A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed between 46.0 and 56.0 minutes. Find the probability that a given class period runs between 50.75 and 51.25 minutes.

Answers

Answer 1

Answer: 0.05

Step-by-step explanation:

Given : Interval for uniform distribution : [46.0 minutes, 56.0 minutes]

The probability density function will be :-

[tex]f(x)=\dfrac{1}{56-46}=\dfrac{1}{10}=0.1\ \ , 46<x<56[/tex]

The probability that a given class period runs between 50.75 and 51.25 minutes is given by :-

[tex]P(50.75<x<51.25)=\int^{51.25}_{50.75}f(x)\ dx\\\\=(0.1)[x]^{51.25}_{50.75}\\\\=(0.1)(51.25-50.75)=0.05[/tex]

Hence, the probability that a given class period runs between 50.75 and 51.25 minutes = 0.05


Related Questions

A round silo is 55 feet tall and has a 24 foot radius. How high would a load of 38000 cubic feet of grain fill the silo?

Answers

Find the volume of the silo.

The formula is: Volume =  PI x r^2 x h

Replace volume with the volume of grain and solve for h:

38000 = 3.14 x 24^2 x h

38000 = 3.14 x 576 x h

38000 = 1808.64 x h

Divide both sides by 1808.64

h = 38000 / 1808.64

h = 21.01

The grain would be 21.01 feet ( round to 21 feet.)

A bit out of practice, but how to go about finding the origin and vertix of this equation

9x^(2)+16y^(2)=144

Answers

Answer:Explained Below

Step-by-step explanation:

The given equation is similar to an ellipse which is in the form of

[tex]\frac{x^2}{a^2}[/tex]+[tex]\frac{y^2}{b^2}[/tex]=1

where

2a=length of major axis

2b=length of minor axis

Here after rearranging the given equation we get

[tex]\frac{x^2}{\frac{144}{9}}[/tex]+[tex]\frac{y^2}{\frac{144}{16}}[/tex]=1

[tex]\frac{x^2}{16}[/tex]+[tex]\frac{y^2}{9}[/tex]=1

[tex]\frac{x^2}{4^2}[/tex]+[tex]\frac{y^2}{3^2}[/tex]=1

therefore its origin is (0,0)

and vertices are[tex]\left ( \pm4,0\right )[/tex]&[tex]\left ( 0,\pm3\right )[/tex]

We can find origin by checking what is with x in the term [tex]\left ( x-something\right )^{2}[/tex]

same goes for y

for [tex]\left ( x-2\right )^{2}[/tex] here 2 is the x  coordinate of ellipse

and for vertices Each endpoint of the major axis is vertices and each endpoint of minor axis is co-vertices

as a linear cost function. Find the cost function. Assume that the situation can be expressed Fixed cost is $100 20 items cost 500 to produce. The linear cost function is C(x)= |0

Answers

Answer:

Production cost is $20 per item.

Step-by-step explanation:

Fixed cost is $100 and 20 items cost $500 to produce.

[tex]C=100+x*production cost[/tex]

[tex]500=100+20*production cost[/tex]

[tex]400=20*production cost[/tex]

Production cost = $20.

So, [tex]C(x)=20x+100[/tex], where C is total cost and x is the number of items produced.

Final answer:

The linear cost function, based on a given fixed cost and the cost to produce a certain number of items, is found by identifying and adding the fixed and variable costs. In this scenario, the mathematical expression for the total cost function is C(x) = $100 + $20(x).

Explanation:

To determine the linear cost function for a production scenario with fixed and variable costs, we use the information provided: the fixed cost is $100, and the cost to produce 20 items is $500. Knowing that the cost function is linear, we can express it as C(x) = Fixed Cost + Variable Cost per Item (x), where C(x) is the total cost function and x is the number of items produced.

Since the fixed cost is given as $100, we have C(x) = $100 + Variable Cost per Item (x). To find the variable cost per item, we calculate the difference in total costs when producing 20 items. This is $500 (total cost to produce 20 items) minus the fixed cost of $100, which equals $400. Since this cost is associated with the production of 20 items, we divide $400 by 20 to find the variable cost per item, which is $20. Thus, our variable cost per item is $20.

Now, we combine the fixed cost with the variable cost per item to get the complete linear cost function: C(x) = $100 + $20(x).

What is the condition on the probability of success p that will guarantee the histogram of a binomial distribution is symmetrical about x=n/2. Justify your answer.

Answers

Answer:

  The probability of success is 1/2.

Step-by-step explanation:

The histogram of a binomial distribution has a mode of n×p. For that to be n/2, the value of p must be 1/2.

A participant in a cognitive psychology study is given 50 words to remember and later asked to recall as many of the words as she can. She recalls 17 words. What is the​ (a) variable,​ (b) possible​ values, and​ (c) score?

Answers

Answer:

A participant in a cognitive psychology study is given 50 words to remember and she recalls 17 words.  

So, here variable will be the number of words the participant can remember, out of 50.

The possible values can be the whole numbers 0, 1, 2, 3, 4, upto... 50.

And the score is 17. That is the score she remembers out of 50.

The equations 8x +4y = 32 and 16x +12y = 72 represent the cost for lunch and dinner for a family eating out on vacation. If x is the number of adults and y is the number of children, how many adults are in the family?

Answers

Final answer:

To find the number of adults in the family, we need to solve the system of equations. By multiplying the first equation by 2 and subtracting it from the second equation, we can eliminate x and solve for y. Substituting the value of y back into the first equation, we can solve for x. The number of adults in the family is 3.

Explanation:

To find the number of adults in the family, we need to solve the system of equations:

Equation 1: 8x + 4y = 32

Equation 2: 16x + 12y = 72

We can solve this system by first multiplying Equation 1 by 2 to make the coefficients of x in both equations the same. This gives us:

Equation 1 (multiplied by 2): 16x + 8y = 64

Next, we can subtract Equation 1 (multiplied by 2) from Equation 2 to eliminate x:

Equation 2 - Equation 1 (multiplied by 2): (16x + 12y) - (16x + 8y) = 72 - 64

Simplifying the equation, we get:

4y = 8

Dividing both sides by 4, we find:

y = 2

So, there are 2 children in the family. Substituting this value back into Equation 1, we can solve for x:

8x + 4(2) = 32

8x + 8 = 32

8x = 24

Dividing both sides by 8, we find:

x = 3

Therefore, there are 3 adults in the family.

you flip a spinner that has 4 differently colored regions (red, white, blue, green) all equal in area, and toss 1 die and count the dots on top (1 thourgh 6 possible). How many color-dot outcomes are possible?

Answers

Answer:

24 ways

Step-by-step explanation:

Two different events

1) flip a spinner with 4 different colors regions.

2) tossing a die with 6 outcomes

to calculate number of colored dots possible

note here both action are independent of each other

by the principal of counting we can say

if an act is performed in m ways and another act can be performed in n ways the both the act simultaneously can be performed in [tex]m\times n[/tex] ways.

here act 1 has m=4 ways and act n= 6 ways

hence number of ways of getting colored dots = [tex]4\times6[/tex] ways

= 24 ways

Final answer:

The total number of possible outcomes when flipping a spinner with 4 differently colored regions and tossing a die is 24, calculated by multiplying the number of possible outcomes from the spinner (4) and the die (6).

Explanation:

The subject of the question is the calculation of possible outcomes in a probability scenario involving a spinner and a die. A spinner with 4 differently colored areas can give 4 outcomes (red, white, blue, green), and tossing a die can result in 6 outcomes (1, 2, 3, 4, 5, 6).

To find the total number of possible outcomes, we simply multiply the number of possible outcomes from the spinner and the die: 4 (from the spinner) times 6 (from the die).

So, there are 24 color-dot outcomes possible when flipping a spinner with 4 differently colored areas and tossing a die.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

The pieces of a 500 piece puzzle are stored in three containers. 220 pieces are in the first container and 180 pieces are in the second container. What percentage of the pieces in the third container?

Answers

Answer:

20 percent

Step-by-step explanation:

Total number of pieces in a puzzle = 500

No. of pieces in first container = 220

No. of pieces in second container = 180

Let no. of pieces in the third container  be x.

We get,

[tex]220+180+x=500[/tex]

On adding 220 and 180, we get

[tex]400+x=500[/tex]

On transposing 400 to RHS, we get

[tex]x=500-400=100[/tex]

Percentage of pieces in the third container = (no. of pieces in third container/total no. of pieces in a puzzle) [tex]\times 100[/tex]

[tex]=\frac{100}{500}\times 100=\frac{10000}{500}=20[/tex]

Therefore, percentage of pieces in the third container = 20 percent

A particular fruit's weights are normally distributed, with a mean of 353 grams and a standard deviation of 6 grams. If you pick one fruit at random, what is the probability that it will weigh between 334 grams and 344 grams?

Answers

Answer:   0.0660

Step-by-step explanation:

Given : A particular fruit's weights are normally distributed with

Mean : [tex]\mu=353\text{ grams}[/tex]

Standard deviation : [tex]\sigma=6\text{ grams}[/tex]

The formula to calculate the z-score is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

Let x be the weight of randomly selected fruit.

Then for x = 334 , we have

[tex]z=\dfrac{334-353}{6}=-3.17[/tex]

for x = 344 , we have

[tex]z=\dfrac{344-353}{6}=-1.5[/tex]

The p-value : [tex]P(334<x<353)=P(-3.17<z<-1.5)[/tex]

[tex]P(-1.5)-P(-3.17)=0.0668072-0.000771=0.0660362\approx0.0660[/tex]

Thus, the probability that it will weigh between 334 grams and 344 grams = 0.0660.

2. A random sample of 30 households was selected as part of a study on electricity usage, and the number of kilowatt-hours (kWh) was recorded for each household in the sample for the March quarter of 2017. The average usage was found to be 375kWh. From past years in the March quarter the population standard deviation of the usage was 81k Assuming the standard deviation is unchanged and that the usage is normally distributed ; A. Determine the interval of 95% confidence for the average kilowatt-hours for the population. B. Determine the 99% confidence interval. C. With a confidence level of 90%, what would the minimum sample size need to be in order for the true mean of the heights to be less than 20kWh from the sample mean? (This would mean an error amount of 20kWh.)

Answers

Answer:

Step-by-step explanation:

Given that n =30, x bar = 375 and sigma = 81

Normal distribution is assumed and population std dev is known

Hence z critical values can be used.

For 95% Z critical=1.96

Margin of error = [tex]1.96(\frac{81}{\sqrt{30} } )=29[/tex]

Confidence interval = 375±29

=(346,404)

B) 99% confidence

Margin of error = 2.59*Std error =38

Confidence interval = 375±38

=(337, 413)

C) For 90%

Margin of error = 20

Std error = 20/1.645 = 12.158

Sample size

[tex]n=(\frac{81}{12.158} )^2\\=44.38[/tex]

Atleast 44 people should be sample size.

Final answer:

To determine the confidence intervals for the average kilowatt-hours, a formula is used that includes the sample mean, Z-values, population standard deviation, and sample size. For a 95% confidence level, the interval is 324.95 to 425.05 kWh, and for a 99% confidence level, the interval is 311.01 to 438.99 kWh. To have a confidence level of 90% with a maximum error amount of 20kWh, the minimum sample size required is approximately 35 households.

Explanation:

A. Determine the interval of 95% confidence for the average kilowatt-hours for the population:

To determine the interval of 95% confidence, we can use the formula:

95% confidence interval = sample mean ± (Z-value) * (population standard deviation / √sample size)

Substituting the given values, we have:

95% confidence interval = 375 ± (1.96) * (81 / √30) = 324.95 to 425.05 kWh

B. Determine the 99% confidence interval:

Using the same formula, but with a Z-value of 2.57 (corresponding to 99% confidence), we have:

99% confidence interval = 375 ± (2.57) * (81 / √30) = 311.01 to 438.99 kWh

C. Minimum sample size for a confidence level of 90% and an error amount of 20kWh:

To determine the minimum sample size, we can rearrange the formula for the confidence interval and solve for the sample size:

Sample size = ((Z-value) * (population standard deviation / error amount))^2

Substituting the given values, we have:

Sample size = ((1.645) * (81 / 20))^2 = 34.64 or approximately 35 households

Learn more about Confidence intervals here:

https://brainly.com/question/34700241

#SPJ3

On a single roll of a pair of​ dice, what are the odds against rolling a sum of 3​? The odds against rolling a sum of 3 are nothing to nothing.

Answers

Answer: Odds against rolling a sum of 3 = 17:1

Step-by-step explanation:

On rolling a pair of dice,

Total number of outcomes = 6 × 6 = 36

Outcomes with a sum of 3:

there is only 2 outcomes whose sum is 3, that is, (1,2) and (2,1)

∴ Favorable outcome = 2

Unfavorable outcome = 34

Odds against refers to the ratio of unfavorable outcomes to the favorable outcomes

so,

odds against rolling a sum of 3 = [tex]\frac{unfavorable\ outcomes}{favorable\ outcomes}[/tex]

= [tex]\frac{34}{2}[/tex]

= 17:1

Find x.
A.4
B.18
C.12
D.38

Answers

The inside angle is half the outside angle.

2x +2 = 76 /2

2x +2 = 38

Subtract 2 from each side:

2x = 36

Divide both sides by 2:

x = 36 /2

x = 18

The answer is B.

10. (Section 4.7) John filled his gas tank and noted that the odometer read 38,320.8 miles. After the next filling, the odometer read 38,735.5 miles. It took 14.5 gal to fill the tank. How many miles per gallon did John get?

Answers

Find the number of miles he drove by subtracting the odometer readings:

38735.5 - 38320.8 = 414.7 miles.

Now divide the number of miles driven by the number of gallons:

414.7 / 14.5 = 28.6 miles per gallon.

Write an equation of the circle with center (4,5) and radius 9.

Answers

Answer:

I'm going to write both of these because maybe you have a fill in the blank question. I don't know.

[tex](x-4)^2+(y-5)^2=9^2[/tex]

Simplify:

[tex](x-4)^2+(y-5)^2=81[/tex]

Step-by-step explanation:

[tex](x-h)^2+(y-k)^2=r^2[/tex] is the equation of a circle with center (h,k) and radius r.

You are given (h,k)=(4,5) because that is the center.

You are given r=9 because it says radius 9.

Let's plug this in.

[tex](x-4)^2+(y-5)^2=9^2[/tex]

Simplify:

[tex](x-4)^2+(y-5)^2=81[/tex]

Answer:

(x-4)^2 + (y-5)^2 = 9^2

or

(x-4)^2 + (y-5)^2 =81

Step-by-step explanation:

The equation for a circle is (x-h)^2 + (y-k)^2 = r^2

Where (h,k) is the center and r is the radius

(x-4)^2 + (y-5)^2 = 9^2

or

(x-4)^2 + (y-5)^2 =81

Problem Page
Find the slope and the y -intercept of the line.
Write your answers in simplest form.


2x + 5y = -3

Answers

Answer:

slope -2/5

y-intercept -3/5

Step-by-step explanation:

Slope-intercept form of a line is y=mx+b where m is the slope and b is the y-intercept.

Our goal is to write 2x+5y=-3 into y=mx+b to determine the slope and y-intercept.

So we need to isolate y.

2x+5y=-3

Subtract 2x on both sides:

   5y=-2x-3

Divide both side by 5:

   [tex]y=\frac{-2}{5}x-\frac{3}{5}[/tex]

Compare this to y=mx+b.

You should see m is -2/5 and b is -3/5

so the slope is -2/5 and the y-intercept is -3/5

Answer:

The slope is: [tex]-\frac{2}{5}[/tex] or [tex]-0.4[/tex]

The y-intercept is: [tex]-\frac{3}{5}[/tex] or [tex]-0.6[/tex]

Step-by-step explanation:

The equation of the line in Slope-Intercept form is:

[tex]y=mx+b[/tex]

Where "m" is the slope of the line and "b" is the y-intercept.

To write the given equation in this form, we need to solve for "y":

[tex]2x + 5y = -3\\\\5y=-2x-3\\\\y=-\frac{2}{5}x-\frac{3}{5}[/tex]

Therefore, you can identify that the slope of this line is:

[tex]m=-\frac{2}{5}=0.4[/tex]

And the y-intercept is:

[tex]b=-\frac{3}{5}=-0.6[/tex]

It is 76 miles from Waterton to Middleton. It is 87 miles from Middleton to Oak Hill. Driving directly, it is 134 miles from Waterton to Oak Hill. It is 39 miles from Oak Hill to Jackson. If Juan drives from Waterton to Middleton, then from Middleton to Oak Hill, and finally home to Waterton, how many miles does he drive?

Answers

Answer: 297 miles

Step-by-step explanation:

The drive from Waterton to Middleton is 76 miles, from Middleton to Oak Hill is 87 miles, and from Oak Hill directly to Waterton it is 134 miles.

Then: [tex]76+87+134=297[/tex]

So Juan drives 297 miles.

If a 2-kg block compresses a spring 800mm from its relaxed state, how much potential energy does the block have due to the spring? Assume the spring constant, k = 25 N/m.

Answers

Answer:

8 Joule

Step-by-step explanation:

Mass of block = 2 kg

Displacement = x = 800 mm = 0.8 m

Spring constant = k = 25 N/m

Potential Energy of a spring

Work done = Difference in Potential Energy

Work Done = Δ P.E.

[tex]\Rightarrow \Delta\ P.E.=\frac{1}{2}kx^2[/tex]

⇒P.E. = 0.5×25×0.8²

⇒P.E. = 8 Nm = 8 Joule

Here already the spring constant and displacement is given so the mass will not be used while calculating the potential energy.

What is the value of -4x + 12 if x = -4

Answers

Answer:

28

Step-by-step explanation:

substitute x for negative four -4(-4)+12=

solve -4 * -4= 16

add 16 and 12 equals 28

Answer:

28

Step-by-step explanation:

-4x + 12

Let x = -4

-4 (-4) +12

16+12

28

Find the dimensions of the open rectangular box of maximum volume that can be made from a sheet of cardboard 3131 in. by 1717 in. by cutting congruent squares from the corners and folding up the sides. Then find the volume.

Answers

Answer:

840.02 square inches ( approx )

Step-by-step explanation:

Suppose x represents the side of each square, cut from the corners of the sheet,

Since, the dimension of the sheet are,

31 in × 17 in,

Thus, the dimension of the rectangular box must are,

(31-2x) in × (17-2x) in × x in

Hence, the volume of the box would be,

V = (31-2x) × (17-2x) × x

[tex]=(31\times 17 +31\times -2x -2x\times 17 -2x\times -2x)x[/tex]

[tex]=(527 -62x-34x+4x^2)x[/tex]

[tex]\implies V=4x^3-96x^2 +527x[/tex]

Differentiating with respect to x,

[tex]\frac{dV}{dx}=12x^2-192x+527[/tex]

Again differentiating with respect to x,

[tex]\frac{d^2V}{dx^2}=24x-192[/tex]

For maxima or minima,

[tex]\frac{dV}{dx}=0[/tex]

[tex]\implies 12x^2-192x+527=0[/tex]

By the quadratic formula,

[tex]x=\frac{192 \pm \sqrt{192^2 -4\times 12\times 527}}{24}[/tex]

[tex]x\approx 8\pm 4.4814[/tex]

[tex]\implies x\approx 12.48\text{ or }x\approx 3.52[/tex]

Since, at x = 12.48, [tex]\frac{d^2V}{dx^2}[/tex] = Positive,

While at x = 3.52, [tex]\frac{d^2V}{dx^2}[/tex] = Negative,

Hence, for x = 3.52 the volume of the rectangle is maximum,

Therefore, the maximum volume would be,

V(3.5) = (31-7.04) × (17-7.04) × 3.52 = 840.018432 ≈ 840.02 square inches

Gold used to make jewerly is often a blend of​ gold, silver, and copper. Consider three alloys of these metals. The first alloy is​ 75% gold,​ 5% silver, and​ 20% copper. The second alloy is​ 75% gold,​ 12.5% silver, and​ 12.5% copper. The third alloy is​ 37.5% gold and​ 62.5% silver. If 100 g of the first alloy costs ​$2500.40​, 100 g of the second alloy costsnbsp $ 2537.75​, and 100 g of the third alloy costs $ 1550.00​, how much does each metal​ cost?

Answers

Answer:

Gold - $33, Silver - $5, Copper - $0.02

Step-by-step explanation:

Let $x be the price of one gram of gold, $y - price of 1 g of silver and $z - price of 1 g of copper.

1. The first alloy is​ 75% gold,​ 5% silver, and​ 20% copper, so in 100 g there are 75 g of gold, 5 g of silver and 20 g of copper.  If 100 g of the first alloy costs ​$2500.40​, then

75x+5y+20z=2500.40

2. The second alloy is​ 75% gold,​ 12.5% silver, and​ 12.5% copper, so in 100 g there are 75 g of gold, 12.5 g of silver and 12.5 g of copper.  If 100 g of the first alloy costs ​$2537.75​, then

75x+12.5y+12.5z=2537.75

3. The third alloy is​ 37.5% gold and​ 62.5% silver, so in 100 g there are 37.5 g of gold and 62.5 g of silver .  If 100 g of the first alloy costs ​$1550.00​, then

37.5x+62.5y=1550.00

Solve the system of three equations:

[tex]\left\{\begin{array}{l}75x+5y+20z=2500.40\\75x+12.5y+12.5z=2537.75\\37.5x+62.5y=1550.00\end{array}\right.[/tex]

Find all determinants

[tex]\Delta=\|\left[\begin{array}{ccc}75&5&20\\75&12.5&12.5\\37.5&62.5&0\end{array}\right] \|=28125\\ \\

\Delta_x=\|\left[\begin{array}{ccc}2500.40&5&20\\2537.75&12.5&12.5\\1550.00&62.5&0\end{array}\right] \|=928125\\ \\

\Delta_y=\|\left[\begin{array}{ccc}75&2500.40&20\\75&2537.75&12.5\\37.5&1550&0\end{array}\right] \|=140625\\ \\

\Delta_z=\|\left[\begin{array}{ccc}75&5&2500.40\\75&12.5&2537.75\\37.5&62.5&1550\end{array}\right] \|=562.5\\ \\[/tex]

So,

[tex]x=\dfrac{\Delta_x}{\Delta}=\dfrac{928125}{28125}=33\\ \\\\y=\dfrac{\Delta_y}{\Delta}=\dfrac{140625}{28125}=5\\ \\\\z=\dfrac{\Delta_z}{\Delta}=\dfrac{562.5}{28125}=0.02\\ \\[/tex]

A company is considering a new manufacturing process. It knows that the rate of savings (in dollars per year) from the process will be about S(t) = 3000(t+2), where t is the number of years the process has been in use. Find the total savings during the first year. Find the total savings during the first 5 years. . The total savings during the first year is S (Simplify your answer.)

Answers

Answer:

i). [tex]\$ 7500[/tex]

ii).[tex]\$ 67500[/tex]

Step-by-step explanation:

Given in the question-

Saving rate is s(t)= 3000(t+2)

We know that savings in the 1st year can be calculated as

    [tex]\int_{0}^{1}3000(t+2).dt[/tex]

    [tex]3000\left [ \frac{t^{2}}{2}+2t \right ]_0^1[/tex]

    [tex]3000\left [ \frac{1}{2}+2 \right ][/tex]

 = [tex]\$ 7500[/tex]

So savings in the first 5 years can be calculated as

     [tex]\int_{0}^{5}3000(t+2).dt[/tex]

    [tex]3000\left [ \frac{t^{2}}{2}+2t \right ]_0^5[/tex]

    [tex]3000\left [ \frac{25}{2}+5 \right ][/tex]

 = [tex]\$ 67500[/tex]

[15 points] Compute ffR2(x + 1)y2 dA, R = [ 0, 1] x [0,3), by Riemann sum definition. You must use the Riemann sum definition to receive credit.

Answers

Looks like the integral is

[tex]\displaystyle\iint_R2(x+1)y^2\,\mathrm dA[/tex]

where [tex]R=[0,1]\times[0,3][/tex]. (The inclusion of [tex]y=3[/tex] will have no effect on the value of the integral.)

Let's split up [tex]R[/tex] into [tex]mn[/tex] equally-sized rectangular subintervals, and use the bottom-left vertices of each rectangle to approximate the integral. The intervals will be partitioned as

[tex][0,1]=\left[0,\dfrac1m\right]\cup\left[\dfrac1m,\dfrac2m\right]\cup\cdots\cup\left[\dfrac{m-1}m,1\right][/tex]

and

[tex][0,3]=\left[0,\dfrac3n\right]\cup\left[\dfrac3n,\dfrac6n\right]\cup\cdots\cup\left[\dfrac{3(n-1)}n,3\right][/tex]

where the bottom-left vertices of each rectangle are given by the sequence

[tex]v_{i,j}=\left(\dfrac{i-1}n,\dfrac{3(j-1)}n\right)[/tex]

with [tex]1\le i\le m[/tex] and [tex]1\le j\le n[/tex]. Then the Riemann sum is

[tex]\displaystyle\lim_{m\to\infty,n\to\infty}\sum_{i=1}^m\sum_{j=1}^nf(v_{i,j})\frac{1-0}m\frac{3-0}n[/tex]

[tex]\displaystyle=\lim_{m\to\infty,n\to\infty}\frac3{mn}\sum_{i=1}^m\sum_{j=1}^n\frac{18}{mn^2}(j-1)^2(i-1+m)[/tex]

[tex]\displaystyle=\lim_{m\to\infty,n\to\infty}\frac{54}{m^2n^3}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}j^2(i+m)[/tex]

[tex]\displaystyle=\frac92\lim_{m\to\infty,n\to\infty}\frac{(3m-1)(2n^3-3n^2+n)}{mn^3}[/tex]

[tex]\displaystyle=\frac92\left(\lim_{m\to\infty}\frac{3m-1}m\right)\left(\lim_{n\to\infty}\frac{2n^3-3n^2+n}{n^3}\right)=\boxed{27}[/tex]

When a pair of dice is rolled, what is the probability that the sum of the dice is 5, given that the outcome is not 6? The probability that the sum of the dice is 5 given that the outcome is not 6 is (Type an integer or a simplified fraction.)

Answers

Final answer:

The probability that the sum of the two dice rolls is 5 given that the sum is not 6, is calculated by finding the ratio of favorable outcomes to total outcomes, in this case, 4/31.

Explanation:

The subject of this question is probability which comes under Mathematics. This is a high school-level problem. To answer the question, we first need to understand the rules of a die. A die is a cube, and each of its six faces shows a different number of dots from 1 to 6. When the die is thrown, any number from 1 to 6 can turn up. In this case, two dice are being rolled.

When two dice are rolled, the total possible outcomes are 36 (as each die has 6 faces & we have 2 dice, so 6*6=36 possible outcomes). The combinations that yield a sum of 5 are (1,4), (2,3), (3,2), (4,1), so there are 4 such combinations. Now, the outcome is given to be not 6, which means we exclude combinations where the sum is 6. The combinations of 6 are (1,5), (2,4), (3,3), (4,2), and (5,1) -- 5 combinations.

Excluding these combinations, we have 36 - 5 = 31 possible outcomes. So probability that the sum of the dice is 5 given that the outcome is not 6, is favorable outcomes/total outcomes = 4/31.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ2

also find the measure of BEF as well

Answers

Answer:

  ∠ABC = 84°

  ∠BEF = 64°

Step-by-step explanation:

∠ABC is supplementary to the 96° angle shown, so is 180° -96° = 84°.

__

∠ABD, marked as (x+y)°, is a vertical angle with ∠EBC, so has the same measure, 96°. ∠BEF, marked as y°, is a vertical angle with the one marked 2x°.

These relationships can be expressed as two equations:

x + y = 962x = y

Using the second of these equations to substitute for y in the first equation, we have ...

  x + 2x = 96

  x = 96/3 = 32

  y = 2x = 2·32 = 64 . . . . . . substitute the value of x into the second equation

Then ∠BEF = 64°.

Consider the system of differential equations dxdt=−4ydydt=−4x. Convert this system to a second order differential equation in y by differentiating the second equation with respect to t and substituting for x from the first equation. Solve the equation you obtained for y as a function of t; hence find x as a function of t. If we also require x(0)=4 and y(0)=5, what are x and y?

Answers

Final answer:

The general solution of this differential equation is y(t) = c1 cos(5t) + c2 sin(5t), where c1 and c2 are constants determined by the initial conditions.

Differentiating the second equation with respect to t, we get: d^2y/dt^2 = -5 dx/dt, Substituting dx/dt from the first equation, we get: d^2y/dt^2 = -5(-5y) = 25y.

This is a second order differential equation in y. The general solution of this differential equation is y(t) = c1 cos(5t) + c2 sin(5t), where c1 and c2 are constants determined by the initial conditions.

To find x as a function of t, we can substitute y(t) into the first equation and solve for x: dx/dt = -5y = -5(c1 cos(5t) + c2 sin(5t)) , Integrating both sides with respect to t, we get: x(t) = -c1 sin(5t) + c2 cos(5t) + k

where k is a constant of integration. Using the initial conditions x(0) = 4 and y(0) = 1, we can solve for the constants c1, c2, and k: x(0) = -c1 sin(0) + c2 cos(0) + k = c2 + k = 4, y(0) = c1 cos(0) + c2 sin(0) = c1 = 1

Substituting c1 = 1 and c2 + k = 4 into the equation for x, we get:

x(t) = -sin(5t) + 4

So the solution to the system of differential equations with initial conditions x(0) = 4 and y(0) = 1 is x(t) = -sin(5t) + 4 and y(t) = cos(5t).

To know more about function click here

brainly.com/question/28193995

#SPJ3

Use Stokes' Theorem to evaluate S curl F · dS. F(x, y, z) = 5y cos(z) i + ex sin(z) j + xey k, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented upward. Step 1 Stokes' Theorem tells us that if C is the boundary curve of a surface S, then curl F · dS S = C F · dr Since S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0 oriented upward, then the boundary curve C is the circle in the xy-plane, x2 + y2 = 4 Correct: Your answer is correct. seenKey 4 , z = 0, oriented in the counterclockwise direction when viewed from above. A vector equation of C is r(t) = 2 Correct: Your answer is correct. seenKey 2 cos(t) i + 2 Correct: Your answer is correct. seenKey 2 sin(t) j + 0k with 0 ≤ t ≤ 2π.

Answers

By Stokes' theorem, the integral of the curl of [tex]\vec F[/tex] across [tex]S[/tex] is equal to the integral of [tex]\vec F[/tex] along the boundary of [tex]S[/tex], call it [tex]C[/tex]. Parameterize [tex]C[/tex] by

[tex]\vec r(t)=2\cos t\,\vec\imath+2\sin t\,\vec\jmath[/tex]

with [tex]0\le t\le2\pi[/tex]. So we have

[tex]\displaystyle\iint_S(\nabla\times\vec F)\cdot\mathrm d\vec S=\int_C\vec F\cdot\mathrm d\vec r[/tex]

[tex]=\displaystyle\int_0^{2\pi}(10\sin t\cos 0\,\vec\imath+e^{2\cos t}\sin0\,\vec\jmath+2\cos t\,e^{2\sin t}\,\vec k)\cdot(-2\sin t\,\vec\imath+2\cos t\,\vec\jmath)\,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^{2\pi}-20\sin^2t\,\mathrm dt[/tex]

[tex]=\displaystyle-10\int_0^{2\pi}(1-\cos2t)\,\mathrm dt=\boxed{-20\pi}[/tex]

Final answer:

The problem makes use of Stokes' theorem to evaluate a given field over a hemisphere. We established the boundary curve of the surface and described it using a vector equation.

Explanation:

This problem can be solved using Stokes' theorem which asserts that the magnetic field flux through a surface is related to the circulation of the field encircling that surface. Stokes' theorem can be written in this form ∫ S curl F · dS = ∫ C F · dr. Given the field F(x, y, z) = 5y cos(z) i + ex sin(z) j + xey k and the hemisphere S defined by x² + y² + z² = 4, z ≥ 0, we need to look for its boundary curve C. C here is the circle in the xy-plane defined by x² + y² = 4, z = 0. We can describe this boundary using a vector equation r(t) = 2 cos(t) i + 2 sin(t) j + 0k with 0 ≤ t ≤ 2π.

Learn more about Stokes' theorem here:

https://brainly.com/question/35538480

#SPJ3

Basing your answer on the appearance of the figures below, identify whether the mathematical expression is true or false.



ΔROB ≅ ΔDFE


True or False

Answers

Answer:

The mathematical expression is false

Step-by-step explanation:

* Lets use the figure to answer the question

- There are four triangles in the figure

- Δ ROB and Δ PTA appear congruent because:

# The side RO appears equal the side PT

∴ RO ≅ PT

# The side OB appears equal the side TA

∴ OB ≅ TA

# The side RB appears equal the side PA

∴ RB ≅ PA ⇒ SSS

Δ ROB ≅ Δ PTA

- Δ DEF and Δ YXW appear congruent because:

# The side DE appears equal the side YX

∴ DE ≅ YX

# The side EF appears equal the side XW

∴ EF ≅ XW

# The side DF appears equal the side YW

∴ DF ≅ YW

Δ DEF ≅ Δ YXW ⇒ SSS

- Δ ROB and Δ DEF have different shapes and sizes

∵ Δ ROB not appear congruent to Δ DEF

Δ ROB ≠ Δ DEF

The mathematical expression is false

Answer : The mathematical expression is false.

Step-by-step explanation :

As we are given 4 triangles in which ΔROB & ΔPTA and ΔDEF & ΔYXW are appears congruent.

First we have to show that ΔROB and ΔPTA appear congruent.

Side RO appears equal to Side PT

Side OB appears equal to Side TA

Side RB appears equal to Side PA

∴ ΔROB ≅ ΔPTA   (by SSS)

Now we have to show that ΔDEF and ΔYXW appear congruent.

Side DE appears equal to Side YX

Side EF appears equal to Side XW

Side DF appears equal to Side YW

∴ ΔDEF ≅ ΔYXW   (by SSS)

According to given expression, ΔROB and ΔDEF have different shapes and sizes.

So, ΔROB not appear congruent to ΔDEF

Therefore, the mathematical expression is false.

Your jewelry business orders $1320 in supplies each month. In each month, you can usually sell an earring/ring set for about $55 each. How many sets do you need to sell each month to break even?
If you found that your total profit for a month was $715, how many sets did you sell?

If you had a month where 7 sets were sold, how much profit did you make?

Answers

Answer:

Given,

The jewelry business orders $ 1320 in supplies each month.

That is, the invested amount = $ 1320,

Also, the selling price of each earring/ring set = $ 55,

Part 1 : Let x be the number of set that have been sold each month to break even ( in which revenue and invested amount are equal )

So, Total revenue ( the cost of x sets) = 55x,

⇒ 55x = 1320

Divide both sides by 55,

We get,

x = 24

Hence, 24 sets are needed to sell each month to break even.

Part 2 : Let y be the number of sets in which the profit is $ 715,

Total revenue = 55x

Profit = Total revenue - invested amount

⇒ 55x - 1320 = 715,

⇒ 55x = 715 + 1320

⇒ 55x = 2035

x = 37

Hence, 37 sets are sold for the total profit of $715.

Part 3 :

Revenue in selling 7 sets = 55 × 7 = $ 385

Profit = $ 385 - $ 1320 = - $ 935

Hence, the profit is - $ 935 after selling 7 sets.

A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment. n equals 9​, p equals 0.8​, x less than or equals 3

Answers

Answer: 0.0031

Step-by-step explanation:

Binomial distribution formula :-

[tex]P(x)=^nC_xp^x(1-p)^{n-x}[/tex], where P(x) is the probability of x successes in the n independent trials of the experiment and p is the probability of success.

Given : A binomial probability experiment is conducted with the given parameters.

[tex]n=9,\ p=0.8,\ x\leq3[/tex]

Now, [tex]P(x\leq3)=P(3)+P(2)+P(1)+P(0)[/tex]

[tex]=^9C_3(0.8)^3(1-0.8)^{9-3}+^9C_2(0.8)^2(1-0.8)^{9-2}+^9C_1(0.8)^1(1-0.8)^{9-1}+^9C_0(0.8)^0(1-0.8)^9\\\\=\dfrac{9!}{3!6!}(0.8)^3(0.2)^6+\dfrac{9!}{2!7!}(0.8)^2(0.2)^7+\dfrac{9!}{1!8!}(0.8)(0.2)^8+\dfrac{9!}{0!9!}(0.2)^9=0.003066368\approx0.0031[/tex]

Hence,  [tex]P(x\leq3)=0.0031[/tex]

Many people think that a national lobby's successful fight against gun control legislation is reflecting the will of a minority of Americans. A random sample of 4000 citizens yielded 2250 who are in favor of gun control legislation. Compute the point estimate for the proportion of citizens who are in favor of gun control legislation. Round to four decimal places.

Answers

Answer:  [tex]\hat{p}=0.5625[/tex]

Step-by-step explanation:

Given : Sample size : [tex]n=4000[/tex]

The number of people who are in favor of gun control legislation =2250

The proportion of people who are in favor of gun control legislation will be :-

[tex]p_0=\dfrac{2250}{4000}=0.5625[/tex]

We assume that the the given situation is normally distributed.

Then , the point estimate for the proportion [tex]\hat{p}[/tex] of citizens who are in favor of gun control legislation is equals to the sample proportion.

i.e.  [tex]\hat{p}=0.5625[/tex]

Other Questions
5. White House pets often become almost as well known as their owners.action verbhelping verblinking verbnone of the above Some critics believe that Gregory's relationship with his father might be similar to the relationship between kafka and his own father.What might the words "just as I always said" suggest about the relationship between Kafka and his father? Once a proposed amendment goes to the states, at least of the states must approve it for it to Joey meets Monica for the first time in the hallway outside of their respective apartments. They flirt with each other for a few minutes, and then Monica invites Joey in for a glass of lemonade. While she is making the lemonade in the kitchen, Joey takes off all his clothes and prepares for a romantic encounter. Monica arrives with the lemonade and is shocked at what she sees. A social psychologist would say that Joey and Monica have very different ____________ regarding this situation. There are 6 students participating in a poetry contest, in how many ways can the students who go first and second in the bee be chosen? A flowerpot falls off a windowsill and passes the win- dow of the story below. Ignore air resistance. It takes the pot 0.380 s to pass from the top to the bottom of this window, which is 1.90 m high. How far is the top of the window below the window- sill from which the flowerpot fell? Llena el espacio en blanco con el pronombre de objeto indirecto correcto._______ vas a pedir dinero a tus amigos? If X plus 5 equals 8, then what is X? What happens to the frequency of a wave if its energy increases?A. The frequency and energy of a wave are not related.B. The frequency of the wave increases.C. The frequency of the wave decreases.D. The frequency constantly varies. Roosevelt speech was made more than seventy years ago to a country in economic ruin which parts of the speech do you think would be most appealing to americans today Energy is converted from one form to another in cells. What role does ATP play in this process?Cells use ATP to harvest energy from sunlight.Cells convert energy stored in ATP into nutrients.Cells convert energy stored in ATP into kinetic energy.Cells use ATP to produce nutrients such as glucose. A metal ring 4.20 cm in diameter is placed between the north and south poles of large magnets with the plane of its area perpendicular to the magnetic field. These magnets produce an initial uniform field of 1.12 T between them but are gradually pulled apart, causing this field to remain uniform but decrease steadily at 0.240 T/s . (A) What is the magnitude of the electric field induced in the ring? (B) In which direction (clockwise or counterclockwise) does the current flow as viewed by someone on the south pole of the magnet? horizontal blockspring system with the block on a frictionless surface has total mechanical energy E 5 47.0 J and a maximum displacement from equilibrium of 0.240 m. (a) What is the spring constant? (b) What is the kinetic energy of the system at the equilibrium point? (c) If the maximum speed of the block is 3.45 m/s, what is its mass? (d) What is the speed of the block when its displacement is 0.160 m? (e) Find the kinetic energy of the block at x 5 0.160 m. (f) Find the potential energy stored in the spring when x 5 0.160 m. (g) Suppose the same system is released from rest at x 5 0.240 m on a rough surface so that it loses Select all the correct answers.GroGain and FolliclePlus are hair regrowth systems. Each company claims that the application of their product will cause hair regrowthfor balding men. A barber decided to test each company's claim. He randomly selected 30 of his customers who had similar baldingissues and asked 15 of them to use GroGain and 15 of them to use FolliclePlus.After observing the men for six months, the barber reported that, on average, those who used GroGain had a 20% increase in hairregrowth and those who used FolliclePlus had a 10% increase in hair regrowth.Which of the following statements are true?FolliclePlus is the more effective hair regrowth system because it yielded a greater hairregrowth increase percentage.OGroGain is the more effective hair regrowth system because it yielded a lower hair"regrowth increase percentage.GroGain is the more effective hair regrowth system because it yielded a greater hairregrowth increase percentage.FolliclePlus's claim is true.FolliclePlus is the more effective hair regrowth system.GroGain's claim is true. A solution is prepared by mixing equal volumes of 0.16 M HCl and 0.52 M HNO3. (Assume that volumes are additive.)Express the pH to two decimal places. what is the constant variation of k, of the direct variation, y=kx, through (5,8) Six benches were left empty in every ship that evening when we pulled away from death. And this new grief we bore with us to sea: our precious lives we had, but not our friends.The Odyssey,HomerWhich is the most effective paraphrase of the passage?A.) Six men from every ship were killed, leaving six empty benches.B.) We escaped with our lives, but many of our friends did not, which made us very sad. C.) There was no point grieving for our lost friends, so we pulled away from shore. D.) We had the additional burden of our grief when we sailed away. Suki and lily decide to go to a party. Lily drives them there and then drinks a lot of liquor in a short amount of time. Lily then says tired and tells suki to get in the car because they're leaving. Suki tells lily in a hesitant, low voice that she doesn't think lily is safe to drive. ________________, which premiered in 1927, ushered in a new chapter in the history of the American musical; two of its innovations were the elimination of the chorus and the integration of songs into the plot: Which of the following events occurred first in the novel?A) Joe Leaphorn meets Agent O'MalleyB)Joe Leaphorn is shot by a dartC) Susanne tries to help Joe Leaphorn find GeorgeD) Shorty Bowlegs is killed