A person exerts a horizontal force of 190 n in the test apparatus shown in the figure. Find the horizontal force that his flexor muscle exerts on his forearm.

Answers

Answer 1

Answer:

Check explanation.

Explanation:

From the question, we know that The person exerted 190N, force on the flexor is unknown. Since, we don't have access to our diagram, we have to make one or two assumption; (1) that ba= 0.3 m, ac= 0.05.

Therefore, the horizontal force that his flexor muscle exerts on his forearm,F(flexor) = (190N) × (0.3m) / 0.05m.

The horizontal force that his flexor muscle exerts on his forearm,F(flexor) = 57 Nm/ 0.05 m.

The horizontal force that his flexor muscle exerts on his forearm,F(flexor) = 1140N.

Answer 2
Final answer:

Using principles of physics, specifically equilibrium, we know the force exerted by muscles can be greater than the load they support, especially when the load is distant from the joint. In the case of a 190 N horizontal force, the exact force of the flexor muscle can't be calculated without more information, but it's likely larger than 190 N.

Explanation:

To answer the student's question, we must refer to concepts in physics, specifically the principle of equilibrium and the analysis of free-body diagrams. Given that the student is trying to find the force that a person's flexor muscle exerts horizontally when the person exerts a horizontal force of 190 N.

As mentioned in the provided information, forces and tensions in muscles and joints can be quite substantial. In this scenario, the flexor muscle in the forearm is acting against the applied force to maintain balance or equilibrium. This can be seen in the free-body diagram where forces are broken down into their x- and y-components.

It's important to note that the force exerted by muscles can be far greater than the load they support, especially when the load is a considerable distance from the joint, as stated in the provided text snippet. This may be relevant when analyzing the muscle force in this scenario.

Unfortunately, without more specific details about the angles involved and the exact configuration of the arm and forearm in the test apparatus, we can't calculate the exact force exerted by the flexor muscle. However, we can say that it's likely to be substantially larger than the 190 N applied force, considering the principles discussed above.

Learn more about the Force exerted by muscles here:

https://brainly.com/question/22177536

#SPJ11


Related Questions

A horse runs a race on a oval track and starts and ends at the same point. He runs one mile track in 7 minutes.

What is the horse's velocity


A. 0 mph


B. 7 mph


C. 14 mph


D. 20 mph

Answers

Final answer:

The horse's velocity after completing a mile on an oval track and ending at the starting point is 0 mph. However, if considering speed, the horse runs at approximately 8.57 mph. The given options do not accurately represent this calculation.

Explanation:

The question pertains to determining the velocity of a horse after running a complete race on an oval track, where the start and end points are the same. In physics, velocity is a vector quantity, meaning it has both magnitude and direction. Since the horse starts and finishes at the same point, the displacement over the course of the race is zero. Consequently, the average velocity is also zero because velocity is displacement divided by time.

In this scenario however, we are looking for speed, which is a scalar quantity and only considers magnitude, not direction. Speed is total distance divided by time. The horse runs a one mile track in 7 minutes. To find the speed, first convert 7 minutes to hours:

7 minutes = 7/60 hours = 0.1167 hours

Then divide the distance (1 mile) by the time in hours to find the speed:

Speed = 1 mile / 0.1167 hours = approximately 8.57 mph

Since none of the options matches this calculation, it seems there might be a mistake in the provided answer choices. If we had to choose from the given options and ignore the direction of the horse's travel, B. 7 mph would be the closest to the calculated value, albeit still not accurate.

A uniform rectangular plate of length B = 15 cm and height A = 24 cm has a rectangular corner cut out of it of length D = 6 cm and height C = 8 cm. The plate is made of a material of area mass density σ. For this problem we set the origin at the lower left corner of the plate with the x-axis horizontal pointing right and the y-axis vertical pointing up.

a. Calculate the value of the y-coordinate, in centimeters, for the center of mass of the plate.

b. Calculate the value of the x-coordinate, in centimeters, for the center of mass of the plate.

Answers

Final answer:

The center of mass for a rectangle with a corner cut out can be calculated using the centroid formula by considering the plate and the cut-out as separate figures and then determining the average weighted by area.

Explanation:

This problem concerns the calculation of the center of mass for 2-dimensional figures. The center of mass represents the point at which we could balance the object in a uniform gravitational field and is calculated by integrating the mass distributed in the object.

First, consider that area mass density σ is constant. Thus, this is equivalent to finding the centroid of the shape. The location of the centroid C (x,y) is given by:

x = (A1x1 + A2x2)/(A1 + A2)

and

y = (A1y1 + A2y2)/(A1 + A2)

where Ax and Ay represent the area and centroid coordinate of the individual figure, respectively. For this problem, A1 is the whole rectangular plate and A2 is the cutout. The centroid of a rectangle is at the midpoint of its diagonals, so the x and y coordinates for A1 are (B/2, A/2) and for A2 are (D, D/2).

Then, the x-coordinate for the center of mass becomes, x = [(AB*(B/2) - CD*(D/2)]/(AB - CD) and y-coordinate for center of mass becomes, y = [(AB*(A/2) - CD*(C/2)]/(AB - CD) Calculate them to get numerical value.

Learn more about the Center of Mass here:

https://brainly.com/question/33607198

#SPJ3

A mass of 0.40 kg, hanging from a spring with a spring constant of 80 N/m, is set into an up-and-down simple harmonic motion. What is the speed of the mass when moving through the equilibrium point? The starting displacement from equilibrium is 0.10 m.

Answers

The speed of the mass when moving through the equilibrium point is 1.22 m/s.

Calculation of the mass speed:

But before that the angular frequency is

[tex]= \sqrt{\frac{80}{0.4} }[/tex]

= 14.14 rad/s

Now

The mass speed should be

[tex]= 14.14 \sqrt{(0.10)^2 - (0.05)^2}[/tex]

= 1.22 m/s

Learn more about the mass here: https://brainly.com/question/16030328

Final answer:

The speed of a 0.40-kg mass moving through the equilibrium point in simple harmonic motion with a spring constant of 80 N/m and an initial displacement of 0.10 m is 2 m/s.

Explanation:

The speed of the mass when moving through the equilibrium point in a scenario of simple harmonic motion can be determined using the formula for the maximum speed of an object in simple harmonic motion. This formula is v = √(k/m) * A, where v is the speed, k is the spring constant, m is the mass, and A is the amplitude, which in this case is the initial displacement of the object from equilibrium.

So, to calculate the speed of this 0.40-kg mass with a spring constant of 80 N/m as it passes through equilibrium, we plug those values into the formula:

v = √[(80 N/m) / (0.40 kg)] * (0.10 m) = 2 m/s.

Learn more about Simple Harmonic Motion here:

https://brainly.com/question/28208332

#SPJ11

Which of the following is true about the speed of light?

A.) It is a constant when the light is traveling in a vacuum.

B.) It speeds up or slows down depending on the observer.

C.) It is slowest in a vacuum.

D.) It varies depending on the color of the light.

Answers

Answer:

It is a constant when the light is traveling in a vacuum.

Explanation:

What is the name of moving fields of angular blocks which are formed by gravity and the freezing-thawing cycle? A. Scree B. Talus C. Bedrock slumps D. Bedrock slides E. Rock glaciers

Answers

Answer:

Option (E)

Explanation:

The Rock glaciers are a type of landform that is formed due to the downward motion of angular blocks under the influence of gravity and the continuous cycle of freeze and thaw method. It mostly occurs in the steep slopes where the soil particles and the rock materials are prone to landslide. Here, the materials are mixed and covered with ice. This also occurs in the region where the permafrost layer undergoes creeping.

This downward motion of ice erodes the soil particles and carries with them further, from the site of talus cone or moraines and extends outward.

Thus, the correct answer is option (E).

Answer:

one of it is e

Explanation:

1. A pair of oppositely charged parallel plates is separated by 5.51 mm. A potential difference of 614 V exists between the plates. What is the strength of the electric field between the plates? The fundamental charge is 1.602 × 10?19 . Answer in units of V/m.
2. What is the magnitude of the force on an electron between the plates? Answer in units of N.
3. How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.7 mm from the positive plate? Answer in units of J.

Answers

Answer:

Part a)

[tex]E = 1.11 \times 10^5 N/C[/tex]

Part 2)

[tex]F = 1.78 \times 10^{-14} N[/tex]

Part 3)

[tex]W = 5 \times 10^{-17} J[/tex]

Explanation:

Part 1)

As we know that electric field and potential difference related to each other as

[tex]E = \frac{\Delta V}{x}[/tex]

so we will have

[tex]\Delta V = 614 V[/tex]

[tex]x = 5.51 mm[/tex]

so we have

[tex]E = \frac{614}{5.51 \times 10^{-3}}[/tex]

[tex]E = 1.11 \times 10^5 N/C[/tex]

Part 2)

Charge of an electron

[tex]e = 1.6 \times 10^{-19} C[/tex]

now force is given as

[tex]F = qE[/tex]

[tex]F = (1.6 \times 10^{-19})(1.11 \times 10^5)[/tex]

[tex]F = 1.78 \times 10^{-14} N[/tex]

Part 3)

Work done to move the electron

[tex]W = F.d[/tex]

[tex]W = (1.78 \times 10^{-14})(5.51 - 2.7) \times 10^{-3}[/tex]

[tex]W = 5 \times 10^{-17} J[/tex]

The magnitude of the tidal force between the International Space Station (ISS) and a nearby astronaut on a spacewalk is approximately

2GmMa/r3 . In this expression, M is the mass of the Earth, r=6.79×106m is the distance from the center of the Earth to the orbit of the ISS, m=135kg is the mass of the astronaut, and a=13m is the distance from the astronaut to the center of mass of the ISS. Calculate the magnitude of the tidal force for this astronaut. This force tends to separate the astronaut from the ISS if the astronaut is located along the line that connects the center of the Earth with the center of mass of the ISS.

Answers

Answer:

F = 4.47 10⁻⁶ N

Explanation:

The expression they give for the strength of the tide is

      F = 2 G m M a / r³

Where G has a value of 6.67 10⁻¹¹ N m² / kg² and M which is the mass of the Earth is worth 5.98 10²⁴ kg

They ask us to perform the calculation

      F = 2 6.67 10⁻¹¹ 135  5.98 10²⁴ 13 / (6.79 10⁶)³

      F = 4.47 10⁻⁶ N

This force is directed in the single line at the astronaut's mass centers and the space station

A 50.1 kg diver steps off a diving board and drops straight down into the water. The water provides an average net force of resistance of 1598 N to the diver’s fall. If the diver comes to rest 5.2 m below the water’s surface, what is the total distance between the diving board and the diver’s stopping point underwater? The acceleration due to gravity is 9.81 m/s 2. Answer in units of m.

Answers

Answer:

The total distance is 16.9 m

Explanation:

We understand work in physics as certain force exerted through certain distance. To reach that point below the water, the work done by the diver must be equal to the work done by the water's force of resistance. Therefore, we determine both work expressions and we solve the equation for the diver distance, which is the total distance between the diving board and the stopping point underwater.

[tex]W_{d}: work done by diver\\W_{R}: work due the force of resistance\\W_{d} = W_{R}\\F_{d}\times d_{d}=F_R \times d_{R}\\d_{d}= \frac{F_R \times d_R}{F_d}= \frac{F_R \times d_R}{m_d \times g}= \frac {1598 N \times 5.2 m}{50.1 kg \times 9.81 m/s^2}\\d_{d}= 16. 91 m[/tex]

Mimas, a moon of Saturn, has an orbital radius of 1.62 × 108 m and an orbital period of about 23.21 h. Use Newton’s version of Kepler’s third law and these data to find the mass of Saturn. Answer in units of kg.

Answers

Answer:

[tex]3.60432\times 10^{26}\ kg[/tex]

Explanation:

a = Orbital radius = [tex]1.62\times 10^8\ m[/tex]

T = Orbital period = 23.21 hours

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

From Kepler's third law we get

[tex]M=\frac{4\pi^2a^3}{GT^2}\\\Rightarrow M=\frac{4\pi^2\times (1.62\times 10^8)^3}{6.67\times 10^{-11}\times (23.21\times 3600)^2}\\\Rightarrow M=3.60432\times 10^{26}\ kg[/tex]

From the given data the mass of Saturn is [tex]3.60432\times 10^{26}\ kg[/tex]

Final answer:

To find the mass of Saturn, we can use Newton's version of Kepler's third law. Given the orbital radius and period of Saturn's moon Mimas, we can use the equation p² = a³ to calculate the mass of Saturn. Using the provided data, the mass of Saturn is approximately 5.69 x 10^26 kg.

Explanation:

To find the mass of Saturn, we can use Newton's version of Kepler's third law. Kepler's third law states that the square of the orbital period of a planet or moon is proportional to the cube of its semimajor axis. We can use the equation p² = a³ to solve for the mass of Saturn. Given that the orbital radius of Mimas, a moon of Saturn, is 1.62 × 108 m and its orbital period is about 23.21 h, we can use this data to find the mass of Saturn.

First, convert the orbital period to seconds: 23.21 h = 23.21 x 60 x 60 s = 83,556 s. Next, plug the values into the equation p² = a³: (83,556 s)² = (1.62 × 10^8 m)³. Solving for a³, we get a³ = (83,556 s)² / (1.62 × 10^8 m)³ = 38.3 x 10^18 s²/m³.

Now, rearrange the equation to solve for the mass of Saturn: mass of Saturn = (a³ x 4π²) / (G), where G is the gravitational constant. Plug in the known values: mass of Saturn = (38.3 x 10^18 s²/m³ x 4π²) / (6.67 x 10^-11 N m²/kg²). Calculating this, we get a mass of Saturn of approximately 5.69 x 10^26 kg.

A balloon is filled to a volume of 7.00*10^2 mL at a temperature of 20.0°C. The balloon is then cooled at constant pressure to a temperature of 1.00*10^2 K. What is the final volume of the balloon?

Answers

The final volume of the gas is 238.9 mL

Explanation:

We can solve this problem by using Charle's law, which states that for a gas kept at constant pressure, the volume of the gas (V) is proportional to its absolute temperature (T):

[tex]\frac{V}{T}=const.[/tex]

Which can be also re-written as

[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

where

[tex]V_1, V_2[/tex] are the initial and final volumes of the gas

[tex]T_1, T_2[/tex] are the initial and final temperature of the gas

For the gas in the balloon in this problem, we have:

[tex]V_1 = 7.00\cdot 10^2 mL = 700 mL[/tex] is the initial volume

[tex]T_1=20.0^{\circ}C+273=293 K[/tex] is the initial absolute temperature

[tex]V_2[/tex] is the final volume

[tex]T_2 = 1.00\cdot 10^2 K = 100 K[/tex] is the final temperature

Solving for [tex]V_2[/tex],

[tex]V_2 = \frac{V_1 T_2}{T_1}=\frac{(700)(100)}{293}=238.9 mL[/tex]

Learn more about ideal gases:

brainly.com/question/9321544

brainly.com/question/7316997

brainly.com/question/3658563

#LearnwithBrainly

Objects 1 and 2 attract each other with a gravitational force of 72.0 units. If the mass of Object 1 is one-fourth the original value AND the mass of object 2 is tripled AND the distance separating Objects 1 and 2 is halved, then the new gravitational force will be _____ units.

Answers

Final answer:

When the mass of Object 1 is reduced to one-fourth, the mass of Object 2 is tripled, and the separating distance is halved, the new gravitational force between these objects will be three times the original force. Thus, the new gravitational force will be 216.0 units.

Explanation:

The question asks us to determine the new gravitational force between two objects given that the mass of Object 1 is reduced to one-fourth of its original mass (so M1 becomes 0.25M1), the mass of Object 2 is tripled (so M2 becomes 3M2), and the distance separating the objects is halved (so R becomes 0.5R). Since gravitational force is calculated using the equation F = G*(M1*M2)/(R^2), where G is the universal gravitational constant, we can plug our new values into this equation.

So, the new gravitational force F' = G*(0.25M1 * 3M2)/(0.5R)^2. This simplifies further to F' = G*(0.75M1M2)/(0.25R^2) = 3 *(G*M1M2/R^2) = 3 * original force. Therefore, if the original force was 72.0 units, the new gravitational force is 3 * 72.0 = 216.0 units.

Learn more about Gravitational Force here:

https://brainly.com/question/32609171

#SPJ12

Final answer:

To find the new gravitational force between the objects, we can use Newton's Law of Universal Gravitation.

Explanation:

The new gravitational force can be calculated using Newton's Law of Universal Gravitation, which states that the force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.


Let's denote the original mass of Object 1 as m1, the original mass of Object 2 as m2, and the original distance separating them as d. The original gravitational force can be represented as:


F1 = G * (m1 * m2) / d²


After the given changes, the new mass of Object 1 is 1/4 * m1, the new mass of Object 2 is 3 * m2, and the new distance is 1/2 * d. Plugging these values into the equation, we find the new gravitational force:

F2 = G * ((1/4 * m1) * (3 * m2)) / (1/2 * d)²

Simplifying this equation will give us the answer.

Learn more about Gravitational force here:

https://brainly.com/question/32609171

#SPJ12

Calculate the force of friction that keeps an 80-kg person sitting on the edge of a horizontal rotating platform when the person sits 2 m from the center of the platform and has a tangential speed of 3 m/s.

Answers

Answer:

360N

Explanation:

The frictional force = centripetal force = mass * centripetal acceleration = ma

Since centripetal acceleration = V^2/ r

Frictional force = mv^2 / r

Substitute the values of m = 80kg, radius = 2m and tangential speed = 3m/s

Frictional force = 80 * (3)^2/ 2 = 360N

The force of friction that keeps the person sitting on the edge of the rotating platform is 360 N.

To calculate the force of friction that keeps an 80-kg person sitting on the edge of a horizontal rotating platform, we need to find the centripetal force required to keep the person moving in a circular path. The centripetal force is provided by the frictional force between the person and the platform.

 The formula for centripetal force [tex](\(F_c\))[/tex] is given by:

[tex]\[ F_c = \frac{mv^2}{r} \][/tex]

Let's plug in the values:

[tex]\[ F_c = \frac{(80\text{ kg})(3\text{ m/s})^2}{2\text{ m}} \][/tex]

[tex]\[ F_c = \frac{(80\text{ kg})(9\text{ m}^2/\text{s}^2)}{2\text{ m}} \][/tex]

[tex]\[ F_c = \frac{720\text{ kg}\cdot\text{m}/\text{s}^2}{2} \][/tex]

[tex]\[ F_c = 360\text{ N} \][/tex]

 Therefore, the force of friction that keeps the person sitting on the edge of the rotating platform is 360 N.

 The answer is: [tex]360\text{ N}[/tex]

Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting the flywheel up to its top speed of 689 rad/s. One such flywheel is a solid, uniform cylinder with a mass of 507 kg and a radius of 1.2 m that rotates about its central axis. What is the kinetic energy of the flywheel after charging

Answers

Answer:

k = 86,646,076.92 J

Explanation:

We know that:

K = [tex]\frac{1}{2}IW^2[/tex]

where K is the kinetic energy, I is the moment of inertia and W is the angular velocity.

First we have to find the I with the equation:

I = [tex]\frac{1}{2}MR^2[/tex]

where M is the mass and R the radius of the cylinder.

so:

I = [tex]\frac{1}{2}(507 kg)(1.2m)^2[/tex]

I = 365.04 kg*m^2

Now we replace all the data in the first equation as:

K = [tex]\frac{1}{2}IW^2[/tex]

K = [tex]\frac{1}{2}(365.04)(689)^2[/tex]

k = 86,646,076.92 J

When a stone is dropped into a pond, ripples form and move in concentric circles outward from the location of the stone impact. As the ripples move outward, they lose waves lose amplitude. If we neglect friction, why would the wave amplitude decrease the further they move outward?

Answers

Explanation:

When a stone is dropped into a pond, ripples form and move in concentric circles outward. This can be treated as a point source emitting waves. And for point source emitting waves

Intensity of the wave I = Source power Ps/Area

⇒[tex]I= \frac{Ps}{\pi r^2}[/tex]

⇒I∝1/r^2

Therefore, on increasing the distance r, the intensity of the wave decreases, this also means that the amplitude also decreases.

Look at the diagram showing the different wavelengths in sunlight.



I AM ON A TIMER!!!
Which statement describes electromagnetic waves with wavelengths greater than 700 nanometers?

They take the form of heat.
They can cause skin cancer and sunburn.
They are some of the shortest waves.
They can be seen by human eyes as visible light.

Answers

Answer:

Explanation:

They are infrared waves which mean they take the form of heat.

Answer: A

Explanation:

A 340 g bird flying along at 6.0 m/s sees a 13 g insect heading straight toward it with a speed of 30 m/s. The bird opens its mouth wide and enjoys a nice lunch. What is the bird's speed immediately after swallowing?
_____m/s

Answers

Answer:

V = 4.67 m/s

Explanation:

given,

mass of the flying bird (M)= 340 g = 0.34 Kg

Speed of bird(u₁) = 6 m/s

mass of insect(m) = 13 g = 0.013 Kg

speed of insect(u₂) = 30 m/s

Speed of bird after eating the insect(V) =?

Using conservation of momentum

M u₁ + m u₂ = (M+m)V

[tex]V = \dfrac{M u_1+ m u_2}{(M+m)}[/tex]

[tex]V = \dfrac{0.34\times 6 - 0.013 \times 30}{0.34+0.013}[/tex]

[tex]V = \dfrac{1.65}{0.353}[/tex]

V = 4.67 m/s

the bird's speed immediately after swallowing V = 4.67 m/s

The index of refraction for flint glass is 1.5. This means that

Answers

Answer:

Explanation:

This means that the ratio of the speed of the incident beam of light in a vacuum to the speed of light in the glass is 1.5

This means that the speed of light in vacuum is 1.5 times the speed of light in flint glass.

A hand pump is being used to inflate a bicycle tire that has a gauge pressure of 59.0 lb/in2. If the pump is a cylinder of length 17.4 in. with a cross-sectional area of 3.00 in.2, how far down must the piston be pushed before air will flow into the tire? Assume the temperature is constant.
Answer must be in inches

Answers

Answer:

∴The air cannot be made to flow in with the given pump at the given conditions.

Explanation:

Given:

gauge pressure of bicycle tyre, [tex]P_g=59\ lb.in^{-2}[/tex]length of cylinder of the pump, [tex]l=17.4\ in[/tex]area of the the cylinder of the pump, [tex]a= 3\ in^2[/tex]we have the density of air at STP, [tex]\rho=4.4256\times 10^{-5}\ lb.in^{-2}[/tex]

The piston must be pushed more than the pressure inside the tyre:

[tex]P_g=\rho\times V\div a[/tex]

[tex]59=4.4256\times 10^{-5}\times a\times h\div a[/tex]

[tex]h=13.33\times 10^5\ in[/tex]

∴The air cannot be made to flow in with the given pump at the given conditions.

A 2.35 kg ball is attached to a ceiling by a3.53 m long string. The height of the room is5.03 m .The acceleration of gravity is 9.8 m/s2.
What is the gravitational potential energyassociated with the ball relative to the ceiling?Answer in units of J.

Answers

Answer:-81.29 J

Explanation:

Given

mass of ball [tex]m=2.35 kg[/tex]

Length of string [tex]L=3.53 m[/tex]

height of Room [tex]h=5.03 m[/tex]

Gravitational Potential Energy is given by

[tex]P.E.=mgh[/tex]

where h=distance between datum and object

here Reference is ceiling

therefore [tex]h=-3.53 m[/tex]

Potential Energy of ball w.r.t ceiling

[tex]P.E.=2.35\times 9.8\times (-3.53)=-81.29 J[/tex]

i.e. 81.29 J of Energy is required to lift a ball of mass 2.35 kg to the ceiling    

A wood-burning stove (emissivity = 0.900 and surface area = 3.75 m2) is being used to heat a room. The fire keeps the stove surface at a constant 182 °C (455 K) and the room at a constant 22 °C (295 K). Determine the net radiant power generated by the stove.

Answers

Answer:

Radiated power will be [tex]675241.7175watt[/tex]

Explanation:

We have given emissivity [tex]\epsilon =0.9[/tex]

Stove temperature T = 455 K

Room temperature [tex]T_C=295K[/tex]

We know the Stephan's constant [tex]\sigma =5.67\times 10^{-6}w/m^2K^4[/tex]

We know that radiated power is given by [tex]P=\epsilon \sigma A(T^4-T_C^4)=0.9\times5.67\times 10^{-6}\times  3.75\times (455^4-295^4)=675241.7175watt[/tex]

Final answer:

The net radiant power generated by the wood-burning stove can be determined by using the Stefan-Boltzmann law. This law combines the factors of Stefan-Boltzmann constant, emissivity of the body, surface area, and the difference of the fourth powers of the absolute temperatures.

Explanation:

The rate of radiant power generated by the stove can be found using the Stefan-Boltzmann law, which describes the rate of heat transfer by emitted radiation. This law can be stated as P = σeAT⁴, where P is the radiant power, σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ J/s.m².K⁴), e is the emissivity of the body, A is the surface area, and T is the absolute temperature in Kelvins.

For the net rate of heat transfer by radiation (or the net radiant power) for the wood-burning stove, you would use the Stefan-Boltzmann law as Q-net = σeA(T₂⁴ - T₁⁴), where T₂ is the absolute temperature of the stove and T₁ the absolute temperature of the room.

Plugging in the stove's values from the problem: emissivity = 0.900, surface area = 3.75 m², T₂ = 455 K (stove temperature), and T₁ = 295 K (room temperature), we can calculate the net radiant power allocated by the stove.

Learn more about Radiant Power here:

https://brainly.com/question/2179765

#SPJ11

What is the asthenosphere and describe its characteristics?

Answers

Answer:

Layer of the interior of the Earth that extends approximately between 50 and 150 km deep, formed mainly by partially molten plastic rocks that can deform: the asthenosphere is located between the lithosphere and the mesosphere.

Explanation:

The asthenosphere is composed of ductile silicate materials, in solid state and partially or totally semi-molten (according to their depth and / or proximity to magma bags), which allow continental drift and isostasis. On it the tectonic plates move.

Characteristics of the asthenosphere

The asthenosphere is a part of the upper mantle, just below the lithosphere that is involved in tectonic plate movements and isostatic adjustments.

Despite its heat, the pressure keeps it like plastic and has a relatively low density. Seismic waves pass relatively slowly through the asthenosphere, compared to the mantle that covers the lithosphere, which is why it has been called the low-speed zone.

This was the observation that originally alerted the seismologists to their presence and gave some information about their physical properties, such as the speed of the seismic waves that decreases as stiffness decreases. Under the thin oceanic plates the asthenosphere is generally much closer to the surface of the seabed, and rises a few kilometers from the ocean floor.

Due to the temperature and pressure conditions in the asthenosphere, the rock becomes ductile, moving at a deformation rate that is measured in cm / year at linear distances that finally reach thousands of kilometers. In this way, it flows like a convection current, radiating heat outward from inside the Earth. Above the asthenosphere, at the same rate of deformation, the rock behaves elastically and, if fragile, can break, causing failures. The rigid lithosphere is believed to "float" over the asthenosphere from which it flows slowly, creating the movement of tectonic plates.

Answer:

The conistency is solid layer of rock

Explanation:

A 1.5-cm object is placed 0.50 m to the left of a diverging lens with a focal length of 0.20 m. A converging lens with a focal length of 0.17 m is located 0.08 m to the right of the diverging lens. What is the height and orientation with respect to the original object of the final image?

Answers

Answer:

The object for the converging lens is upright and 0.429 cm tall, the image of this converging lens is inverted and 1.375 cm high

Explanation:

Let

[tex]d_{o}=distance of object[tex]\\f=focal length\\d_{i}=distance of image\\I_{h}=Image height[/tex]

For diverging lens:

[tex]d_{o} = 0.50\\f = -0.20\\\frac{1}{d_{o}}+\frac{1}{-0.20}\\\frac{1}{d_{i}}=\frac{1}{-0.20}-\frac{1}{0.50}=-7\\d_{o}=-\frac{1}{7}[/tex]

Magnification = [tex]\frac{d_{i}}{d_{o}}= -\frac{1}{7}÷ 0.5 = -0.286[/tex]

Image height [tex]= -0.286 * 1.5 = -0.429 cm[/tex] (negative sign means the image is virtual, inverted.

This image is [tex]\frac{1}{7}[/tex] meter to left of the center of the diverging lens.

The converging lens is located 0.08 m to the right of the diverging lens

The distance between the image of the diverging lens and center of the converging lens = [tex]\frac{1}{7} + 0.08 = 0.229 m[/tex]

The image of the diverging lens becomes the object of the converging lens.

[tex]d_{o} = 0.223\\f = 0.17\\\frac{1}{d_{i}}=\frac{1}{0.17}-\frac{1}{0.223}=0.715\\d_{i}=0.715m to the right of the converging lens[/tex]

[tex]Magnification =\frac{d_{i}}{d_{o}} = \frac{0.715}{0.223}=3.206\\image height=3.206 * 0.429 = 1.375 cm.[/tex]

A conductor carries a current that is decreasing exponentially with time. The current is modeled as ????=????0????−????/???? , where ????0=3.00A is the current at time ????=0.00s and ????=0.50s is the time constant. How much charge flows through the conductor between ????=0.00s and ????=3???? ?

Answers

Answer:

Q=1.42 C

Explanation:

Given that

[tex]I=I_oe^{\dfrac{-t}{\tau}}[/tex]

When t= 0 ,Io = 3 A

τ = Time constant = 0.5 s

[tex]I=3e^{-\dfrac{t}{\tau}}[/tex]

We know that

[tex]I=\dfrac{dQ}{dt}[/tex]

Q=Charge ,I =Current

Q = ∫I.dt

Given that

t= 0 to t= 3τ= 1.5 s

The charge Q

[tex]Q=\int_{0}^{1.5}3e^{-\dfrac{t}{0.5}}dt[/tex]

Q=1.42 C

Therefore charge flow conductor will be 1.42 C.

A fielder tosses a 0.15 kg baseball at 26 m/s at a 36 ∘ angle to the horizontal.Part AWhat is the ball's kinetic energy at the start of its motion?Express your answer with the appropriate units.Part BWhat is the kinetic energy at the highest point of its arc?Express your answer with the appropriate units.

Answers

Answer:

A. 50.7 J

B. 33.18 J

Explanation:

At the start of the motion the kinetic energy of the ball would be

[tex]E_k = \frac{mv^2}{2} = \frac{0.15*26^2}{2} = 50.7  J[/tex]

When the ball gets to the highest point, vertical velocity must be 0, only horizontal velocity contributes to the kinetic energy. Since air resistant can be neglected, horizontal energy is preserved since the start

[tex]v_h = vcos(36^o) = 26*0.81 = 21.03 m/s[/tex]

So the kinetic energy at this point is

[tex]E = \frac{mv_h^2}{2} = \frac{0.15*21.03^2}{2} = 33.18J[/tex]

Given the data from the question, the kinetic energy at the start and at the highest point are:

A. The kinetic energy at the start of the motion is 50.7 J

B. The kinetic energy at the highest point is 0 J

What is kinetic energy?

This is the energy possessed by an object in motion. Mathematically, it can be expressed as:

KE = ½mv²

Where

KE is the kinetic energy m is the mass v is the velocity

A. How to determine the KE at the start Mass (m) = 0.15 KgVelocity (v) = 26 m/sKinetic energy (KE) =?

KE = ½mv²

KE = ½ × 0.15 × 26²

KE = 50.7 J

B. How to determine the KE at the highest point Mass (m) = 0.15 KgVelocity (v) = 0 m/s (at highest point) Kinetic energy (KE) =?

KE = ½mv²

KE = ½ × 0.15 × 0

KE = 0 J

Learn more about energy:

https://brainly.com/question/10703928

An electron that has an instantaneous velocity of ???? = 2.0 × 106 m ???? ???? + 3.0 × 106 m ???? ???? is moving through the uniform magnetic field ???? = 0.030T ???? − 0.15T ???? . (a) Find the force on the electron due to the magnetic field (b) Repeat your calculation for a proton having the same velocity.

Answers

Explanation:

It is given that,

Velocity of the electron, [tex]v=(2\times 10^6i+3\times 10^6j)\ m/s[/tex]

Magnetic field, [tex]B=(0.030i-0.15j)\ T[/tex]

Charge of electron, [tex]q_e=-1.6\times 10^{-19}\ C[/tex]

(a) Let [tex]F_e[/tex] is the force on the electron due to the magnetic field. The magnetic force acting on it is given by :

[tex]F_e=q_e(v\times B)[/tex]

[tex]F_e=1.6\times 10^{-19}\times [(2\times 10^6i+3\times 10^6j)\times (0.030i-0.15j)][/tex]

[tex]F_e=-1.6\times 10^{-19}\times (-390000)(k)[/tex]

[tex]F_e=6.24\times 10^{-14}k\ N[/tex]

(b) The charge of electron, [tex]q_p=1.6\times 10^{-19}\ C[/tex]

The force acting on the proton is same as force on electron but in opposite direction i.e (-k). Hence, this is the required solution.

A mass of 4.8 kg is dropped from a height of 4.84 meters above a vertical spring anchored at its lower end to the floor. If the spring has a height of 82 cm and a constant of 24 N/cm, how far, to the nearest tenth of a cm, is the spring compressed?

Answers

Answer:

45.6 cm

Explanation:

Let x (m) be the length that the spring is compressed. We know that when we drop the mass from 4.84 m above and compress the springi, ts gravitational energy shall be converted to spring potential energy due to the law of energy conservation

[tex]E_g = E_p[/tex]

[tex]mgh = 0.5kx^2[/tex]

where h = 4.84 + x is the distance from the dropping point the the compressed point, and k = 24N/cm = 2400N/m is the spring constant, g = 9.81 m/s2 is the gravitational acceleration constant. And m = 4.8 kg is the object mass.

[tex]4.8*9.81(4.84 + x) = 0.5 * 2400 * x^2[/tex]

[tex]47.088x + 227.906 = 1200x^2[/tex]

[tex]1200x^2 - 47.088x - 227.906 = 0[/tex]

[tex]x = 0.456m[/tex] or 45.6 cm

A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 420 gram setting. It is believed that the machine is underfilling the bags. A 24 bag sample had a mean of 414 grams with a standard deviation of 15. Assume the population is normally distributed. A level of significance of 0.1 will be used. Find the P-value of the test statistic.

Answers

Answer:

P-value of the test statistic is 2.499

Explanation:

given data:

size sample is 24

sample mean is 414 gm

standard deviation is 15

Null hypotheis is

[tex]H_0: \mu = 420 gm[/tex]

[tex]H_1 \mu< 420[/tex]

level of significance is 0.01

from test statics

[tex]t = \frac{\hat x - \mu}{\frac{s}{\sqrt{n}}}[/tex]

degree od freedom is  =  n -1

df = 24 -1 = 13

[tex]t = \frac{414 - 420}{\frac{15}{\sqrt{24}}}[/tex]

t = -1.959

from t table critical value of t at 0.1 significane level and 23 degree of freedom  is 2.499

Calculate the specific heat of a metal from the following data. A container made of the metal has a mass of 3.9 kg and contains 11 kg of water. A 2.0 kg piece of the metal initially at a temperature of 189°C is dropped into the water. The container and water initially have a temperature of 16.0°C, and the final temperature of the entire system is 18.0°C.

Answers

Answer:

[tex]c_m =272.365\frac{J}{KgK}[/tex]

Explanation:

1) Notation and data given

[tex]m_c[/tex]= mass of the container = 3.9 kg

[tex]m_w[/tex]= mass of the water inside of the container= 11 kg

[tex]m_m[/tex]=mass of the metal= 2 kg

[tex]T_{im}=189\degree C[/tex] initital temperature of the metal

[tex]T_{iw}=16\degree C[/tex] initital temperature of the water

[tex]T_{ic}=16\degree C[/tex] initital temperature of the container

[tex]T_{f}=18\degree C[/tex] final equilibrium temperature

2) Concepts and formulas

Since the inital temperature for the pice of metal is higher than the temperature for the container and the water inside, the piece of metal will transfer heat, and this transferred heat is the same amount absorbed by the container and the water reaching the equilibrium. So then we have this formula:

[tex]Q_m =Q_w + Q_c[/tex]

We don't have any change of phase so then we just have the presence of sensible heat, and using this we got that:

[tex]m_p c_m \Delta T_m =m_w c_w \Delta T +m_c c_c \Delta T[/tex]

On this case the container is made by the same metal so then [tex]c_c=c_m[/tex]

[tex]m_p c_m \Delta T_m =m_w c_w \Delta T +m_c c_m \Delta T[/tex]

And solving for [tex]c_m[/tex] from the last expression we got:

[tex]m_p c_m \Delta T_m -m_c c_m \Delta T_c =m_w c_w \Delta T[/tex]

[tex]c_m [m_p \Delta T_m -m_c \Delta T_c] =m_w c_w \Delta T[/tex]

[tex]c_m=\frac{m_w c_w \Delta T}{m_p \Delta T_m -m_c \Delta T_c}[/tex]

Replacing the values we have:

[tex]c_m=\frac{11kg(4187\frac{J}{KgK}(18\degree C-16\degree C)}{2kg(189\degree C -16 \degree C) -3.9Kg(18\degree C -16\degree C)}= 272.365\frac{J}{Kg K}[/tex]

A playground merry-go-round has a radius of 3.0 m and arotational inertia of 600 kg ⋅ m2. It
is initially spinning at 0.80 rad/s when a 20-kg child crawlsfrom the center to the rim. When
the child reaches the rim the angular velocity of themerry-go-round is:_________
A) 0.61 rad/s
B) 0.73 rad/s
C) 0.80 rad/s
D) 0.89 rad/s
E) 1.1rad/s

Answers

Answer:

Final angular velocity, [tex]\omega_f=0.61\ rad/s[/tex]

Explanation:

Given that,

Radius of merry- go- round, r = 3 m

Inertia of the merry- go- round, [tex]I=600\ kg-m^2[/tex]

Angular speed, [tex]\omega=0.8\ rad/s[/tex]

Mass, m = 20 kg

Let I' is the new rotational inertia of the merry- go- round. Here, the angular momentum of the system remains conserved. So,

[tex]L_f=L_o[/tex]

[tex]I_f\omega_f=I_o\omega_o[/tex]

[tex]\omega_f=(\dfrac{I}{I+mr^2})\omega_o[/tex]

[tex]\omega_f=(\dfrac{600}{600+20\times 3^2})\times 0.8[/tex]

[tex]\omega_f=0.61\ rad/s[/tex]

So, the angular velocity of the merry-go-round is 0.61 rad/s. So, the correct option is (A). Hence, this is the required solution.

A spring (70 N/m ) has an equilibrium length of 1.00 m. The spring is compressed to a length of 0.50 m and a mass of 2.0 kg is placed at its free end on a frictionless slope which makes an angle of 41 ∘ with respect to the horizontal. The spring is then released
A)If the mass is not attached to the spring, how far up the slope from the compressed point will the mass move before coming to rest?
B)If the mass is attached to the spring, how far up the slope from the compressed point will the mass move before coming to rest?

Answers

Answer:

Part a)

[tex]L = 0.68 m[/tex]

Part b)

[tex]L = 0.63 m[/tex]

Explanation:

Part a)

As we know that there is no friction in the path

So here we can use energy conservation to find the distance moved by the mass

Initial spring energy = final gravitational potential energy

so we will have

[tex]\frac{1}{2}kx^2 = mgL sin\theta[/tex]

[tex]\frac{1}{2}70(0.5)^2 = 2(9.81)(L) sin41[/tex]

[tex]8.75 = 12.87 L[/tex]

[tex]L = 0.68 m[/tex]

Part b)

Now if spring is connected to the block then again we can use energy conservation

so we will have

[tex]\frac{1}{2}kx^2 = mg(x + x')sin\theta + \frac{1}{2}kx'^2[/tex]

so we will have

[tex]\frac{1}{2}(70)(0.5^2) = 2(9.81) (0.50 + x') sin41 + \frac{1}{2}(70)x'^2[/tex]

[tex]8.75 = 6.43 + 12.87 x' + 35 x'^2[/tex]

[tex]x' = 0.13 m[/tex]

so total distance moved upwards is

[tex]L = 0.5 + 0.13 = 0.63 m[/tex]

If the spring is not attached, the mass will move 0.68 meters. however, if the spring is attached, the mass will move by 0.63 meters.

How can we arrive at these results?We will first calculate the motion of the mass if it is not attached to the spring. This will be done with the following formula:

[tex]\frac{1}{2} kx^2=m*g*L*sin41[/tex]

Within this formula, the symbol "k" represents 70 N/m. The "x" represents 0.50m. The "m" is 2.0 kg, the "g" represents gravity and the L is the value we need to find.

Therefore, we can substitute the values of the formula as follows:

[tex]\frac{1}{2}70(0.50)^2= 2*9.81 *L*sin41\\8.75=12.87L\\L= \frac{8.75}{12.87} = 0.67 ------- 0.68m[/tex]

Then we can calculate the distance traveled by the mass attached to the spring. For this, we will use the formula:

[tex]\frac{1}{2} kx^2= m*g*(x+x')*sin41+\frac{1}{2} 70x'^2[/tex]

By substituting the values, we can answer the equation as follows:

[tex]\frac{1}{2} 70*0.50^2=2*9.81*(0.50+x')*sin41+\frac{1}{2} 70x'^2\\8.75=6.43+12.87x'+35x'\\X'=0.13m \\\\L=0.5+0.13=0.63 m[/tex]

More information about gravity in the link:

https://brainly.com/question/1479537

Other Questions
How should you proceed to read when you get to a comma? A) You should take a breath B) You should stop, then read again C) You should pause D)none of the above In a double-slit interference experiment, a special lamp emitting yellow light from heated sodium atoms is used to produce an interference pattern on a screen located 1.49 m from a pair of slits separated by 0.12 mm. If the distance between adjacent bright regions in the resulting pattern is 7.32 mm, what is the wavelength (in nm) of the sodium light? HELPDNA and RNA are both: 1. made up of nucleotides and carry molecules from one end of a cell to another2. monomers of protein molecules that provide structure to a cells nuclear membrane3. protein molecules that carry the unique genetic information of an organism3. molecules that contain genetic information and are made up of nucleotides Which powers did the Constitution grant the federal government that the Articles did not? Select all that apply. The power to declare war. The power to make treaties. The power to impose taxes.The power to conduct foreign affairs. The power to regulate trade. cos(t)=24/25, what does sin(t)=? Which of the following statements is TRUE?A. As the probability of a super-event decreases, the advantage of utilizing multiple suppliers diminishes.B. Large probabilities of a unique event decrease the likelihood of needing more suppliers.C. All suppliers will be disrupted simultaneously if either a super-event occurs or a super-event does not occur but a unique-event occurs for all of the suppliers.D. To compute the probability of all n suppliers being disrupted simultaneously, we assume that the probabilities are all dependent on each other. A beam of light traveling in air strikes a glass slab at an angle of incidence less than 90. After entering the glass slab, what does the beam of light do? (There could be more than one correct choice.) A. I follows the same path as before it struck the glass. B. It bends closer to the normal at the point of contact. C. It follows the normal to the glass slab. D. It bends away from the normal at the point of contact. E. It slows down. Consider the line integral Z C (sin x dx + cos y dy), where C consists of the top part of the circle x 2 + y 2 = 1 from (1, 0) to (1, 0), followed by the line segment from (1, 0) to (2, ). Evaluate this line integral in two ways: You need to move a 105 kg sofa to a different location in the room. It takes a force of 102 N to start it moving. What is the coefficient of static friction between the sofa and the carpet? (use g = to about -10 m/s/s) The common stock of Ecolab pays an annual dividend of $1.84 a share. The company has promised to maintain a constant dividend regardless of economic conditions. How much would investors be willing to pay for one share of Ecolab's stock assuming an equity cost of capital of 13.6%? Please help!!!Compose a 4 to 5 sentence paragraph that analyzes the cause and affect relationship between prohibition and the rise of organized crime. Thank you 2. I'm strong and stiff. Getting through me is TOUGH! I'm found only in plants and I guess that'senough A loan of $46,000 is made at 7% interest, compounded annually. After how many years will the amount due reach $65,000 or more? A sample size of n=12 is a simple random sample selected from a normally distributed population. Find the critical value t* corresponding to a 95% confidence level (two-sided). 4. Why do elements in the same family generally have similar properties? Identify the true statements regarding 1,6 linkages in glycogen.(A) Branching increases glycogen solubility.(B) New 1,6 linkages can only form if the branch has a free reducing end.(C) The number of sites for enzyme action on a glycogen molecule is increased through 1,6 linkages.(D) Exactly seven residues extend from these linkages.(E) The reaction that forms 1,6 linkages is catalyzed by a branching enzym Write an inequality for the graph. Bob and George live in the United States. Bob recently asked for George's cell phone number, but George said he didn't have one. George would probably be considered aNo __________ in the diffusion of innovation process.a. laggardb. early majorityc. late majorityd. early adoptere. innovator Determine the intercepts of the line.y=-3x+12y=3x+12 At what speed, as a fraction of c, must a rocket travel on a journey to and from a distant star so that the astronauts age 15 years while the Mission Control workers on earth age 130 years?