed of the cart and clay after the collision is 3 m/s.

Conservation of linear momentum

The speed of the cart and clay after the collision is determined by applying the principle of conservation of linear momentum as shown below;

m₁u₁ + m₂u₂ = v(m₁ + m₂)

0.05(12) + 0.15(0) = v(0.05 + 0.15)

0.6 = 0.2v

v = 0.6/0.2

v = 3 m/s

Thus, the speed of the cart and clay after the collision is 3 m/s.

Learn more about linear momentum here: https://brainly.com/question/7538238

What is the final temperature of a drink if the initial 1.10 kg of water is at a temperature of 23.2 degC and 0.0700 kg of ice at 0 degC is placed in it?

Answers

Answer:

365°C

Explanation:

°C=1.10*23.2/0.0700

°C=365°C//

Consider f(x) = -4x2 + 24x + 3. Determine whether the function has a maximum or minimum value. Then find the
value of the maximum or minimum

Answers

Answer:

The function has a maximum in [tex]x=3[/tex]

The maximum is:

[tex]f(3) = 39[/tex]

Explanation:

Find the first derivative of the function for the inflection point, then equal to zero and solve for x

[tex]f(x)' = -4*2x + 24=0[/tex]

[tex]-4*2x + 24=0[/tex]

[tex]8x=24[/tex]

[tex]x=3[/tex]

Now find the second derivative of the function and evaluate at x = 3.

If [tex]f (3) ''< 0[/tex] the function has a maximum

If [tex]f (3) '' >0[/tex] the function has a minimum

[tex]f(x)''= 8[/tex]

Note that:

[tex]f(3)''= -8<0[/tex]

the function has a maximum in [tex]x=3[/tex]

The maximum is:

[tex]f(3)=-4(3)^2+24(3) + 3\\\\f(3) = 39[/tex]

The 68-kg crate is stationary when the force P is applied. Determine the resulting acceleration of the crate if (a) P = 0, (b) P = 181 N, and (c) P = 352 N. The acceleration is positive if up the slope, negative if down the slope.

Answers

Explanation:

Mass of the crate, m = 68 kg

We need to find the resulting acceleration if :

(a) Force, P = 0

P = m a

⇒ a = 0

(b) P = 181 N

[tex]a=\dfrac{P}{m}[/tex]

[tex]a=\dfrac{181\ N}{68\ kg}[/tex]

[tex]a=2.67\ m/s^2[/tex]

(c) P = 352 N

[tex]a=\dfrac{P}{m}[/tex]

[tex]a=\dfrac{352\ N}{68\ kg}[/tex]

[tex]a=5.17\ m/s^2[/tex]

Hence, this is the required solution.

In a Young's double-slit experiment the wavelength of light used is 466 nm (in vacuum), and the separation between the slits is 1.3 × 10^-6 m. Determine the angle that locates: (a) the dark fringe for which m = 0 (b) the bright fringe for which m = 1 (c) the dark fringe for which m = 1 and (d) the bright fringe for which m = 2.

Answers

Final answer:

The question requires determining angles for bright and dark fringes in a double-slit experiment using the formula d sin(\theta) = m\lambda. The student should apply this formula, adjusting it for dark fringes, and solve for the angles for each order m, considering the wavelength and slit separation given.

Explanation:

The question relates to Young's double-slit experiment, which demonstrates the wave nature of light through the interference pattern produced when light passes through two closely spaced slits. The angles locating the fringes can be calculated using the formula

d sin(\theta) = m\lambda, where d is the separation between the slits, \theta is the angle of the fringe from the central maximum, m is the order of the fringe (which can be an integer or half-integer value depending on whether it's a bright or dark fringe), and \lambda is the wavelength of the light.

(a) For the dark fringe with m=0, we expect no fringe to appear as m=0 corresponds to the central maximum which is bright, not dark.

(b) For the bright fringe with m=1, we rearrange the formula to \theta = arcsin(m\lambda / d). Substituting the given values, the angle can be calculated.

(c) For the dark fringe with m=1, the condition is changed to d sin(\theta) = (m + 0.5)\lambda, as dark fringes occur at half-wavelength shifts from the bright fringes.

(d) The calculation for the bright fringe with m=2 follows the same procedure as for m=1, using the appropriate value for m.

Protons are released from rest in a Van de Graaff accelerator. They start from a region where the potential is 7.15 MV then travel through a vacuum region to a region where the potential is zero. Find the speed of the protons when they reach the zero potential region. (proton mass -1.66 x 1027 kg) A) 1.40 x 10 m/s B) 9.68 x 1014m/s C) 3.70x 10' m/s D) 2.62 x 10 m/s

Answers

Answer:

3.7 x 10⁷ m/s

Explanation:

ΔV = Potential difference through which the proton moves = 7.15 MV = 7.15 x 10⁶ Volts

q = magnitude of charge on the proton = 1.6 x 10⁻¹⁹ C

v = speed of the proton as it reach zero potential region

m = mass of the proton = 1.66 x 10⁻²⁷ kg

Using conservation of energy

Kinetic energy gained by proton = Electric potential energy lost

(0.5) m v² = q ΔV

(0.5) (1.66 x 10⁻²⁷) v² = (1.6 x 10⁻¹⁹) (7.15 x 10⁶)

v = 3.7 x 10⁷ m/s

Final answer:

The speed of protons in a Van de Graaff accelerator transitioning from a 7.15 MV potential to zero potential is about 3.70 x 10^7 m/s, option c

Explanation:

Protons being accelerated in a Van de Graaff accelerator from a 7.15 MV potential to zero potential can be analyzed using the principle of conservation of energy.

The kinetic energy gained by the protons equals the initial potential energy they had, leading to the formula: 1/2 mv^2 = qV.

Calculating this, the speed of the protons when they reach the zero potential region is approximately 3.70 x 10^7 m/s (C).

An unmarked police car traveling a constant 95.0 km/h is passed by a speeder traveling 110 km/h . Precisely 2.00 s after the speeder passes, the police officer steps on the accelerator; if the police car's acceleration is 2.00 m/s^2 , how much time passes before the police car overtakes the speeder after the speeder passes (assumed moving at constant speed)?

Answers

Answer:

So police car will overtake the speeder after 5.64 s

Explanation:

Initially the distance between police car and the speeder when police car is about to accelerate

[tex]d = (v_1 - v_2)t[/tex]

[tex]v_1 = 110 km/h = 110 \times \frac{1000}{3600}m/s = 30.55 m/s[/tex]

[tex]v_2 = 95 km/h = 95 \times \frac{1000}{3600}m/s = 26.39 m/s[/tex]

[tex]d = (30.55-26.39)(2) = 8.32 m[/tex]

now we have

now velocity of police with respect to speeder is given as

[tex]v_r = v_2 - v_1 = 26.39 - 30.55 = -4.17 m/s[/tex]

relative acceleration of police car with respect to speeder

[tex]a_r = a = 2 m/s^2[/tex]

now the time taken to cover the distance between police car and speeder is given as

[tex]d = v_i t + \frac{1}{2}at^2[/tex]

[tex]8.32 = -4.17 t + \frac{1}{2}(2)(t^2)[/tex]

[tex]t^2 -4.17 t - 8.32 = 0[/tex]

[tex]t = 5.64 s[/tex]

Answer: t = 7.61s

Explanation: The initial speed of the police's car is Vp = 95 km/h.

The initial speed of the car is Vc = 110km/h

The acceleration of the police's car is 2m/s^2

Now, we should write this the quantities in the same units, so lets write the velocities in meters per second.

1 kilometers has 1000 meters, and one hour has 3600 seconds, so we have that:

Vp = 95*1000/3600 m/s = 26.39m/s

Vc = 110*1000/3600 m/s = 30.56m/s

now, after the police car starts to accelerate, the velocity equation will be now.

The positions of the cars are:

P(t) = (a/2)*t^2 + v0*t + p0

Where a is the acceleration, v0 is the initial velocity, and p0 is the initial position.

We know that the difference in the velocity of the cars is two seconds, so after those the speeding car is:

(30.56m/s - 26.39m/s)*2s = 8.34m/s

Now we can write the position equations as:

Pp = 1m/s*t^2 + 26.39m/s*t + 0

Here i assume that the initial position of the car is at the 0 units in one axis.

Pc = 30.56m/s*t + 8.34m/s

Now we want to find the time at wich both positions are the same, and after that time the police car will go ahead of the speeding car.

1m/s*t^2 + 26.39m/s*t  = 30.56m/s*t + 8.34m/s

t^2 + (26.39 - 30.56)*t - 8.34 = 0

t^2 - 4.15*t - 8.34 = 0

Now we need to solve this quadratic equation:

t = (4.15 +/- √(4.15^2 - 4*1*(-8.34))/2 = (4.15 +/- 7.11)/2

From here we have two solutions, one positive and one negative, and we need to take the positive one:

t = (4.15 + 7.11)/2s = 11.26/2 s= 5.61s

And remember that the police car started accelerating two secnods after that the speeding car passed it, so the actual time is:

t = 5.61s + 2s = 7.61s

A real object with height of 3.20 cm is placed to the left of a converging lens whose focal length is 90cm. The image is on the right of the lens and 4.50cm tall and inverted. Where is the object? Where is the image? Is the image real or virtual?

Answers

Answer:

[tex]d_{o}[/tex] = 154 cm

[tex]d_{i}[/tex] = 216.6 cm

The image is real

Explanation:

[tex]h_{o}[/tex] = height of the object = 3.20 cm

[tex]h_{i}[/tex] = height of the image = 4.50 cm

f = focal length of the converging lens = 90 cm

[tex]d_{o}[/tex] = object distance from the lens = ?

[tex]d_{i}[/tex] = image distance from the lens = ?

using the equation for magnification

[tex]\frac{h_{i}}{h_{o}}= \frac{ d_{i}}{d_{o}}[/tex]

[tex]\frac{4.50}{3.20}= \frac{d_{i}}{d_{o}}[/tex]

[tex]d_{i}[/tex] = 1.40625 [tex]d_{o}[/tex]                        eq-1

using the lens equation

[tex]\frac{1}{d_{i}} + \frac{1}{d_{o}} = \frac{1}{f}[/tex]

using eq-1

[tex]\frac{1}{( 1.40625)d_{o}} + \frac{1}{d_{o}} = \frac{1}{90}[/tex]

[tex]d_{o}[/tex] = 154 cm

Using eq-1

[tex]d_{i}[/tex] = 1.40625 [tex]d_{o}[/tex]  

[tex]d_{i}[/tex] = 1.40625 (154)

[tex]d_{i}[/tex] = 216.6 cm

The image is real

A block is on a frictionless table, on earth. The block accelerates at 7.5 m/s when a 70 N horizontal force is applied to it. The block and table are set up on the moon. The acceleration due to gravity at the surface of the moon is 1.62 m/s. The weight of the block on the moon is closest to: O 9.5 N O 13 N O 11 N O 15 N O 7.7 N

Answers

Answer:

The weight of the block on the moon is 15 kg.

Explanation:

It is given that,

The acceleration of the block, a = 7.5 m/s²

Force applied to the box, F = 70 N

The mass of the block will be, [tex]m=\dfrac{F}{a}[/tex]

[tex]m=\dfrac{70\ N}{7.5\ m/s^2}[/tex]

m = 9.34 kg

The block and table are set up on the moon. The acceleration due to gravity at the surface of the moon is 1.62 m/s². The mass of the object remains the same. It weight W is given by :

[tex]W=m\times g[/tex]

[tex]W=9.34\ kg\times 1.62\ m/s^2[/tex]

W = 15.13 N

or

W = 15 N

So, the weight of the block on the moon is 15 kg. Hence, this is the required solution.

Final answer:

The mass of the block is approximately 9.33 kg, and when you multiply that by the acceleration due to gravity on the moon (1.62 m/s^2), you get a weight of approximately 15 N. Therefore, the closest answer is 15 N.

Explanation:

To solve this problem, we need to find the mass of the block first. We know on earth, Force (F) = mass (m) * acceleration (a). Given that the force is 70N, and the acceleration is 7.5 m/s, we can solve for m. So, m = F/a = 70N / 7.5 m/s = 9.33 kg (approximately).

Now, let's figure out the weight of the same block on the moon. Weight is calculated as mass times the acceleration due to gravity (Weight = m*g). On the moon, the acceleration due to gravity is 1.62 m/s^2, so Weight = 9.33 kg * 1.62 m/s^2 = 15.1 N (approximately).

So, the closest answer will be 15 N.

Learn more about Physics of Weight and Gravity here:

https://brainly.com/question/20324590

#SPJ3

You know from experiment that a certain solution of fissile material dissolved in liquid is almost exactly critical when placed in a cubical "tank" 40 cm in width. The mixture has thermal diffusion length Lth- 5 cm and thermal diffusion coefficient Dah 1 cm. You need to pump lots of this solution through a long, straight, thin-walled pipe, but you want to make sure that it remains subcritical in the pipe. What is the largest pipe diameter you can use if you want to make sure that the multiplication factor remains smaller than 0.95 no matter how long the pipe is? [For purposes of generating this estimate, assume that PFNL, p, and e remain the same in the pipe as in the cubical tank.]

Answers

Ham como assim pq ta em ingles

Calculate the heat required to raise the temperature of 75.1 g of mercury from 31.7 °C to 53.8 °C. The specific heat capacity of mercury is 0.14 J/(g∙ °C).

Answers

Answer:

232 J

Explanation:

Heat gained = mass × specific heat × increase in temperature

q = m C (T − T₀)

Given m = 75.1 g, C = 0.14 J/g/°C, T = 53.8°C, and T₀ = 31.7°C:

q = (75.1 g) (0.14 J/g/°C) (53.8°C − 31.7°C)

q = 232 J

Answer:

[tex]Q=232.36J[/tex]

Explanation:

The heat capacity (C) of a physical system depends on the amount of substance of that system. For a system formed by a single homogeneous substance, it is defined as:

[tex]C=mc(1)[/tex]

Here m is the mass of the system and c is the specific heat capacity.

The heat capacity is defined as the ratio between the heat absorbed by the system and the resulting temperature change:

[tex]C=\frac{Q}{\Delta T}(2)[/tex]

We equal (1) and (2) and solve for Q:

[tex]\frac{Q}{\Delta T}=mc\\Q=mc\Delta T\\Q=mc(T_f-T_i)\\Q=75.1g(0.14\frac{J}{g^\circ C})(53.8^\circ C-31.7^\circ C)\\Q=232.36J[/tex]

he magnetic flux through a loop of wire decreases from 1.7 Wb to 0.3 Wb in a time of 0.4 s. What was the average value of the induced emf, in units of volts?

Answers

Answer:

Induced emf through a loop of wire is 3.5 V.

Explanation:

It is given that,

Initial magnetic flux, [tex]\phi_i=1.7\ Wb[/tex]

Final magnetic flux, [tex]\phi_f=0.3\ Wb[/tex]

The magnetic flux through a loop of wire decreases in a time of 0.4 s, t = 0.4 s

We need to find the average value of the induced emf. It is equivalent to the rate of change of magnetic flux i.e.

[tex]\epsilon=-\dfrac{\phi_f-\phi_i}{t}[/tex]

[tex]\epsilon=-\dfrac{0.3\ Wb-1.7\ Wb}{0.4\ s}[/tex]

[tex]\epsilon=3.5\ V[/tex]

So, the value of the induced emf through a loop of wire is 3.5 V.

A car traveling at 105 km/h strikes a tree. The front end of the car compresses and the driver comes to rest after traveling 0.80 m. (a) What was the magnitude of the average acceleration of the driver during the collision? (b) Express the answer in terms of “g’s,” where 1.00 g = 9.80 m/s^2.

Answers

Answer:

Part a)

a = 531.7 m/s/s

Part b)

a = 54.25 g

Explanation:

Part a)

Initial speed of the car is given as

[tex]v = 105 km/h[/tex]

now we have

[tex]v = 29.2 m/s[/tex]

now we know that it stops in 0.80 m

now by kinematics we have

[tex]a = \frac{v_f^2 - v_i^2}{2d}[/tex]

so we will have

[tex]a = \frac{0 - 29.2^2}{2(0.80)}[/tex]

[tex]a = 531.7 m/s^2[/tex]

Part b)

in terms of g this is equal to

[tex]a = \frac{531.7}{9.80}[/tex]

[tex]a = 54.25 g[/tex]

Final answer:

The magnitude of the average acceleration of the driver during the collision is approximately -532.09 [tex]m/s^2[/tex], which is about 54.29 g's when expressed in terms of the acceleration due to gravity.

Explanation:

To calculate the magnitude of the average acceleration of the driver during the collision, we can use the following kinematic equation that relates velocity, acceleration, and distance:

[tex]v^2 = u^2 + 2a * s[/tex]

Where:
v is the final velocity (0 m/s, since the driver comes to a stop)

u is the initial velocity (105 km/h, which needs to be converted to m/s)

a is the acceleration (the quantity we want to find)

s is the stopping distance (0.80 m)

First, convert the velocity from km/h to m/s by multiplying by (1000 m/1 km)*(1 h/3600 s) to get approximately 29.17 m/s. Now we can solve for 'a' as follows:

[tex](0)^2 = (29.17 m/s)^2 + 2 * a * (0.80 m)-29.17^2 = 2 * a * 0.80a = -(29.17)^2 / (2 * 0.80)a = -532.09[/tex]

We find that the magnitude of the average acceleration is approximately [tex]-532.09 m/s^2[/tex]. To express this in terms of 'g's, we divide by the acceleration due to gravity [tex](9.80 m/s^2)[/tex]:

[tex]a_g = -532.09 / 9.80a_g =54.29 g's[/tex]

A spring that has a force constant of 1050 N/m is mounted vertically on the ground. A block of mass 1.95 kg is dropped from rest from height of 1.75 m above the free end of the spring. By what distance does the spring compress?

Answers

Answer:

25.2 cm

Explanation:

K = 1050 N/m

m = 1.95 kg

h = 1.75 m

By the conservation of energy, the potential energy of the block is converted into the potential energy stored in the spring

m g h = 1/2 x k x y^2

Where, y be the distance by which the spring is compressed.

1.95 x 9.8 x 1.75 = 1/2 x 1050 x y^2

33.44 = 525 x y^2

y = 0.252 m

y = 25.2 cm

Final answer:

The spring will compress by approximately 25.3 cm when a 1.95 kg block is dropped from a height of 1.75 m due to the conversion of gravitational potential energy into elastic potential energy.

Explanation:

The student's question is regarding the compression of a spring due to the gravitational potential energy of a mass that was dropped onto it. This problem can be solved by using the conservation of energy principle, where the potential energy of the block (due to its height) is converted into the spring's elastic potential energy when the spring is compressed.

To find the compression distance (x), we use the following steps:

Calculate the gravitational potential energy (PE) of the block using PE = mgh, where m is the mass of the block, g is the acceleration due to gravity (9.81 m/s2), and h is the height from which the block is dropped.Set the potential energy equal to the spring's elastic potential energy formula Us = 1/2 kx2, where k is the spring constant, and x is the compression distance.Solve for x to find the compression distance.

First we calculate the gravitational potential energy:

PE = mgh = (1.95 kg)(9.81 m/s2)(1.75 m) = 33.637875 J

Then we set this equal to the spring's potential energy and solve for x:

33.637875 J = 1/2 (1050 N/m) x2

x2 = (2 * 33.637875 J) / (1050 N/m)

x2 = 0.064067619

x = 0.253 J

Therefore, the spring compresses by approximately 0.253 meters or 25.3 centimeters.

An object with a height of 4.31 cm is placed 12.6 cm from a concave mirror. Determine the radius of the mirror if the image appears 8.77 cm from the mirror. Also determine the image height. 4. Repeat question 6 but for a convex mirror.

Answers

Explanation:

Given that,

Height of object = 4.31 cm

Distance of the object = -12.6 cm

Distance of the image = -8.77 cm

For concave mirror,

Using mirror's formula

[tex]\dfrac{1}{f}=\dfrac{1}{u}+\dfrac{1}{v}[/tex]

[tex]\dfrac{1}{f}=\dfrac{1}{-12.6}-\dfrac{1}{8.77}[/tex]

[tex]\dfrac{1}{f}=-\dfrac{10685}{55251}[/tex]

[tex]f=-\dfrac{55251}{10685}[/tex]

[tex]f = -5.17\ cm[/tex]

Radius of the mirror is

[tex]f = |\dfrac{R}{2}|[/tex]

[tex]r=2f[/tex]

[tex]r=2\times5.17[/tex]

[tex]r=10.34\ cm[/tex]

The magnification of the mirror,

[tex]m=-\dfrac{v}{u}[/tex]

[tex]\dfrac{h_{i}}{h_{o}}=\dfrac{v}{u}[/tex]

[tex]h_{i}=-h_{o}\times\dfrac{v}{u}[/tex]

[tex]h_{i}=-4.31\times\dfrac{8.77}{12.6}[/tex]

[tex]h_{i}=-2.99\ cm[/tex]

Now, For convex mirror,

Using mirror's formula

[tex]\dfrac{1}{f}=\dfrac{1}{u}+\dfrac{1}{v}[/tex]

[tex]\dfrac{1}{f}=\dfrac{1}{-12.6}+\dfrac{1}{8.77}[/tex]

[tex]\dfrac{1}{f}=\dfrac{1915}{55251}[/tex]

[tex]f=\dfrac{55251}{1915}[/tex]

[tex]f = 28.85\ cm[/tex]

Radius of the mirror is

[tex]f = \dfrac{R}{2}[/tex]

[tex]r=2f[/tex]

[tex]r=2\times28.85[/tex]

[tex]r=57.7\ cm[/tex]

The magnification of the mirror,

[tex]m=-\dfrac{v}{u}[/tex]

[tex]\dfrac{h_{i}}{h_{o}}=\dfrac{v}{u}[/tex]

[tex]h_{i}=-h_{o}\times\dfrac{v}{u}[/tex]

[tex]h_{i}=4.31\times\dfrac{8.77}{12.6}[/tex]

[tex]h_{i}=2.99\ cm[/tex]

Hence, This is the required solution.

A strong electromagnet produces a uniform magnetic field of 1.60 T over a cross-sectional area of 0.340 m2. A coil having 190 turns and a total resistance of 16.0 Ω is placed around the electromagnet. The current in the electromagnet is then smoothly reduced until it reaches zero in 20.0 ms. What is the current induced in the coil?

Answers

Answer:

i = 323 A

Explanation:

Initial flux due to magnetic field from the coil is given as

[tex]\phi = NB.A[/tex]

here we will have

[tex]N = 190 [/tex]

[tex]B = 1.60 T[/tex]

[tex]A = 0.340 m^2[/tex]

now the flux is given as

[tex]\phi_1 = (190)(1.60)(0.340) = 103.36 T m^2[/tex]

finally current in the electromagnet changed to zero

so final flux in the coil is zero

[tex]\phi_2 = 0[/tex]

now we know that rate of change in flux will induce EMF in the coil

so we will have

[tex]EMF = \frac{\phi_1 - \phi_2}{\Delta t}[/tex]

[tex]EMF = \frac{103.36 - 0}{20 \times 10^{-3}}[/tex]

[tex]EMF = 5168 Volts[/tex]

now induced current is given as

[tex]i = \frac{EMF}{R}[/tex]

[tex]i = \frac{5168}{16} = 323 A[/tex]

A rock climber hangs freely from a nylon rope that is 15 m long and has a diameter of 8.3 mm. If the rope stretches 5.1 cm, what is the mass of the climber? Young's modulus for nylon is Y=0.37Ã10^10N/m^2.

Answers

Answer:

Mass of the climber = 69.38 kg

Explanation:

Change in length

        [tex]\Delta L=\frac{PL}{AE}[/tex]

Load, P = m x 9.81 = 9.81m

Young's modulus, Y = 0.37 x 10¹⁰ N/m²

Area

       [tex]A=\frac{\pi (8.3\times 10^{-3})^2}{4}=5.41\times 10^{-5}m^2[/tex]

Length, L = 15 m

ΔL = 5.1 cm = 0.051 m

Substituting

       [tex]0.051=\frac{9.81m\times 15}{5.41\times 10^{-5}\times 0.37\times 10^{10}}\\\\m=69.38kg[/tex]  

Mass of the climber = 69.38 kg

Estimate the mass of water that must evaporate from the skin to cool the body by 0.45 ∘C. Assume a body mass of 95 kg and assume that the specific heat capacity of the body is 4.0 J/g⋅∘C.

Answers

Final answer:

The mass of water that needs to evaporate from the skin to reduce a body temperature by 0.45°C is calculated using the body's specific heat capacity, body mass and the latent heat of vaporization of water. First, we find the energy required to cool the body by the temperature change and then find the mass of water that would embody that amount of energy.

Explanation:

The question is asking for the calculation of the mass of water that should evaporate from the skin to reduce the body temperature by 0.45°C. To find this, we need to first understand that evaporation is a main method for body cooling, and it involves a considerable amount of energy being taken from the skin as water changes into vapor.

The energy for evaporating water is explained by the equation Qv = m * Lv where Qv stands for heat energy, m represents mass and Lv is the latent heat of vaporization of water. Given that the specific heat capacity of the body is 4.0 J/g °C and the body mass is 95 kg, the amount of energy required to cool the body by 0.45°C is calculated by multiplying these values (body mass in grams * temperature change in °C * specific heat capacity).

After calculating this energy, we get how much heat needs to be removed from the body to achieve the desired temperature reduction. Lastly, to find the mass of water to be evaporated, we use the equation Qv = m * Lv again but rearrange it as m = Qv / Lv (as Lv = 2256 kJ/kg). This gives us the amount of water that needs to evaporate from the body to reduce the temperature by 0.45°C.

Learn more about Heat Transfer here:

https://brainly.com/question/13433948

#SPJ3

Light is refracted as it travels from a point A in medium 1 to a point B in medium 2. If the index of refraction is 1.33 in medium 1 and 1.51 in medium 2, how much time does it take for light to go from A to B, assuming it travels 331 cm in medium 1 and 151 cm in medium 2?

Answers

Answer: [tex]0.000001475s=1.475\mu s[/tex]

Explanation:

The index of refraction [tex]n[/tex] is a number that describes how fast light propagates through a medium or material.  

Being its equation as follows:  

[tex]n=\frac{c}{v}[/tex] (1)

Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum and [tex]v[/tex] its speed in the other medium.

So, from (1) we can find the velocity at which the light travels and then the time it requires to travel : [tex]v=\frac{c}{n}[/tex] (2)

For medium 1:

[tex]n_{1}=1.33[/tex]

[tex]v_{1}=\frac{c}{n_{1}}[/tex] (3)

[tex]v_{1}=\frac{3(10)^{8}m/s}{1.33}=225563909.8m/s[/tex] (4)

For medium 2:

[tex]n_{2}=1.51[/tex]

[tex]v_{2}=\frac{c}{n_{2}}[/tex] (5)

[tex]v_{2}=\frac{3(10)^{8}m/s}{1.51}=198675496.7m/s[/tex] (6)

On the other hand, the velocity [tex]v[/tex] is the distance [tex]d[/tex] traveled in a time [tex]t[/tex]:

[tex]v=\frac{d}{t}[/tex] (7)

We can isolate [tex]t[/tex] from (7) and find the value of the required time:

[tex]t=\frac{d}{v}[/tex] (8)

In this case the total time will be:

[tex]t=t_{1}+t_{2}=\frac{d_{1}}{v_{1}}+\frac{d_{2}}{v_{2}}[/tex] (9)

Where:

[tex]d_{1}=331cm=3.31m[/tex] is the distance the light travels in medium 1

[tex]d_{2}=151cm=1.51m[/tex] is the distance the light travels in medium 2

[tex]v_{1}=225563909.8m/s[/tex] is the velocity of light in medium 1

[tex]v_{2}=198675496.7m/s[/tex] is the velocity of light in medium 2

[tex]t=t_{1}+t_{2}=\frac{3.31m}{225563909.8m/s}+\frac{1.51m}{198675496.7m/s}[/tex] (10)

Finally:

[tex]t=0.000001475s=1.475(10)^{-6}s=1.475\mu s[/tex] (10)

Final answer:

Light takes different amounts of time to travel through different media due to refraction. The time can be calculated by dividing the distance traveled in each medium by the speed of light in that medium.

Explanation:

When light travels from one medium to another, it changes direction, a phenomenon called refraction. The time it takes for light to travel from point A to point B in this case can be calculated by dividing the distance traveled in each medium by the speed of light in that medium. In medium 1, the distance traveled is 331 cm and the index of refraction is 1.33. In medium 2, the distance traveled is 151 cm and the index of refraction is 1.51.

Using the equation time = distance / speed, we can calculate the time it takes for light to travel in each medium.

In medium 1: time1 = 331 cm / speed1

In medium 2: time2 = 151 cm / speed2

Elliptical galaxies are frequently found a) Inside the Milky Way b) In galaxy clusters c) In the Galactic bulge d) In the Local Group e) None of the above

Answers

Answer:

The correct option is b) In galaxy clusters

Explanation:

A type of galaxy that appear elliptical in shape and have an almost featureless and smooth image is known as the elliptical galaxy.

An elliptical galaxy is three dimensional and consists of more than one hundred trillion stars which are present in random orbits around the centre.

Elliptical galaxy is generally found in the galaxy clusters.

Two long parallel wires are separated by 15 cm. One of the wires carries a current of 34 A and the other carries a current of 69 A. The permeabilty of free space is 1.257 × 10−6 N · m/A. Determine the magnitude of the magnetic force on a 5.9 m length of the wire carrying the greater current. Answer in units of mN

Answers

Answer:

F = 0.018 N

Explanation:

Magnetic force between two parallel current carrying wires is given by

[tex]F = \frac{\mu_0 i_1 i_2 L}{2\pi d}[/tex]

here we know that

[tex]i_1 = 34 A[/tex]

[tex]i_2 = 69 A[/tex]

d = 15 cm

L = 5.9 m

now from above formula we can say

[tex]F = \frac{(4\pi \times 10^{-7})(34 A)(69 A)5.9}{2\pi (0.15)}[/tex]

now the force between two wires is given as

[tex]F = 0.018 N[/tex]

A rock is propelled off a pedestal that is 10 meters off the level ground. The rock leaves the pedestal with a speed of 18 meters per second at an angle above the horizontal of 20 degrees. How high does the rock get, and how far downrange from the pedestal does the rock land?

Answers

Answers:  

a) How high does the rock get?=1.933m

b)How far downrange from the pedestal does the rock land?=21.25m

Explanation:

This situation is a good example of projectile motion or parabolic motion, in which the travel of the rock has two components: x-component and y-component. Being their main equations as follows:  

x-component:  

[tex]x=V_{o}cos\theta t[/tex]   (1)  

[tex]V_{x}=V_{o}cos\theta[/tex]   (2)  

Where:  

[tex]V_{o}=18m/s[/tex] is the rock's initial speed  

[tex]\theta=20\°[/tex] is the angle

[tex]t[/tex] is the time since the rock is propelled until it hits the ground  

y-component:  

[tex]y=y_{o}+V_{o}sin\theta t-\frac{gt^{2}}{2}[/tex]   (3)  

[tex]V_{y}=V_{o}sin\theta-gt[/tex]   (4)  

Where:  

[tex]y_{o}=10m[/tex]  is the initial height of the rock

[tex]y=0[/tex]  is the final height of the rock (when it finally hits the ground)  

[tex]g=9.8m/s^{2}[/tex]  is the acceleration due gravity

Knowing this, let's begin with the anwers:

a) How high does the rock get?

Here we are talking about the maximun height [tex]y_{max}[/tex] the rock has in its parabolic motion. This is fulfilled when [tex]V_{y}=0[/tex].

Rewritting (4) with this condition:

[tex]0=V_{o}sin\theta-gt[/tex]   (5)  

Isolating [tex]t[/tex]:

[tex]t=\frac{V_{o}sin\theta}{g}[/tex]  (6)  

Substituting (6) in (3):

[tex]y_{max}=y_{o}+V_{o}sin\theta(\frac{V_{o}sin\theta}{g})-\frac{1}{2}g(\frac{V_{o}sin\theta}{g})^{2}[/tex]   (7)  

[tex]y_{max}=\frac{V_{o}^{2}sin^{2}\theta}{2g}[/tex]   (8)  

Solving:

[tex]y_{max}=\frac{(18m/s)^{2}sin^{2}(20\°)}{2(9.8m/s^{2})}[/tex]   (9)  

Then:

[tex]y_{max}=1.933m[/tex]   (10) This is the maximum height the rock has.

b) How far downrange from the pedestal does the rock land?

Here we are talking about the maximun horizontal distance [tex]x_{max}[/tex] the rock has in its parabolic motion (this is fulfilled when [tex]y=0[/tex]):

[tex]0=y_{o}+V_{o}sin\theta t-\frac{gt^{2}}{2}[/tex] (11)  

Isolating [tex]t[/tex] from (11):

[tex]t=\frac{2V_{o}sin\theta}{g}[/tex] (12)  

Substituting (12) in (1):

[tex]x_{max}=V_{o}cos\theta (\frac{2V_{o}sin\theta}{g})[/tex]   (13)

[tex]x_{max}=\frac{V_{o}^{2}(2cos\theta sin\theta)}{g}[/tex]   (14)

Knowing [tex]sin(2\theta)=2cos\theta sin\theta[/tex]:

[tex]x_{max}=\frac{V_{o}^{2}sin2\theta}{g}[/tex]   (15)

Solving:

[tex]x_{max}=\frac{(18m/s)^{2}sin2(20)}{9.8m/s^{2}}[/tex]   (16)

Finally:

[tex]x_{max}=21.25m[/tex]   (17)

An infnitely long metal cylinder rotates about its symmetry axis with an angular velocity omega. The cylinder is charged. The charge density per unit volume is sigma . Find the magnetic field within the cylinder.

Answers

Answer:

[tex]B = \frac{\mu_0 \rho r^2 \omega}{2}[/tex]

Explanation:

Let the position of the point where magnetic field is to be determined is at distance "r" from the axis of cylinder

so here total charge lying in this region is

[tex]q = \rho(\pi r^2 L)[/tex]

now magnetic field inside the cylinder is given as

[tex]B = \frac{\mu_0 N i}{L}[/tex]

here current is given as

[tex]i = \frac{q\omega}{2\pi}[/tex]

[tex]i = \frac{\rho (\pi r^2 L) \omega}{2\pi}[/tex]

[tex]i = \frac{\rho r^2 L \omega}{2}[/tex]

now magnetic field is given as

[tex]B = \frac{\mu_0 \rho r^2 L \omega}{2L}[/tex]

[tex]B = \frac{\mu_0 \rho r^2 \omega}{2}[/tex]

A space probe is orbiting a planet on a circular orbit of radius R and a speed v. The acceleration of the probe is a. Suppose rockets on the probe are fired causing the probe to move to another circular orbit of radius 0.5R and speed 2v. What is the magnitude of the probe’s acceleration in the new orbit?

Answers

Answer:

acceleration in the new orbit is 8 time of acceleration of planet in old orbit

[tex]a_{new} = 8a.[/tex]

Explanation:

given data:

radius of orbit = R

Speed pf planet = v

new radius = 0.5R

new speed = 2v

we know that acce;ration is given as

[tex]a = \frac{v^{2}}{R},[/tex]

[tex]a_{new} =\frac{(2v)^{2}}{0.5R},[/tex]

           [tex]= \frac{4v^{2}}{0.5R}[/tex]

          [tex]= \frac{8 v^{2}}{R}[/tex]

[tex]a_{new} = 8a.[/tex]

acceleration in the new orbit is 8 time of acceleration of planet in old orbit

The magnitude of the probe’s acceleration in the new orbit is 8 times the magnitude of the probe’s acceleration in the old orbit.

What is centripetal acceleration?

The acceleration acted on the body moving in a closed circular path towards the center of the curve is known as centripetal acceleration. Due to centripetal acceleration, the body is able to move in a closed circular path.

[tex]a_C=\frac{V^{2} }{R}[/tex]

For old orbit

the radius of orbit = R

Speed pf planet = v

[tex]a_C=\frac{V^{2} }{R}[/tex]

For new orbits

new radius = 0.5R

new speed = 2v

[tex]a_C=\frac{(2V)^{2} }{0.5R}[/tex]³

[tex]a_C=\frac{8V^{2} }{R}[/tex]

Hence,

[tex]a_C_{new}=8a_C__{old}[/tex]

The magnitude of the probe’s acceleration in the new orbit is 8 times the magnitude of the probe’s acceleration in the old orbit.

To learn more about centripetal acceleration refers to the link

https://brainly.com/question/17689540

A magnetic field directed along the x-axis changes with time according to B (0.06t2+2.25) T, where t is in seconds. The field is confined to a circular beam of radius 2.00 cm. What is the magnitude of the electric field at a point 1.33 cm measured perpendicular from the x-axis when t 2.50 s? N/m

Answers

Answer:

[tex]E = 2 \times 10^{-3} V[/tex]

Explanation:

As we know that rate of change in flux will induce EMF

So here we can

[tex]EMF = \frac{d\phi}{dt}[/tex]

now we have

[tex]EMF = \pi r^2\frac{dB}{dt}[/tex]

now we also know that induced EMF is given by

[tex]\int E. dL = \pi r^2\frac{dB}[dt}[/tex]

[tex]E (2\pi r) = \pi r^2\frac{dB}{dt}[/tex]

[tex]E = \frac{r}{2}(\frac{dB}{dt})[/tex]

now plug in all values in it

[tex]E = \frac{0.0133}{2}(0.12 t)[/tex]

[tex]E = 8 \times 10^{-4} (2.50) = 2 \times 10^{-3} V/m[/tex]

Suppose 1.4 mol of an ideal gas is taken from a volume of 2.5 m3 to a volume of 1.0 m3 via an isothermal compression at 27°C. (a) How much energy is transferred as heat during the compression, and (b) is the transfer to or from the gas?

Answers

Answer:

Part a)

Q = 3198 J

Part b)

It is compression of gas so this is energy transferred to the gas

Explanation:

Part a)

Energy transfer during compression of gas is same as the work done on the gas

In isothermal process work done is given by the equation

[tex]W = nRT ln(\frac{V_2}{V_1})[/tex]

now we know that

n = 1.4 moles

T = 27 degree C = 300 K

[tex]V_2 = 2.5 m^3[/tex]

[tex]V_1 = 1 m^3[/tex]

now we have

[tex]W = (1.4)(8.31)(300)(ln\frac{2.5}{1})[/tex]

[tex]Q = 3198 J[/tex]

Part b)

It is compression of gas so this is energy transferred to the gas

Other Questions
A point is one-dimensional.A.trueB.false Suppose that global warming might raise sea levels such that much of Bangladesh would be flooded soon after the year 2050. The government of Bangladesh is considering two options for addressing this issue. Option 1 is to pay $8 billion today (year 2016) to reduce emissions. Option 2 is to build up levies in 34 years (year 2050) which is estimated to cost $25 billion at that time. Should government act now or later if the discount rate is 3%?What is the present value of reducing emissions in year 2016? (Express your answer as an integer.)What is the present value of building up levies in 34 years? (Include two digits after the decimal point.)Should government act now or later, under these assumptions, and based on economic grounds? Isabel wanted her box of candy to last 6 days. If the box weighs one- half of poundhow much should she eat each day. A gene editing technology called CRISPR-Cas9 uses cellular machine to change the cells genetic material. How might this technology be used in treating diseases like cancer? A proton moves perpendicularly to a uniform magnetic field B with a speed of 1.5 107 m/s and experiences an acceleration of 0.66 1013 m/s 2 in the positive x direction when its velocity is in the positive z direction d the magnitude of the field. The elemental charge is 1.60 1019 C . Answer in units of T. Given f(x), find g(x) and h(x) such that f(x) = g(h(x)) and neither g(x) nor h(x) is solely x.f(x)=2/5x-1 Elsa sold 37 pairs of earrings for $20 each at the craft fair. She is going to use 1/4 of the money to buy new CDs and is going to put the rest of the money in her savings account. How much money will she put into her savings account?Let s stand for the amount of money saved.How much money did she spend on CDs?How much money did she put in her savings account?Show your work. Two sisters like to compete on their bike rides. Tamara can go 4 mph faster than her sister, Samantha. If it takes Samantha 1 hour longer than Tamara to go 80 miles, how fast can Samantha ride her bike? Lava flows shaped the basins that formed the Great Lakes. A. TrueB. False Nos layamos el pelo en_________.?A. el jardnB. el baoc. la mesaD. la cocina Swaziland has the highest HIV prevalence in the world : 25.9% of this countrys population is infected with HIV. The ELISA test is one of the first and most accurate tests for HIV. For those who carry HIV, the ELISA test is 99.7% accurate. For those who do not carry HIV, the ELISA test is 92.6% accurate. 1. If an individual from Swaziland has tested positive, what is the probability that he carries HIV ? 2. If an individual from Swaziland has tested negative, what is the probability that he is HIV free ? what is the solution of the inequality shown below? c+6>-1 A 78 kg skydiver can be modeled as a rectangular "box" with dimensions 24 cm 35 cm 170 cm . If he falls feet first, his drag coefficient is 0.80.What is his terminal speed if he falls feet first? Use ? = 1.2 kg/^m3 for the density of air at room temperature. The pineal body secretes which hormone that maintains the body's internal clock, the 24-hour wake-sleep cycle, and regulates the onset and duration of sleep?a. oxytocinb. calcitoninc. melatonind. cortisol PLEASE HELP ME ON THIS!! evaluate -7(x-4y) when x=-4 and y= -6 A fair number cube is rolled. What is the probability that a number greater than 2 is rolled Which sentence uses capitalization correctly?(A)The book is about a japanese prince.(B)Have you ever read Murasaki Shikibus book?(C)His book is called The tale of genji. ind an equation for the nth term of the arithmetic sequence.a14 = -33, a15 = 9 for many patients a health agency can feel like