A researcher took a random sample of 100 students from a large university. She computed a 95% confidence interval to estimate the average weight of the students at this university. The confidence interval was too wide to provide a precise estimate.True or false? The researcher could produce a narrower confidence interval by increasing the sample size to 150.A medical researcher is investigating the effect of drinking coffee on systolic blood pressure. The researcher assumes the average systolic blood pressure is 120 mmHg. For a random sample of 200 patients, the researcher takes two measurements of systolic blood pressure. The first systolic blood pressure measurement is taken during a week when the patients drink no coffee, and the second systolic blood pressure measurement is taken during a week when the patients drink at least two cups of coffee. The medical researcher wonders whether there is a significant difference between the blood pressure measurements. Which of the following is the correct null and alternative hypothesis for the medical researchers study?

Answers

Answer 1

Answer:

Part (A): The correct option is true.

Part (B): The null and alternative hypothesis should be:

[tex]H_o: \mu =0 ; H_a:\mu \neq0[/tex]

Step-by-step explanation:

Consider the provided information.

Part (A)

A random sample of 100 students from a large university.

Increasing the sample size decreases the confidence intervals, as it increases the standard error.

If the researcher increase the sample size to 150 which is greater than 100 that will decrease the confidence intervals or the researcher could produce a narrower confidence interval.

Hence, the correct option is true.

Part (B)

The researcher wants to identify that whether there is any significant difference between the measurement of the blood pressure.

Therefore, the null and alternative hypothesis should be:

[tex]H_o: \mu =0 ; H_a:\mu \neq0[/tex]

Answer 2
Final answer:

The statement is true. The researcher could produce a narrower confidence interval by increasing the sample size. The correct null hypothesis for the medical researcher's study is that there is no significant difference between the blood pressure measurements with and without coffee.

Explanation:

The statement is true. A wider confidence interval means that there is more uncertainty in the estimate. To make the confidence interval narrower, the sample size needs to be increased. Increasing the sample size to 150 would likely result in a narrower confidence interval.

The correct null hypothesis for the medical researcher's study would be: There is no significant difference between the blood pressure measurements when patients drink coffee and when they don't. The alternative hypothesis would be: There is a significant difference between the blood pressure measurements when patients drink coffee and when they don't.

Learn more about confidence intervals here:

https://brainly.com/question/34700241

#SPJ3


Related Questions

If 1/3 of the school is 6th graders and 1/2 are girls what fraction are 6th grade girls


Answers

Answer: 1/6

Step-by-step explanation:

Fifty people in the civilian labor force are randomly selected and the sample average age iscomputed to be 36.4.(a) Find a 90% confidence interval for the mean age, ?, of all people in the civilian laborforce. Assume that the population standard deviation for the ages of civilian labor force is12.1 years. Interpret the confidence interval.(b) It is being claimed that the mean age of the population of civilian labor force is 40. Whatdo you conclude based on the confidence interval?

Answers

Answer:

a) The 90% confidence interval would be given by (33.594;39.206)  

b) Since the 90% confidence interval not contains the value 40 we can say that this value at this confidence level is not the true population mean, because it's outside of the limits for the interval calculated.

Step-by-step explanation:

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

Part a

[tex]\bar X=36.4[/tex] represent the sample mean  

[tex]\mu[/tex] population mean (variable of interest)  

[tex]\sigma=12.1[/tex] represent the population standard deviation  

n=50 represent the sample size  

90% confidence interval  

The confidence interval for the mean is given by the following formula:  

[tex]\bar X \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex] (1)  

Since the Confidence is 0.90 or 90%, the value of [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and we can use excel, a calculator or a tabel to find the critical value. The excel command would be: "=-NORM.INV(0.05,0,1)".And we see that [tex]z_{\alpha/2}=1.64[/tex]  

Now we have everything in order to replace into formula (1):  

[tex]36.4-1.64\frac{12.1}{\sqrt{50}}=33.594[/tex]  

[tex]36.4+1.64\frac{12.1}{\sqrt{50}}=39.206[/tex]  

So on this case the 90% confidence interval would be given by (33.594;39.206)  

Part b

Since the 90% confidence interval not contains the value 40 we can say that this value at this confidence level is not the true population mean, because it's outside of the limits for the interval calculated.

The graph of the function f(x) = –(x + 3)(x – 1) is shown below. On a coordinate plane, a parabola opens down. It goes through (negative 3, 0), has a vertex at (negative 1, 4), and goes through (1, 0).
What is true about the domain and range of the function?
A. The domain is all real numbers less than or equal to 4, and the range is all real numbers such that –3 ≤ x ≤ 1.
B. The domain is all real numbers such that –3 ≤ x ≤ 1, and the range is all real numbers less than or equal to 4.
C. The domain is all real numbers, and the range is all real numbers less than or equal to 4.
D. The domain is all real numbers less than or equal to 4, and the range is all real numbers.

Answers

Answer:

The Domain is "All Real numbers", and the Range is "All real number less than or equal to 4" which coincides with option C in your problem.

Step-by-step explanation:

Recall that the Domain of a function is the set of all x-values for which there is a y-value obtained by the rule defined by the function.

In this case, whatever real number you enter for "x" in your functional expression, you will find another real value "y". That means that the actual Domain of your function is the full Real number line (all Real numbers).

Recall as well that the Range of a function is the set of y-values that are being "called" (or generated) as you use all the values for x in the Domain. In our case, it is great that they give the graph of the function (see attached image), so you can visualize that the function's graph is that of a "parabola" with branches opening downwards. You can see as well that the parabola presents a maximum value when x = -1, that means that any other value of x you use cannot give you as result a y-value that goes above that maximum.

If you evaluate that maximum value of the vertical coordinate by replacing "x" with "-1" in the actual function, you get:

[tex]f(x)=-(x+3)*(x-1)\\f(-1)=-(-1+3)*(-1-1)\\f(-1)=-(2)*(-2)\\f(-1)=4[/tex]

That means that the maximum y-value one can get from this function is "4". That is, the actual Range of the function can be any number that is smaller or equal to 4.

Bottom line: The Domain is "All Real numbers", and the Range is "All real number less than or equal to 4".

Answer:

its C

Step-by-step explanation:

edge 2020

A boat tour company finds that if the price p , charged for an one-hour harbor tour, is $20, the average number of passengers per week, x , is 300. When the price is reduced to $18, the average number of passengers per week increases to 360.The demand and supply curves of a certain brand of running shoes are given by
p=0(x)=1 1 2-0.04x, and p-S(x)-0.06x+42, where p is the price in dollars and x is the quantity sold.
(a) Assuming that the demand curve p D(x) is linear, find its formula: P-D(x)
(b) Assuming that the equilibrium price is $22 per tour, the equilibrium demand is E
(c) The consumers' surplus at that demand is $ . (Use a fraction for the coefficient.)

Answers

Answer

The answer and procedures of the exercise are attached in a microsoft word document.  

Explanation  

Please consider the data provided by the exercise. If you have any question please write me back. All the exercises are solved in a single sheet with the formulas indications.  

Answer:

a)  p(x) = (-1/30)*x + 30

b) xe = 240

c) The consumers' surplus at that demand is $ 960.00

Step-by-step explanation:

Given info

p₁ = 20

x₁ = 300

p₂ = 18

x₂ = 360

a) We can apply the following equation

p - p₁ = m*(x - x₁)

where

m is the slope, which can be obtained as follows

m = (p₂-p₁) / (x₂-x₁)

⇒ m = (18-20) / (360-300) = -2/60 = -1/30

then

p-20 = (-1/30)*(x-300)

⇒ 30*p - 600 = -x + 300

⇒ p(x) = (-1/30)*x + 30

b) If p(x) = 22

⇒  22 = (-1/30)*x + 30

⇒  xe = 240 passengers

c) If x = 0   ⇒  p(0) = (-1/30)*(0) + 30 = 30

then

we can get h as follows

h = p(0) - p(240) = 30 - 22 = 8

if b = x(equlibrium) = 240

we apply

A = b*h/2  ⇒  A = 240*8/2 = 960

The consumers' surplus at that demand is $ 960.00

Suppose the returns on long-term government bonds are normally distributed. Assume long-term government bonds have a mean return of 6.0 percent and a standard deviation of 9.9 percent. a. What is the approximate probability that your return on these bonds will be less than −3.9 percent in a given year?

Answers

Answer:

0.1587

Step-by-step explanation:

Let X be the random variable that represents a return on long-term government bond. We know that X has a mean of 6.0 and a standard deviation of 9.9, in order to compute the approximate probability that your return on these bonds will be less than -3.9 percent in a given year, we should compute the z-score related to -3.9, i.e., (-3.9-6.0)/9.9 =  -1. Therefore, we are looking for P(Z < -1) = 0.1587

Construct a confidence interval of the population proportion at the given level of confidence. x = 125, n = 250, 90 % confidence.
The 90​% confidence interval is ____________?
​(Use ascending order. Round to three decimal places as​ needed.)

Answers

Answer: 90% confidence interval would be (0.448, 0.552).

Step-by-step explanation:

Since we have given that

x = 125

n = 250

So, [tex]\hat{p}=\dfrac{x}{n}=\dfrac{125}{250}=0.5[/tex]

We need to find the 90% confidence interval.

so, z = 1.64

So, interval would be

[tex]\hat{p}\pm z\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}\\\\=0.5\pm 1.64\sqrt{\dfrac{0.5\times 0.5}{250}}\\\\=0.5\pm 0.0519\\\\=(0.5-0.0519,0.5+0.0519)\\\\=(0.448,0.552)[/tex]

Hence, 90% confidence interval would be (0.448, 0.552)

Final answer:

The 90% confidence interval is (0.462, 0.538). To calculate a confidence interval, use the formula p' ± z * √(p'q'/n). In this case, with x = 125, n = 250, and 90% confidence, the interval is (0.462, 0.538).

Explanation:

The 90% confidence interval is (0.462, 0.538).

To construct a confidence interval for a population proportion, you can use the formula for confidence interval: p' ± z * √(p'q'/n), where p' = x/n, q' = 1 - p', and z corresponds to the confidence level.

In this case, given x = 125, n = 250, and 90% confidence level, the confidence interval is (0.462, 0.538).

Find the work required to move an object in the force field F = ex+y <1,1,z> along the straight line from A(0,0,0) to B(-1,2,-5). Also, deternine if the force is conservative.

Find the work required to move an object in the fo

Answers

Answer:

Work = e+24

F is not conservative.

Step-by-step explanation:

To find the work required to move an object in the force field  

[tex]\large F(x,y,z)=(e^{x+y},e^{x+y},ze^{x+y})[/tex]

along the straight line from A(0,0,0) to B(-1,2,-5), we have to parameterize this segment.

Given two points P, Q in any euclidean space, you can always parameterize the segment of line that goes from P to Q with

r(t) = tQ + (1-t)P with 0 ≤ t ≤ 1

so  

r(t) = t(-1,2,-5) + (1-t)(0,0,0) = (-t, 2t, -5t)  with 0≤ t ≤ 1

is a parameterization of the segment.

the work W required to move an object in the force field F along the straight line from A to B is the line integral

[tex]\large W=\int_{C}Fdr [/tex]

where C is the segment that goes from A to B.

[tex]\large \int_{C}Fdr =\int_{0}^{1}F(r(t))\circ r'(t)dt=\int_{0}^{1}F(-t,2t,-5t)\circ (-1,2,-5)dt=\\\\=\int_{0}^{1}(e^t,e^t,-5te^t)\circ (-1,2,-5)dt=\int_{0}^{1}(-e^t+2e^t+25te^t)dt=\\\\\int_{0}^{1}e^tdt-25\int_{0}^{1}te^tdt=(e-1)+25\int_{0}^{1}te^tdt[/tex]

Integrating by parts the last integral:

[tex]\large \int_{0}^{1}te^tdt=e-\int_{0}^{1}e^tdt=e-(e-1)=1[/tex]

and  

[tex]\large \boxed{W=\int_{C}Fdr=e+24}[/tex]

To show that F is not conservative, we could find another path D from A to B such that the work to move the particle from A to B along D is different to e+24

Now, let D be the path consisting on the segment that goes from A to (1,0,0) and then the segment from (1,0,0) to B.

The segment that goes from A to (1,0,0) can be parameterized as  

r(t) = (t,0,0) with 0≤ t ≤ 1

so the work required to move the particle from A to (1,0,0) is

[tex]\large \int_{0}^{1}(e^t,e^t,0)\circ (1,0,0)dt =\int_{0}^{1}e^tdt=e-1 [/tex]

The segment that goes from (1,0,0) to B can be parameterized as  

r(t) = (1-2t,2t,-5t) with 0≤ t ≤ 1

so the work required to move the particle from (1,0,0) to B is

[tex]\large \int_{0}^{1}(e,e,-5et)\circ (-2,2,-5)dt =25e\int_{0}^{1}tdt=\frac{25e}{2}[/tex]

Hence, the work required to move the particle from A to B along D is

 

e - 1 + (25e)/2 = (27e)/2 -1

since this result differs from e+24, the force field F is not conservative.

In 1992 there was an earthquake at Little Skull Mountain, Nevada, measuring 5.5 on the Richter scale. In 1994 there was an earthquake near Double Spring Flat, Nevada, measuring 6.0 on the Richter scale. How did the power of the Double Spring Flat quake compare with that of the Little Skull Mountain quake? (Round your answer to two decimal places.)

Answers

I have to think this through.... I will get back later 2.222

The Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year. A random sample of 50 households is monitored for one year to determine aluminum usage. If the population standard deviation of annual usage is 12.1 pounds, what is the probability that the sample mean will be each of the following? Appendix A Statistical Tablesa. More than 58 poundsb. More than 57 poundsc. Between 55 and 57 poundsd. Less than 53 poundse. Less than 48 pounds

Answers

Answer:

[tex]\mu = 56.8[/tex]

[tex]\sigma = 12.1[/tex]

A)what is the probability that the sample mean will be More than 58 pounds

P(x>58)

Formula : [tex]Z=\frac{x-\mu}{\sigma}[/tex]

Substitute the values :

[tex]Z=\frac{58-56.8}{12.1}[/tex]

[tex]Z=0.09917[/tex]

refer the z table

P(x<58)=0.5359

P(X>58)=1-P(x<58)=1-0.5359=0.4641

Hence the probability that the sample mean will be More than 58 pounds is 0.4641

B)what is the probability that the sample mean will be More than 57 pounds

P(x>57)

Formula : [tex]Z=\frac{x-\mu}{\sigma}[/tex]

Substitute the values :

[tex]Z=\frac{57-56.8}{12.1}[/tex]

[tex]Z=0.0165[/tex]

refer the z table

P(x<57)=0.5040

P(X>57)=1-P(x<57)=1-0.5040=0.496

Hence the probability that the sample mean will be More than 57 pounds is 0.496

C)what is the probability that the sample mean will be Between 55 and 57 pound

Formula : [tex]Z=\frac{x-\mu}{\sigma}[/tex]

Substitute the values :

[tex]Z=\frac{57-56.8}{12.1}[/tex]

[tex]Z=0.0165[/tex]

refer the z table

P(x<57)=0.5040

Formula : [tex]Z=\frac{x-\mu}{\sigma}[/tex]

Substitute the values :

[tex]Z=\frac{55-56.8}{12.1}[/tex]

[tex]Z=-0.1487[/tex]

refer the z table

P(x<55)=0.4443

P(55<x<57)=P9x<57)-P(x<55) =0.5040-0.4443=0.0597

Hence the probability that the sample mean will be Between 55 and 57 pounds is 0.0597

D)what is the probability that the sample mean will be Less than 53 pounds

Formula : [tex]Z=\frac{x-\mu}{\sigma}[/tex]

Substitute the values :

[tex]Z=\frac{53-56.8}{12.1}[/tex]

[tex]Z=−0.314[/tex]

refer the z table

P(x<53)=0.3783

The probability that the sample mean will be Less than 53 pounds is 0.3783

E)what is the probability that the sample mean will be Less than 48 pounds

Formula : [tex]Z=\frac{x-\mu}{\sigma}[/tex]

Substitute the values :

[tex]Z=\frac{48-56.8}{12.1}[/tex]

[tex]Z=−0.727[/tex]

refer the z table

P(x<48)=0.2358

The probability that the sample mean will be Less than 48 pounds is 0.2358

as a lifeguard, sara earns a base pay of $80 per day. if her day involves swim instruction, sara earns an additional 9t dollars, where t represents the number of hours she gives instruction and $9 is her hourly rate. The total amount Sara earns in a day can be expressed as 80 + 9t.

(a) What does 9t represent in this context?

(b) What are the terms and the coefficients in the expression 80 + 9t

(c) Rewrite the expression for 7 hours of swim instruction.

(d) how much will sara earn in all?​

Answers

Answer:

Step-by-step explanation:

Sara's base pay is $80

(a) The 9t represents the additional amount of money that she earns if she gives instruction for t hours. 9 stands for $9 per hour

b)The term in the expression is t which stands for the number of hours that she instructs. The coefficient is 9 which stands for the hourly rate

c) The expression for 7 hours would be

We will substitute t into 80 + 9t. It becomes

80 + 9×7

d) in all, she will earn

80 + 9×7 = $143

The total resistance R of two resistors connected in parallel circuit is given by 1/R = 1/R_1 + 1/R_2. Approximate the change in R as R_1 is decreased from 12 ohms to 11 ohms and R_2 is increased from 10 ohms to 11 ohms. Compute the actual change.

Answers

Answer:

a) Approximate the change in R is 0.5 ohm.

b) The actual change in R is 0.04 ohm.

Step-by-step explanation:

Given : The total resistance R of two resistors connected in parallel circuit is given by [tex]\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}[/tex]

To find :

a) Approximate the change in R ?

b) Compute the actual change.

Solution :

a) Approximate the change in R

[tex]R_1=12\ ohm[/tex] and [tex]R_2=10\ ohm[/tex]

[tex]R_1[/tex] is decreased from 12 ohms to 11 ohms.

i.e. [tex]\triangle R_1=21-11=1\ ohm[/tex]

[tex]R_2[/tex] is increased from 10 ohms to 11 ohms.

i.e. [tex]\triangle R_2=11-10=1\ ohm[/tex]

The change in R is given by,

[tex]\frac{1}{\triangle R}=\frac{1}{\triangle R_1}+\frac{1}{\triangle R_2}[/tex]

[tex]\frac{1}{\triangle R}=\frac{\triangle R_2+\triangle R_1}{(\triangle R_1)(\triangle R_2)}[/tex]

[tex]\triangle R=\frac{(\triangle R_1)(\triangle R_2)}{\triangle R_2+\triangle R_1}[/tex]

[tex]\triangle R=\frac{(1)(1)}{1+1}[/tex]

[tex]\triangle R=\frac{1}{2}[/tex]

[tex]\triangle R=0.5\ ohm[/tex]

b) The actual change in Resistance

[tex]\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}[/tex]

[tex]\frac{1}{R}=\frac{1}{12}+\frac{1}{10}[/tex]

[tex]R=\frac{10\times 12}{10+12}[/tex]

[tex]R=\frac{120}{22}[/tex]

[tex]R=5.46\ ohm[/tex]

When resistances are charged, [tex]R_1=R_2=11[/tex]

[tex]\frac{1}{R'}=\frac{1}{R_1}+\frac{1}{R_2}[/tex]

[tex]\frac{1}{R'}=\frac{1}{11}+\frac{1}{11}[/tex]

[tex]R'=\frac{11}{2}[/tex]

[tex]R'=5.5\ ohm[/tex]

Change in resistance is given by,

[tex]C=R'-R[/tex]

[tex]C=5.5-5.46[/tex]

[tex]C=0.04\ ohm[/tex]

Final answer:

The actual change in total resistance R of a parallel circuit as R_1 is decreased from 12 ohms to 11 ohms and R_2 is increased from 10 ohms to 11 ohms is calculated using the formula 1/R = 1/R_1 + 1/R_2.

Explanation:

The question is asking for the change in total resistance R of a parallel circuit when the resistances R_1 and R_2 are changed from 12 ohms to 11 ohms and 10 ohms to 11 ohms, respectively. To calculate the actual change, we can use the formula:

1/R = 1/R_1 + 1/R_2

Before the change, the total resistance is:

1/R_initial = 1/12 + 1/10

After the change, it becomes:

1/R_final = 1/11 + 1/11

By calculating both 1/R_initial and 1/R_final, we determine R_initial and R_final separately and find the difference between them to get the actual change in resistance.

A random sample of 300 CitiBank VISA cardholder accounts indicated a sample mean debt of 1,220 with a sample standard deviation of 840. Construct a 95 percent confidence interval estimate of the average debt of all cardholders.

Answers

Answer: (1124.5619, 1315.4381)

Step-by-step explanation:

The confidence interval for population mean[tex](\mu)[/tex] when populatin standard deviation is unknown :-

[tex]\overline{x}\pm t^*\dfrac{s}{\sqrt{n}}[/tex]

, where [tex]\overline{x}[/tex] = Sample mean

[tex]s[/tex] =Sample standard deviation

t* = Critical t-value.

Given : n= 300

Degree of freedom : df = n-1 = 299

[tex]\overline{x}=1220[/tex]

[tex]s=840[/tex]

Confidence interval = 95%

Significance level : [tex]\alpha=1-0.95=0.05[/tex]

Using t-distribution table ,

The critical value for 95% Confidence interval for significance level 0.05 and df = 299 : [tex]t^*=t_{\alpha/2,\ df}=t_{0.025,\ 299}=1.9679[/tex]

Then, a 95% confidence interval estimate of the average debt of all cardholders will be :-

[tex]1220\pm (1.9679)\dfrac{840}{\sqrt{300}}[/tex]

[tex]=1220\pm (1.9679)\dfrac{840}{17.3205080757}[/tex]

[tex]=1220\pm (1.9679)(48.4974226119)[/tex]

[tex]\approx1220\pm 95.4381=(1220-95.438,\ 1220+95.438)\\\\=(1124.5619,\ 1315.4381)[/tex]

Hence, a 95% confidence interval estimate of the average debt of all cardholders is (1124.5619, 1315.4381) .

Find the value of x.


A. 4

B. 5

C. 6

D. 9

Answers

Answer:

  C.  6

Step-by-step explanation:

You can try the answers to see which satisfies the Pythagorean theorem:

  A.  4² +7² = 16+49 ≠ 117

  B.  5² +8² = 25 +64 ≠ 117

  C.  6² +9² = 36 +81 = 117 . . . . this (C) is the correct choice

and, for completeness, ...

  D.  9² +12² = 81 +144 ≠ 117

_____

Working out

You can also actually work the problem. The Pythagorean theorem tells you ...

  x² + (x+3)² = (√117)²

  2x² +6x +9 = 117

  2x² +6x = 108 . . . . subtract 9

  x² +3x = 54 . . . . . . divide by 2

  x(x +3) = 54 . . . . . . factor

Now, you can compare to your memorized times tables, where you find 6×9 = 54, so you know that x=6.

__

In case times tables are a challenge, you can continue to complete the square:

  x² +3x +1.5² = 54 +1.5²

  (x +1.5)² = 56.25 = 7.5² . . . . write as squares

  x = 7.5 -1.5 = 6 . . . . . . . . . . . square root, subtract 1.5

The value of x is 6.

_____

The other solution to the quadratic equation is x=-9, but negative segment lengths make no sense. We acknowledge, then ignore, that extraneous solution.

I need help with 3 please!

Answers

Answer:

Step-by-step explanation:

PQ=24

PS=19

PR=42

TQ=10

QR=19

SR=24

PT=21

SQ=20

m∠QRS=180-m∠PQR=180-106=74°

m∠PQS=m∠QSR=49°

m∠RPS=m∠PRQ=m∠QRS-m∠PRS=74-35=39°

m∠PSQ=m∠RQS=m∠PQR-m∠PQS=106-49=57°

m∠PQR=106°

m∠ QSR=49°

M∠PRS=35°

A television camera is positioned 4000 ft from the base of a rocket launching pad. The angle of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. Also, the mechanism for focusing the camera has to take into account the increasing distance from the camera to the rising rocket. Let’s assume the rocket rises vertically and its speed is 600 ft/s when it has risen 3000 ft.
(a) How fast is the distance from the television camera to the rocket changing at that moment?
(b) If the television camera is always kept aimed at the rocket, how fast is the camera’s angle of elevation changing at that same moment?

Answers

Answer:

a)  the time speed for  distance from the television camera to the rocket is changing at rate of 360 ft/sec

b) camera’s angle of elevation changing at the rate of 0.096 radians/ sec

Step-by-step explanation:

details and step by step explanation is in the images below

image I is for Solution of a)

image 2 is for Solution of b)

Consider a triangle with vertices at (0,0) and (x1, 71) and (x2, 92). a. Use the interpretation of a determinant as area of a parallelogram to explain why the following formula calculates the area of the triangle. (Hint: A diagonal of a parallelogram cuts the parallelogram into two triangles of equal size A =\det (i 2) b. Set (x1, y.) = (1,2) and (x2,Y2) = (3,-1). Use the formula to calculate the area of the triangle.

Answers

I can't really read the formula so I'll give a lecture.

With two vectors we can make a parallelogram.  If the vectors are u and v, and one vertex is the origin O, the others are O+u, O+v, and O+v+u.   If we draw any diagonal of the parallelogram, that divides it into two congruent triangles.  So each triangle is half the area of parallelogram.

The signed area of the parallelogram is given by the two D cross product of the vectors, aka the determinant.   So the area of a triangle with vertices (0,0), (a,b) and (c,d) is

[tex]A = \frac 1 2 |ad - bc| = \left| \frac 1 2 \begin{vmatrix} a & b \\ c & d\end{vmatrix} \right|[/tex]

Applying that to vertices

[tex](0,0), (x_1, 71), (x_2, 92)[/tex]

we get area

[tex]A = \frac 1 2 |\ 92x_1 - 71x_2|[/tex]

That formula is accurate for any values of x₁ and x₂

b. (1,2),(3,-1)

[tex]A=\frac 1 2|1(-1)-2(3)| = \frac 1 2 |-7| = \frac 7 2[/tex]

Answer: 7/2

The U.S. Department of Transportation, National Highway Traffic Safety Administration, reported that 77% of all fatally injured automobile drivers were intoxicated. A random sample of 53 records of automobile driver fatalities in a certain county showed that 35 involved an intoxicated driver. Do these data indicate that the population proportion of driver fatalities related to alcohol is less than 77% in Kit Carson County? Use α = 0.05.

Answers

Answer:

The p value obtained was a low value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of of driver fatalities related to alcohol is less from 0.77 or 77%.  

Step-by-step explanation:

1) Data given and notation n  

n=53 represent the random sample taken

X=35 represent the automobile driver fatalities in a certain county involved with an intoxicated driver

[tex]\hat p=\frac{35}{53}=0.660[/tex] estimated proportion of automobile driver fatalities in a certain county involved with an intoxicated driver

[tex]p_o=0.77[/tex] is the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

2) Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the population proportion of driver fatalities related to alcohol is less than 77% or 0.77 in Kit Carson:  

Null hypothesis:[tex]p\geq 0.77[/tex]  

Alternative hypothesis:[tex]p < 0.77[/tex]  

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

3) Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.660 -0.77}{\sqrt{\frac{0.77(1-0.77)}{53}}}=-1.903[/tex]

4) Statistical decision  

It's important to refresh the p value method or p value approach . "This methos is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.  

Since is an unilateral lower test the p value would be:  

[tex]p_v =P(z<-1.903)=0.0285[/tex]  

So the p value obtained was a low value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the proportion of of driver fatalities related to alcohol is less from 0.77 or 77%.  

If WZ is the perpendicular bisector of VY , what conclusion can you make?


VWZ=YWZ


VWZ=WVZ


VYW=YWV


WYZ=ZWV

Answers

Answer:

[tex]\triangle VWZ = \triangle YWZ[/tex]. Justification is given below.

Step-by-step explanation:

Given:

[tex]\angle WVZ = \angle WYZ[/tex]

WZ is the perpendicular bisector of VY.

∴[tex]\angle WZV = \angle WZY = 90\°\\and\\VZ = YZ[/tex]

In [tex]\triangle VWZ and \triangle YWZ[/tex]

[tex]\angle WVZ = \angle WYZ[/tex] Given

[tex]VZ = YZ[/tex]

[tex]\angle WZV = \angle WZY = 90\°[/tex]

∴ [tex]\triangle VWZ \cong \triangle YWZ[/tex] by ASA test

[tex]\triangle VWZ = \triangle YWZ[/tex]

Here the correspondence of the vertices of a triangle should be match hence the option is first one that is.

[tex]\triangle VWZ = \triangle YWZ[/tex]

Answer:

Step-by-step explanation:

VWZ=YWZ

g SupposeXis a Gaussian random variable with mean 0 and varianceσ2X. SupposeN1is a Gaussian random variable with mean 0 and varianceσ21. SupposeN2is a Gaussianrandom variable with mean 0 and varianceσ22. AssumeX,N1,N2are all independentof each other. LetR1=X+N1R2=X+N2.(a) Find the mean ofR1andR2. That is findE[R1] andE[R2].(b) Find the correlationE[R1R2] betweenR1andR2.(c) Find the variance ofR1+R2.

Answers

a. [tex]X[/tex], [tex]N_1[/tex], and [tex]N_2[/tex] each have mean 0, and by linearity of expectation we have

[tex]E[R_1]=E[X+N_1]=E[X]+E[N_1]=0[/tex]

[tex]E[R_2]=E[X+N_2]=E[X]+E[N_2]=0[/tex]

b. By definition of correlation, we have

[tex]\mathrm{Corr}[R_1,R_2]=\dfrac{\mathrm{Cov}[R_1,R_2]}{{\sigma_{R_1}}{\sigma_{R_2}}}[/tex]

where [tex]\mathrm{Cov}[/tex] denotes the covariance,

[tex]\mathrm{Cov}[R_1,R_2]=E[(R_1-E[R_1])(R_2-E[R_2])][/tex]

[tex]=E[R_1R_2]-E[R_1]E[R_2][/tex]

[tex]=E[R_1R_2][/tex]

[tex]=E[(X+N_1)(X+N_2)][/tex]

[tex]=E[X^2]+E[N_1X]+E[XN_2]+E[N_1N_2][/tex]

Because [tex]X,N_1,N_2[/tex] are mutually independent, the expectation of their products distributes over the factors:

[tex]\mathrm{Cov}[R_1,R_2]=E[X^2]+E[N_1]E[X]+E[X]E[N_2]+E[N_1]E[N_2][/tex]

[tex]=E[X^2][/tex]

and recall that variance is given by

[tex]\mathrm{Var}[X]=E[(X-E[X])^2][/tex]

[tex]=E[X^2]-E[X]^2[/tex]

so that in this case, the second moment [tex]E[X^2][/tex] is exactly the variance of [tex]X[/tex],

[tex]\mathrm{Cov}[R_1,R_2]=E[X^2]={\sigma_X}^2[/tex]

We also have

[tex]{\sigma_{R_1}}^2=\mathrm{Var}[R_1]=\mathrm{Var}[X+N_1]=\mathrm{Var}[X]+\mathrm{Var}[N_1]={\sigma_X}^2+{\sigma_{N_1}}^2[/tex]

and similarly,

[tex]{\sigma_{R_2}}^2={\sigma_X}^2+{\sigma_{N_2}}^2[/tex]

So, the correlation is

[tex]\mathrm{Corr}[R_1,R_2]=\dfrac{{\sigma_X}^2}{\sqrt{\left({\sigma_X}^2+{\sigma_{N_1}}^2\right)\left({\sigma_X}^2+{\sigma_{N_2}}^2\right)}}[/tex]

c. The variance of [tex]R_1+R_2[/tex] is

[tex]{\sigma_{R_1+R_2}}^2=\mathrm{Var}[R_1+R_2][/tex]

[tex]=\mathrm{Var}[2X+N_1+N_2][/tex]

[tex]=4\mathrm{Var}[X]+\mathrm{Var}[N_1]+\mathrm{Var}[N_2][/tex]

[tex]=4{\sigma_X}^2+{\sigma_{N_1}}^2+{\sigma_{N_2}}^2[/tex]

Suppose that 250 students take a test, of which 100 are sophomores, 140 are juniors and 110 are seniors. Let X be the random variable representing the score of each student on the test. Suppose that the sophomores have an average of 60 juniors have an average of 67 and the seniors have an average of 77. Find E(X) using conditioning. Use the appropriate notation to explain your answer.

Answers

Answer:

95.4

Step-by-step explanation:

The overall average score would be the total score divided by the total number of students. The total score is the sum of the product of the average of each student body and their average score

[tex]E(x) = \frac{E_1n_1 + E_2n_2+E_3n_3}{n_1+n_2+n_3}[/tex]

[tex]E(x) = \frac{100*60+140*67+110*77}{250} = \frac{23850}{250} = 95.4[/tex]

In a competition between players X and Y, the first player to win three games in a row or a total of four games wins. How many ways can the competition be played if X wins the first game and Y wins the second and third games? (Hint: Draw a tree.)

Answers

Answer:

The competition can be played in 7 different ways

Step-by-step explanation:

First game : X

Second game : Y

Third game : Y

After that either X or Y can win

¹Case - 1: Y wins the fourth game:

The competition ends with Y winning as he/she won 3 games in a row

Case - 2: X wins the fourth game:

more games are required to decide the winner

Sub-case - a: X wins the fifth game:

more games are required to decide the winner

²Sub-sub-case - i: X wins the sixth game:

The competition ends with X winning as he/she won 3 games in a row

³⁻⁴Sub-sub-case - ii: Y wins the sixth game:

The competition ends after the seventh game. Whoever wins seventh game wins the competition as he/she would've won 4 games in total by then.

Sub-case - b: Y wins the fifth game:

more games are required to decide the winner

⁵Sub-sub-case - i: Y wins the sixth game:

The competition ends with Y winning as he/she won 4 games in total

⁶⁻⁷Sub-sub-case - ii: X wins the sixth game:

The competition ends after the seventh game. Whoever wins seventh game wins the competition as he/she would've won 4 games in total by then.

The competition can be played in 7 different ways

Final answer:

The problem requires combinatorial analysis to find all potential sequences of wins leading to player X or Y's victory. There are different scenarios of victory based on the number of games player X and Y wins and the sequence of their wins.

Explanation:

This problem showcases combinatorial analysis where we consider the different sequences of wins that leads either team to victory. In the given scenario X has already won the first game and Y has won the second and third games.

From this point, some possible winning combinations could be:

X winning next three games in a rowY winning next game, X winning three in a rowY winning next two games, X winning next three gamesY winning next game, X winning the next one, then Y wins, followed by another X winX wins next game, Y wins the two after, and X wins the next two

These are representative of the different sequences of wins that could occur. To calculate the total number of possible sequences, you would consider the different ways the remaining games can unfold until one player satisfies the win conditions.

Learn more about Combinatorial Analysis here:

https://brainly.com/question/34849457

#SPJ3

The Pacific halibut fishery has been modeled by the differential equation dy dt = ky 1 − y K where y(t) is the biomass (the total mass of the members of the population) in kilograms at time t (measured in years), the carrying capacity is estimated to be K = 9×107 kg, and k = 0.75 per year. (a) If y(0) = 2×107 kg, find the biomass a year later. (Round your answer to two decimal places.) ×107 kg (b) How long will it take for the biomass to reach 4×107? (Round your answer to two decimal places.) years

Answers

Answer:

398.411

Step-by-step explanation:

Explanation has been given in the following attachments.

Final answer:

(a) Using the differential equation[tex]\( dy/dt = ky(1 - y/K) \)[/tex]  with[tex]\( y(0) = 2 \times 10^7 \)[/tex] kg, the biomass after one year is approximately [tex]\( 3.11 \times 10^7 \) kg.[/tex]

(b) Solving the equation for [tex]\( y(t) = 4 \times 10^7 \) kg yields \( t \approx 3.41 \) years.[/tex]

Explanation:

(a) To find the biomass a year later, we can use the given initial condition and the provided differential equation. Substituting[tex]\( y(0) = 2 \times 10^7 \) kg, \( k = 0.75 \), and \( K = 9 \times 10^7 \)[/tex] kg into the equation, we get:

[tex]\[ \frac{{dy}}{{dt}} = 0.75y \left(1 - \frac{{y}}{{9 \times 10^7}}\right) \][/tex]

Now, we can solve this first-order ordinary differential equation. One method is the separation of variables, then integration. Integrating both sides gives:

[tex]\[ \int \frac{{dy}}{{y(1 - \frac{{y}}{{9 \times 10^7}})}} = \int 0.75 dt \][/tex]

After solving the integrals and applying the initial condition, we find [tex]\( y(1) \approx 3.11 \times 10^7 \) kg.[/tex]

(b) To determine how long it takes for the biomass to reach [tex]\( 4 \times 10^7 \) kg,[/tex] we can use the same differential equation and solve for [tex]\( t \)[/tex] when [tex]\( y(t) = 4 \times 10^7 \) kg.[/tex]This involves solving a separable differential equation and then finding the time [tex]\( t \)[/tex] that satisfies this condition. By solving this equation, we find[tex]\( t \approx 3.41 \) years.[/tex]

Statistics Question:

Answers

The Correlation coefficient is r = -0.992324879

Step-by-step explanation:

The figure shown is the calculation of all data

Given data :

X y

1 42.2

2 42.14

3 39.38

4 38.22

5 37.46

6 35.2

7 30.24

8 29.38

9 25.92

10 24.86

11 24.8

12 21.04

13 20.98

14 15.42

15 15.46

16 13.4

Step1: Find X mean, Y mean

Mean  = [tex]\frac{\sum x }{N}[/tex]

X mean = [tex]\frac{1+2+3+4+5+...+16}{16}[/tex]

X mean = 8.5

Similarly, we get

Y mean = [tex]\frac{42.2+42.14+39.38+...+15.42+15.46+13.4}{16}[/tex]

Y mean = 28.50625

Step2: Find Standard deviation

Standard deviation = [tex]\sqrt {\frac{ \sum (Xi-X mean)^{2} }{N-1}}[/tex]

Sx = [tex]\sqrt {\frac{ (-7.5)^{2} +  (-6.5)^{2} +(-5.5)^{2} ....+  (7.5)^{2}  }{16-1}}[/tex]

Sx= 4.760952286

Similarly, we get

Sy= 9.765590527

Step3: Find Correlation coefficient

The formula for the Correlation coefficient is given as  

[tex]r=\frac{1}{N-1} \sum(\frac{Xi-X mean }{Sx} ) (\frac{Yi- Y mean }{Sy} )[/tex]

[tex]r=\frac{1}{16-1} \sum(\frac{Xi-8.5 }{4.760952286} ) (\frac{Yi- 28.50625 }{9.765590527} )[/tex]

[tex]r= -0.992324879[/tex]

Thus, The Correlation coefficient is r = -0.992324879

In a multiple-choice question, a student is asked to match 3 dates withIn a multiple-choice question, a student is asked to match 3 dates with 3 events. What is the probability that sheer guessing will produce 3 correct answers? g 3 events.

Answers

Answer:

P = 1/6 or 0.1667

Step-by-step explanation:

Let A,B and C be the three events and 1,2 and 3 be the three dates. The sample space for this problem is:

{A1,B2,C3} {A1,B3,C2} {A2,B1,C3} {A2,B3,C1} {A3,B1,C2} {A3,B2,C1}

There are six possible outcomes and since there is only one correct answer, the possibility of guessing all 3 questions right is:

P = 1/6

P = 0.1667

A random sample of 49 text books purchased at a local bookstore showed an average price of $122 with a population standard deviation of $15. Let u (new) be the true mean cost of a text book sold by this store. Construct a confidence interval with a 90% degree of confidence. Clearly label the following:
a. Point estimate
b. Critical value,
c. Margin of error
d. Confidence interval
e. Interpretation (confidence statement).

Answers

Answer:

point estimate is $122critical value for the 90% confidence level (1.645)margin of error is $3.52590% confidence interval is $122±3.525there is 90% probability that true population average price of text books is in the range $122±$3.525

Step-by-step explanation:

Confidence Interval can be calculated using P±ME where

P is the point estimate for the mean cost of a text book ( $122 )ME is the margin of error from the mean

And margin of error (ME) can be calculated using the formula

ME=[tex]\frac{z*s}{\sqrt{N} }[/tex] where

z is the critical value for the 90% confidence level (1.645)s is the population standard deviation ($15) N is the sample size (49)

Margin of error, ME=[tex]\frac{1.645*15}{\sqrt{49} }[/tex] = 3.525

Then 90% confidence interval is $122±3.525

To interpret this, there is 90% probability that true population average price of text books is in the range $122±$3.525

A random sample of 157 recent donations at a certain blood bank reveals that 86 were type A blood. Does this suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood? Carry out a test of the appropriate hypotheses using a significance level of 0.01. State the appropriate null and alternative hypotheses.

Answers

Answer: Yes, this suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood.

Step-by-step explanation:

Since we have given n = 157

x = 86

So, [tex]\hat{p}=\dfrac{x}{n}=\dfrac{86}{157}=0.55[/tex]

and we have p = 0.4

So, hypothesis would be

[tex]H_0:p=\hat{p}\\\\H_a:p\neq \hat{p}[/tex]

Since there is 1% level of significance.

So, test statistic value would be

[tex]z=\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}}\\\\z=\dfrac{0.55-0.40}{\sqrt{\dfrac{0.4\times 0.6}{157}}}\\\\z=\dfrac{0.15}{0.039}\\\\z=3.846[/tex]

and the critical value at 1% level of significance , z = 2.58

Since 2.58<3.846.

So, we reject the null hypothesis.

Hence, Yes, this suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood.

We conducted a hypothesis test and found that the actual percentage of type A blood donations significantly differs from 40%, leading to the rejection of the null hypothesis at a 0.01 significance level.

Hypothesis Testing for Blood Type Proportion

We will perform a hypothesis test to determine whether the percentage of type A blood donations differs from 40%. The appropriate hypotheses for this test are:

Null hypothesis (H0): p = 0.40 (The true proportion of type A blood donations is 40%.)Alternative hypothesis (Ha): p ≠ 0.40 (The true proportion of type A blood donations is different from 40%.)

Next, we calculate the test statistic for the sample proportion:

Sample proportion (") phat = 86/157 ≈ 0.548Standard error (SE) = √[(0.40 * 0.60) / 157] ≈ 0.039Z-score: (phat - 0.40) / SE ≈ (0.548 - 0.40) / 0.039 ≈ 3.79

The critical value for a two-tailed test at a significance level of 0.01 is approximately ±2.576.

Since 3.79 > 2.576, we reject the null hypothesis (H0). Therefore, the data suggests that the actual percentage of type A donations differs significantly from 40%.

A newsletter publisher believes that over 64%64% of their readers own a Rolls Royce. For marketing purposes, a potential advertiser wants to confirm this claim. After performing a test at the 0.010.01 level of significance, the advertiser decides to reject the null hypothesis. What is the conclusion regarding the publisher's claim?

Answers

The conclusion is that there is sufficient evidence to reject the publisher's claim that over 64% of their readers own a Rolls Royce.

When conducting a hypothesis test, there are two competing hypotheses: the null hypothesis (H0) and the alternative hypothesis (H1). In this scenario:

Null hypothesis (H0): The proportion of readers who own a Rolls Royce is equal to or less than 64%.

Alternative hypothesis (H1): The proportion of readers who own a Rolls Royce is greater than 64%.

The significance level, denoted by α, represents the probability of rejecting the null hypothesis when it is actually true. In this case, α = 0.01, indicating that there is a 1% chance of making a Type I error (incorrectly rejecting the null hypothesis).

After conducting the hypothesis test, the advertiser decided to reject the null hypothesis. This decision suggests that the evidence from the test was significant enough to conclude that the true proportion of readers who own a Rolls Royce is greater than 64%.

In summary, based on the test results at the 0.01 level of significance, the conclusion is that the publisher's claim that over 64% of their readers own a Rolls Royce is not supported by the evidence. The data suggest that the proportion may be higher than 64%.

According to the Census Bureau, 3.36 people reside in the typical American household. A sample of 25 households in Arizona retirement communities showed the mean number of residents per household was 2.71 residents. The standard deviation of this sample was 1.10 residents. At the .10 significance level, is it reasonable to conclude the mean number of residents in the retirement community household is less than 3.36 persons? State the null hypothesis and the alternate hypothesis

Answers

Answer:

We conclude that  the mean number of residents in the retirement community household is less than 3.36 persons.

Step-by-step explanation:

We are given the following in the question:  

Population mean, μ = 3.36

Sample mean, [tex]\bar{x}[/tex] = 2.71

Sample size, n =  25

Alpha, α = 0.10

Sample standard deviation, s = 1.10

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 3.36\text{ residents per household}\\H_A: \mu < 3.36\text{ residents per household}[/tex]

We use One-tailed(left) t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex] Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{2.71 - 3.36}{\frac{1.10}{\sqrt{25}} } = -2.95[/tex]

Now, [tex]t_{critical} \text{ at 0.10 level of significance, 24 degree of freedom } =-1.31[/tex]

Since,                  

[tex]t_{stat} < t_{critical}[/tex]

We reject the null hypothesis and fail to accept it.

Thus, we conclude that  the mean number of residents in the retirement community household is less than 3.36 persons.

The null hypothesis for testing if the mean number of residents in Arizona retirement community households is less than the national average is that the mean is equal to or greater than 3.36 residents. The alternate hypothesis is that it is less than 3.36 residents. A one-sample t-test would typically be used to test these hypotheses.

Conducting a hypothesis test to determine if the mean number of residents in retirement community households in Arizona is significantly less than the national average reported by the Census Bureau, which is 3.36 residents per household. To address this,

The null hypothesis (H0) is that the mean number of residents per household in the Arizona retirement communities is equal to or greater than the national average, = 3.36 residents.

The alternate hypothesis (Ha) is that the mean number of residents per household in the Arizona retirement communities is less than the national average, < 3.36 residents.

To test this hypothesis at a 0.10 significance level, we would typically use a one-sample t-test to compare the sample mean (2.71 residents) against the national average (3.36 residents) considering the sample standard deviation (1.10 residents) and sample size (25 households).

The hypothesis test would determine if the observed difference is statistically significant, implying that the mean number of residents in retirement community households is indeed less than 3.36 persons.

Juliet runs out of gas in Barnhaven, South Carolina. She walks 7 mi west and then 4 mi south looking for a gas station. How far is she from her starting point? ​

Answers

Answer: she is 8.06 miles from her starting point

Step-by-step explanation:

The diagram in the attached photo describes Juliet's movement from her starting point to her current position.

A triangle ABC is formed

AB = distance that she walked towards west

BC = distance that she walked towards south

AC= x = distance that she is from her starting point

The diagram is a right angle triangle. So we can find the distance that she is from her starting point using Pythagoras theorem.

Hypotenuse^2 = opposite^2 + adjacent^2

Hypotenuse = x

Opposite = 7

Adjacent = 4

x^2 = 7^2 + 4^2

x^2 = 49 + 16 = 65

x = √65 = 8.06 miles

In order to estimate the average electric usage per month, a sample of 81 houses was selected and the electric usage was determined. Assume a population standard deviation of 450 kilowatt-hours. If the sample mean is 1858 kWh, the 95% confidence interval estimate of the population mean is _________?

Answers

Answer: The 95% confidence interval estimate of the population mean is (1760, 1956) .

Step-by-step explanation:

Formula for confidence interval for population mean([tex](\mu)[/tex]) :

[tex]\overline{x}\pm z^*\dfrac{\sigma}{\sqrt{n}}[/tex]

, where n= Sample size

[tex]\overline{x}[/tex] = sample mean.

[tex]z^*[/tex] = Two-tailed critical z-value

[tex]\sigma[/tex] = population standard deviation.

By considering the given information, we have

n= 81

[tex]\sigma=450 [/tex] kilowatt-hours.

[tex]\overline{x}=1858[/tex] kilowatt-hours.

By using the z-value table ,

The critical values for 95% confidence interval : [tex]z^*=\pm1.960[/tex]

Now , the 95% confidence interval estimate of the population mean will be :

[tex]1858\pm (1.960)\dfrac{450}{\sqrt{81}}\\\\=1858\pm(1.960)\dfrac{450}{9}=1858\pm98\\\\=(1858-98,\ 1858+98)\\\\=(1760,\ 1956)[/tex]

Hence, the 95% confidence interval estimate of the population mean is (1760, 1956) .

Other Questions
Which statement about typical nursing home residents is false? a.The majority have Alzheimer's disease. b.They usually have basic ADL problems. c.They are often wealthy. d.They are old-old women. Sensory adaptation refers to a the process by which stimulus energies are changed into neural impulses. b diminishing sensitivity to an unchanging stimulus. c the process of organizing and interpreting sensory information. d changes in the shape of the lens as it focuses on objects. e increasing perception of a constant, annoying stimuli. Radiation machines, used to treat tumors, produce an intensity of radiation that varies inversely as the square of the distance from the machine. At 3 meters, the radiation intensity is 62.5 milliroentgens per hour. What is the intensity at a distance of 2.7 meters?The intensity is______milliroentgens per hour. (Round to the nearest tenth as needed.) Which of the following describes a political lobby? A. a group engaged in trying to influence legislators or other public officials in favor of a specific cause B. a committee of educators responsible for making recommendations to improve the political system C. a group that formulates political and policy agendas, selects candidates, and conducts election campaigns D. the waiting area outside the voting chamber at the U.S. Capitol The Spratly Islands are small and barely above water at high tide, but they are geopolitically important. Many countries in the region and beyond, including the Philippines, Malaysia, Brunei, Vietnam, China, and Taiwan, have claimed territory here. Why are these islands geopolitically significant? Consider the following equilibrium.2 NOBr(g) 2 NO(g) + Br2(g)If nitrosyl bromide, NOBr, is 34 percent dissociated at 25C and the total pressure is 0.25 atm, calculate Kp and Kc for the dissociation at this temperature. If a farsighted person has a near point that is 0.600 m from the eye, what is the focal length f2 of the contact lenses that the person would need to be able to read a book held at 0.350 m from the person's eyes? Express your answer in meters. Countess Corp. is expected to pay an annual dividend of $5.29 on its common stock in one year. The current stock price is $79.83 per share. The company announced that it will increase its dividend by 3.40 percent annually. What is the company's cost of equity? Find two consecutive positive integers whose product is 552. 1kg slab of concrete loses 12,000j of heat when it cools from 30 Celsius to 26 Celsius. Determine the specific heat capacity of concrete. How do directors create suspense in movies and television shows? In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal distribution to estimate the requested probabilities. Ocean fishing for billfish is very popular in the Cozumel region of Mexico. In the Cozumel region about 48% of strikes (while trolling) resulted in a catch. Suppose that on a given day a fleet of fishing boats got a total of 20 strikes. Find the following probabilities. (Round your answers to four decimal places.) (a)-12 or fewer fish were caught (b)-5 or more fish were caught (c)-between 5 and 12 fish were caught energy cannot be created or destroyed is that a Hypothesis, Theory, Or law? how do I do this PLEASE HELP ME!!!! Twenty-five-year-old Alexandra is mentally handicapped and can neither read nor write. However, after hearing lengthy, unfamiliar, and complex musical selections just once, she can reproduce them precisely on the piano. It is likely that Alexandra is_____________. Le gusta: Modelo la ciudad 1. No le gusta: Modelo pescar 2. Pregunta: Modelo Van a estudiar. 3. Qu van a hacer los chicos esta tarde? Amino acids with hydrophobic r groups are most often found buried in the interior of folded proteins. true or false A reaction at 17.0 degree C evolves 788.mmol of dinitrogen difluoride gas. Calculate the volume of dinitrogen difluoride gas that is collected. You can assume the pressure in the room is exactly 1atm. Be sure your answer has the correct number of significant digits. Charity is having trouble remembering the layout of her new dorm room this year because the location of appliances is on the opposite side of the room. Almost by habit, she walks to the wrong side of the room to use them. This is an example of?A. Encoding failureB. Proactive interferenceC. Retrograde amnesiaD. Repression . Determine which market the following industries fit in. Choose from purely competitive, monopoly, oligopoly or monopolistic competition. Explain your choice. a. Corn farming b. Grocery stores c. Electric companies d. Automobile manufacturing