A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 60 type I ovens has a mean repair cost of $⁢85.79, with a standard deviation of $⁢15.13. A sample of 56 type II ovens has a mean repair cost of $78.67, with a standard deviation of $⁢17.84. Conduct a hypothesis test of the technician's claim at the 0.1 level of significance. Let μ1 be the true mean repair cost for type I ovens and μ2 be the true mean repair cost for type II ovens.Step 1 of 4: State the null and alternative hypotheses for the test.Step 2 of 4: Compute the value of the test statistic. Round your answer to two decimal places.Step 3 of 4: Determine the decision rule for rejecting the null hypothesis H0. Round the numerical portion of your answer to three decimal places.Step 4 of 4: Make the decision for the hypothesis test. Reject or Fail to Reject Null Hypothesis

Answers

Answer 1

Answer:

Since p value <0.1 accept the claim that oven I repair costs are more

Step-by-step explanation:

The data given for two types of ovens are summarised below:

Group   Group One     Group Two  

Mean 85.7900 78.6700

SD 15.1300 17.8400

SEM 1.9533 2.3840

N 60       56      

Alpha = 10%

[tex]H_0: \mu_1 - \mu_2 =0\\H_a: \mu_1 - \mu_2> 0[/tex]

(Right tailed test)

The mean of Group One minus Group Two equals 7.1200

df = 114

 standard error of difference = 3.065

 t = 2.3234

p value = 0.0219

If p value <0.10 reject null hypothesis

4) Since p value <0.1 accept the claim that oven I repair costs are more

 


Related Questions

math ///////////////////////////////////////////////

Answers

Answer:

B.  0.10 - 0.20 = 0.10.

Step-by-step explanation:

100/1000 = 0.10 of the population were born , and

200/1000 = 0.20 of the population died so it is:

0.10 - 0.20 = 0.10.

Answer: B

Step-by-step explanation:

The total population was initially 1000 individuals. In this population, a total of of 100 new individuals were born over the course of one year. The proportion of new individuals that make up the population is 100/1000 = 0.1

Since they were added, then it is positive and it is a gain for the population.

A total of 200 individuals also died over the course of one year. The proportion that died = 200/1000 = 0.2. This would be negative because it is a loss for the population.

The population growth rate will be gain - loss. This becomes

0.1 - 0.2 = -0.1

What can you say about a solution of the equation y' = - y2 just by looking at the differential equation? The function y must be decreasing (or equal to 0) on any interval on which it is defined. The function y must be increasing (or equal to 0) on any interval on which it is defined.

Answers

Answer:

The function y must be decreasing (or equal to 0) on any interval on which it is defined.

Step-by-step explanation:

The derivative of a function gives us the rate at which that function is changing. In this case, -y^2, yields a negative value for every possible value of y, thus, the rate of change is always negative and the function y is decreasing (or equal to 0) on any interval on which it is defined.

Final answer:

The differential equation y' = -[tex]y^2[/tex] implies that y is either decreasing or constant wherever it is defined, because the derivative y' is non-positive.

Explanation:

By examining the differential equation y' = -[tex]y^2[/tex], we can infer some characteristics about the solutions without solving it. If y is a solution to this equation, then y' represents the derivative of y with respect to x. This derivative tells us about the rate of change of the function y.

Since the right side of the equation is -[tex]y^2[/tex], and a square of a real number is always non-negative, multiplying by -1 makes it non-positive. This implies that the derivative y' is either less than or equal to zero. Therefore, wherever the function y is defined, it must be either decreasing or constant (equal to zero). If y is positive, y will decrease because of the negative sign in front of the square. If y is negative, squaring it results in a positive number, but the negative sign still ensures that the rate of change is non-positive.

Conclusion: the function y is decreasing or remains constant on any interval it is defined; it cannot be increasing.

Learn more about Differential Equation Behavior here:

https://brainly.com/question/33668142

#SPJ3

In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal distribution to estimate the requested probabilities. Ocean fishing for billfish is very popular in the Cozumel region of Mexico. In the Cozumel region about 48% of strikes (while trolling) resulted in a catch. Suppose that on a given day a fleet of fishing boats got a total of 20 strikes. Find the following probabilities. (Round your answers to four decimal places.) (a)-12 or fewer fish were caught (b)-5 or more fish were caught (c)-between 5 and 12 fish were caught

Answers

Answer:

a) [tex]P(X\leq 12)=0.8586[/tex]

b) [tex]P(X\geq 5)=0.9802[/tex]

c) [tex]P(5\leq X\leq 12)=0.8389[/tex]

Step-by-step explanation:

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=20, p=0.48)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

We need to check the conditions in order to use the normal approximation.

[tex]np=20*0.48=9.6 \approx 10 \geq 10[/tex]

[tex]n(1-p)=20*(1-0.48)=10.4 \geq 10[/tex]

So we see that we satisfy the conditions and then we can apply the approximation.

If we appply the approximation the new mean and standard deviation are:

[tex]E(X)=np=20*0.48=9.6[/tex]

[tex]\sigma=\sqrt{np(1-p)}=\sqrt{20*0.48(1-0.48)}=2.234[/tex]

Part a

We want this probability:

[tex]P(X\leq 12)[/tex]

We can use the z score given by this formula [tex]Z=\frac{x-\mu}{\sigma}[/tex].

[tex]P(X\leq 12)=P(\frac{X-\mu}{\sigma}\leq \frac{12-9.6}{2.234})=P(Z\leq 1.074)=0.8586[/tex]

Part b

We want this probability:

[tex]P(X\geq 5)[/tex]

We can use again the z score formula and we have:

[tex]P(X\geq 5)=1-P(X<5)=1-P(\frac{X-\mu}{\sigma}< \frac{5-9.6}{2.234})=1-P(Z<- 2.059)=0.9802[/tex]

Part c

We want this probability:

[tex]P(5\leq X\leq 12)=P(\frac{5-9.6}{2.234}\leq \frac{X-\mu}{\sigma}\leq \frac{12-9.6}{2.234})=P(-2.059\leq Z \leq 1.074)[/tex]

[tex]=P(Z<1.074)-P(Z<-2.059)=0.8586-0.0197=0.8389[/tex]

​A researcher selects a sample from a population with μ = 30 and uses the sample to evaluate the effect of a treatment. After treatment, the sample has a mean of M = 32 and a variance of s2 = 6. Which of the following would definitely increase the likelihood of rejecting the null hypothesis?

Question options:

a.
​Decrease the sample variance
b.
​Increase the sample mean
c.
​Increase the sample size
d.
​All of the other options will increase the likelihood of rejecting the null hypothesis

Answers

Answer:

Option b) Increase the sample mean

Step-by-step explanation:

Given that a researcher selects a sample from a population with μ = 30 and uses the sample to evaluate the effect of a treatment. After treatment, the sample has a mean of M = 32 and a variance of s2 = 6.

This is a paired test with test statistic

=mean diff/std error

Mean difference would increase if sample mean increases.

This would increase the test statistic

Or otherwise decrease in variance will increase the test statistic

Or Increase in sample size would also increase test statistic

Of all these the II option is definite in increasing the  likelihood of rejecting the null hypothesis because this would definitely increase the chances of rejecting H0.

Others may also have effect but not as much direct as sample mean difference.

Because variance and sample size have influence only upto square root of the difference.

Which of the following may be used to check the conditions needed to perform a two sample test for mean (independent samples)?

I. Both populations are approximately normally distributed

II. Both sample sizes greater than 30

III. Population of differences is approximately normally distributed

A) I or III

B) II or III

C) I or II

D) I, II, or III

Answers

Answer:

Option D is right

Step-by-step explanation:

given that a two sample test for mean of independent samples to be done.

We create hypotheses as:

[tex]H_0: \ bar x = \bar y[/tex] vs alternate suitably right or left or two tailed according to the needs.

The conditions needed for conducting this test would be

I. Both populations are approximately normally distributed

II. Both sample sizes greater than 30

III. Population of differences is approximately normally distributed

i.e. either i, ii or III

Option D is right.

Suppose that in a bowling league, the scores among all bowlers are normally distributed with mean µ = 182 points and standard deviation σ = 14 points. A trophy is given to each player whose score is at or above the 97th percentile. What is the minimum score needed for a bowler to receive a trophy?

Answers

Answer:

209 points

Step-by-step explanation:

Mean points scored (μ) = 182 points  

Standard deviation (σ) = 14 points

The z-score for any given game score 'X' is defined as:  

[tex]z=\frac{X-\mu}{\sigma}[/tex]  

At, the 97th percentile of a normal distribution, the z-score, according to a z-score table, is 1.881.

Therefore, the minimum score, X, needed for a bowler to receive a trophy is:

[tex]1.881=\frac{X-182}{14}\\X=208.334[/tex]

Since only whole point scores are possible, X=209 points.

Final answer:

To find the minimum score at the 97th percentile for bowlers in a league, one must calculate the z-score for the 97th percentile and then apply the formula Score = μ + (z * σ) using the league's mean and standard deviation.

Explanation:

To find the minimum score needed for a bowler to receive a trophy (which is at or above the 97th percentile), we need to use the normal distribution properties. With a mean (μ) of 182 points and a standard deviation (σ) of 14 points, we can find the z-score corresponding to the 97th percentile using a z-table or a calculator with normal distribution functions. Once we have the z-score, we can use the formula:



Score = μ + (z * σ)



to calculate the score that corresponds to the 97th percentile.

Learn more about 97th percentile score here:

https://brainly.com/question/32902034

#SPJ3

a 14 ft long ladder is placed against a house with an angle of elevation of 72 degrees. How high above the ground is the top of the ladder?

Answers

Answer:

Answer is 13.3 ft

Step-by-step explanation:

i explained in the image below

The inverse notation f -1 used in a pure mathematics problem is not always used when finding inverses of applied problems. Rather, the inverse of a function such as C = C(q) will be q = q(C). The following problem illustrates this idea. The ideal body weight w for men (in kilograms) as a function of height h (in inches) is given by the following function. W(h) = 49 + 2.2(h- 60) What is the ideal weight of a 6-foot male? The ideal weight, W, of a 6-foot male is kilograms. (Round to the nearest tenth as needed.) Express the height h as a function of weight W. Verify your answer by checking that W(h(W)) = W and h(W(h))h.

Answers

Final answer:

The ideal weight of a 6-foot male (according to the function) is approximately 75.4 kilograms. By manipulating the weight function, we can express height as a function of weight. To verify this function, we substitute it back into the original equation, ensuring our original input value is retrieved.

Explanation:

The question is asking to find the ideal weight of a 6-foot male using the function W(h) = 49 + 2.2(h- 60). The height in inches for a 6-foot male is 72 inches (as 1 foot equals 12 inches). Substituting into the formula we obtain:

W(72) = 49 + 2.2(72 - 60) = 49 + 2.2*12.

Completing the calculation, the ideal weight is about 75.4 kg (rounded to the nearest tenth).

To express height h as a function of weight W, we need to rearrange the function W(h). Subtracting 49 from both sides yields 2.2(h - 60) = W - 49. Then divide both sides by 2.2 to isolate h, resulting in h = (W - 49) / 2.2 + 60.

Verification that W(h(W)) = W and h(W(h)) = h will require substituting the functions back into each other, and determining that the original input is returned.

Learn more about Inverse Functions here:

https://brainly.com/question/17872426

#SPJ3

A manager is interested in determining if the population standard deviation has dropped below 134. Based on a sample of n=27 items selected randomly from the​ population, conduct the appropriate hypothesis test at a 0.05 significance level. The sample standard deviation is 126. Determine the Null and alternative hypothese

Answers

Answer:

H₀: σ² ≥ 17956

H₁: σ² < 17956

Step-by-step explanation:

Hello!

You are asked to test if the population standard deviation of a certain population. Now keep in mind that wherever you want to make a hypothesis test for a population parameter, you have to have a known distribution that includes this parameter. Since the population standard deviation is no parameter of any distribution, what you have to do is test the population variance. Any decision you make about the population variance can be extrapolated to the population standard deviation.

To make a hypothesis test for the population variance, you need a variable with normal distribution and the statistic to use is a Chi-square statistic.

The hypothesis is that the population standard deviation is less than 134, symbolically: σ < 134

Translated in terms of the population variance: σ² < 17956

H₀: σ² ≥ 17956

H₁: σ² < 17956

α: 0.05

χ²=  (n-1)S²  ~χ²[tex]_{n-1}[/tex]

σ²

χ²=  (27-1)(126)²  = 22.988

17956

The test is one tailed (left)

χ²[tex]_{n-1;α}[/tex] =χ²[tex]_{26;0.05}[/tex] = 15.379

If the calculated Chi-square value is ≤ than the critical value, you reject the null hypothesis.

If the calculated Chi-square value is > than the critical value, you don't reject the null hypothesis.

Since the value is greater than the critical value, you do not reject the null hypothesis. So at a 5% level, there is not enough evidence to reject the null hypothesis, this means the population variance is at least 17956. On the same level, you can conclude that the population standard deviation is at least 134.

I've made the test so that you have an example of how to do it.

I hope it helps!

help please

1 though 5​

Answers

Answer:

5/8,-5√2,{(2x+3)(x-5)}

Step-by-step explanation:

1) 5x-10/8x-16

=5(x-2)/8(x-2)

=5/8

2) √32-3√18

=4√2-3√18

=4√2-9√2

=(4-9)√2

= -5√2

4) 2x^2-7x-15

=2x^2+3x-10x-15

=(2x+3),(x-5)

Stainless steels are frequently used in chemical plants to handle corrosive fluids, however, these steels are especially susceptible to stress corrosion cracking in certain environments. In a sample of 295 steel alloy failures that occurred in oil refineries and petrochemical plants in Japan over the last 10 tears, 118 were caused by stress corrosion cracking and corrosion fatigue (Materials Performance, 1981). Construct a 95% confidence interval for the true proportion of alloy failures caused by stress corrosion cracking.

Answers

Answer: 95% confidence interval would be (0.344,0.456).

Step-by-step explanation:

Since we have given that

n = 295

x = 118

so, [tex]\hat{p}=\dfrac{x}{n}=\dfrac{118}{295}=0.4[/tex]

At 95% confidence, z = 1.96

So, margin of error would be

[tex]z\times \sqrt{\dfrac{p(1-p)}{n}}\\\\=1.96\times \sqrt{\dfrac{0.4\times 0.6}{295}}\\\\=0.056[/tex]

so, 95% confidence interval would be

[tex]\hat{p}\pm \text{margin of error}\\\\=0.4\pm 0.056\\\\=(0.4-0.056,0.4+0.056)\\\\ =(0.344,0.456)[/tex]

Hence, 95% confidence interval would be (0.344,0.456).

Answer:

95% confidence interval would be (0.344,0.456).

Step-by-step explanation:

Find the P-value for the indicated hypothesis test. An airline claims that the no-show rate for passengers booked on its flights is less than 6%. Of 380 randomly selected reservations, 19 were no-shows. Find the P-value for a test of the airline's claim.

A. 0.3508
B. 0.2061
C. 0.0746
D. 0.1230

Answers

P-value for the airline's claim that the no-show rate for passengers booked on its flights is less than 6% is 0.2061. Hence, option (B) is correct.

Given that, an airline claims that the no-show rate for passengers booked on its flights is less than 6%.

From this claim, it is clear that:

Null hypothesis :  Proportion of no-show rate for passengers booked on its flights, P = 6%. i.e. H₀: P = 0.06

Alternative hypothesis: Proportion of no-show rate for passengers booked on its flights P < 6%, i.e. P < 0.06.

Out of 380 randomly selected reservations, 19 were no-shows

Sample proportion, [tex]\hat{p} = \frac{19}{380}[/tex]  = 0.05

Then, the standard error for the sample size of 380 is:

[tex]\text{S.E.} = \sqrt{{\frac{p(1-p)}{n}[/tex]

[tex]\text{S.E.} = \sqrt{{\frac{0.06(1-0.06)}{380}[/tex]

[tex]\text{S.E.} = 0.012[/tex]

Now calculating the test statistic

[tex]z = \frac{( \hat{p} - P)}{S.E}[/tex]

[tex]z = \frac{(0.05 - 0.06)}{0.012 }[/tex]

z = -0.833

p value for z = -0.083 is 0.2061 (From the normal table).

Hence, the p-value for a test of the airline's claim is 0.2061. Option (B) is correct.

Learn more about p-value here:

https://brainly.com/question/33325466

#SPJ4

Final answer:

To find the P-value for the hypothesis test, calculate the sample proportion and standard error, then use the standard normal distribution to calculate the z-score and find the corresponding P-value.

Explanation:

To find the P-value for the hypothesis test, we need to use the given data and perform calculations.

First, we need to calculate the sample proportion, which is the number of no-shows divided by the total number of reservations: 19/380 = 0.05.

Next, we calculate the standard error of the sample proportion using the formula: √((p' * (1 - p')) / n), where p' is the sample proportion and n is the sample size. In this case, the standard error is √((0.05 * (1 - 0.05)) / 380) = 0.014.

Finally, we use the standard normal distribution to calculate the z-score and find the corresponding P-value. In this case, the observed proportion is less than the claimed proportion, so we use a one-tailed test and calculate the z-score as (observed proportion - claimed proportion) / standard error = (0.05 - 0.06) / 0.014 = -0.714. Looking up the P-value for a z-score of -0.714, we find that it is approximately 0.4714.

Therefore, the P-value for the test of the airline's claim is approximately 0.4714.

A survey is taken among customers of a fast-food restaurant to determine preference for hamburger or chicken. Of 200 respondents selected, 75 were children and 125 were adults. 120 preferred hamburger and 80 preferred chickens. 55 of the children preferred hamburger and 20 preferred chickens. Set up a 2x2 contingency table using this information and answer the following questions:FoodAge Hamburger Chicken TotalChild 55 20 75Adult 65 60 125Total 120 80 200a) What is the probability that a randomly selected individual is an adult?b) What is the probability that a randomly selected individual is a child and prefers chicken?c) Given the person is a child, what is the probability that this child prefers a hamburger?d) Assume we know that a person has ordered chicken, what is the probability that this individual is an adult?

Answers

Answer:

                          Hamburger       Chicken

Adults                    65                        60         125

children                 55                        20          75

                             120                        80         200

a)What is the probability that a randomly selected individual is an adult?

Total no. of adults = 125

Total no. of people  200

The probability that a randomly selected individual is an adult = [tex]\frac{125}{200}=0.625[/tex]

b) What is the probability that a randomly selected individual is a child and prefers chicken?

No. of child prefers chicken = 20

The probability that a randomly selected individual is a child and prefers chicken= [tex]\frac{20}{200}=0.1[/tex]

c)Given the person is a child, what is the probability that this child prefers a hamburger?

No. of children prefer hamburger = 55

No. of child = 75

The probability that this child prefers a hamburger= [tex]\frac{35}{75}=0.46[/tex]

d) Assume we know that a person has ordered chicken, what is the probability that this individual is an adult?

No. of adults prefer chicken = 60

No. of total people like chicken = 80

A person has ordered chicken, the probability that this individual is an adult= [tex]\frac{60}{80}=0.75[/tex]

Final answer:

The probability that a randomly selected individual is an adult is 0.625. The probability that a randomly selected individual is a child and prefers chicken is 0.10. Given a child, the probability of preferring a hamburger is approximately 0.733, and given that a person ordered chicken, the probability that they are an adult is 0.75.

Explanation:

Let's address the questions based on the contingency table provided:

Probability Calculations

a) The probability that a randomly selected individual is an adult can be calculated as follows:

The number of adults: 125

The total number of respondents: 200

Probability(Adult) = Number of Adults / Total Number of Respondents = 125 / 200 = 0.625

b) The probability that a randomly selected individual is a child and prefers chicken:

The number of children who prefer chicken: 20

The total number of respondents: 200

Probability(Child and Chicken) = Number of Children who prefer Chicken / Total Number of Respondents = 20 / 200 = 0.10

c) If the person is a child, the probability that this child prefers a hamburger:

The number of children who prefer hamburger: 55

The total number of children: 75

Probability(Hamburger | Child) = Number of Children who prefer Hamburger / Total Number of Children = 55 / 75 ≈ 0.733

d) Given that a person has ordered chicken, the probability that this individual is an adult:

The number of adults who prefer chicken: 60

The total number of chicken preferences: 80

Probability(Adult | Chicken) = Number of Adults who prefer Chicken / Total Number of Chicken Preferences = 60 / 80 = 0.75

The position vector for particle A is cos(t)i, and the position vector for particle B is sin(t)j. What is the difference in acceleration (i.e. the relative acceleration) between particle A and B at any time t? The acceleration vector of a particle moving in space is the second derivative of the position vector

Answers

Answer:

sin(t)j - cos(t)i

Step-by-step explanation:

Let's start with A:

Position vector = cos(t)i

Velocity vector = -sin(t)i (differentiating the position vector)

acceleration vector = -cos(t)i   (differentiating the velocity vector)

Then we go to B:

Position vector = sin(t)j

Velocity vector = cos(t)j

acceleration vector = -sin(t)j

Relative acceleration = -cos(t)i - (-sin(t)j) = sin(t)j - cos(t)i

A farmer wants to fence a rectangular garden next to his house which forms the northern boundary. The fencingfor the southern boundary costs $6 per foot, and the fencing for the east and west sides costs $3 per foot. If hehas a budget of $120 for the project, what are the dimensions of the largest area the fence can enclose?

Answers

Answer:

10 ft x 10 ft

Area = 100 ft^2

Step-by-step explanation:

Let 'S' be the length of the southern boundary fence and 'W' the length of the eastern and western sides of the fence.

The total area is given by:

[tex]A=S*W[/tex]

The cost function is given by:

[tex]\$ 120 = \$3*2W+\$6*S\\20 = W+S\\W = 20-S[/tex]

Replacing that relationship into the Area function and finding its derivate, we can find the value of 'S' for which the area is maximized when the derivate equals zero:

[tex]A=S*(20-S)\\A=20S-S^2\\\frac{dA}{dS} = \frac{d(20S-S^2)}{dS}\\0= 20-2S\\S=10[/tex]

If S=10 then W =20 -10 = 10

Therefore, the largest area enclosed by the fence is:

[tex]A=S*W\\A=10*10 = 100\ ft^2[/tex]

A deck of cards contains red cards numbered 1,2,3,4,5, blue cards numbered 1,2 and green cards numbered 1,2,3,4,5,6. If a single card is picked at random, what is the probability that the card is red

Answers

Answer:

the probability is 38,46%

Step-by-step explanation:

If all decks are put together and shuffled , then card is picked at random regardless of the number, then the probability that the card is red is

probability = number of red cards / total number of cards = 5/(5+2+6) = 5/13=0.3846= 38,46%

Consolidated Power, a large electric power utility, has just built a modern nuclear power plant. This plant discharges waste water that is allowed to flow into the Atlantic Ocean. The Environmental Protection Agency (EPA) has ordered that the waste water may not be excessively warm so that thermal pollution of the marine environment near the plant can be avoided. Because of this order, the waste water is allowed to cool in specially constructed ponds and is then released into the ocean. This cooling system works properly if the mean temperature of waste water discharged is 60°F or cooler. Consolidated Power is required to monitor the temperature of the waste water. A sample of 100 temperature readings will be obtained each day, and if the sample results cast a substantial amount of doubt on the hypothesis that the cooling system is working properly (the mean temperature of waste water discharged is 60°F or cooler), then the plant must be shut down and appropriate actions must be taken to correct the problem.(a)Consolidated Power wishes to set up a hypothesis test so that the power plant will be shut down when the null hypothesis is rejected. Set up the null hypothesis H0 and the alternative hypothesis Ha that should be used.H0: μ (select) 60 versus Ha: μ (select) 60.(b)Suppose that Consolidated Power decides to use a level of significance of α = .05 and suppose a random sample of 100 temperature readings is obtained. If the sample mean of the 100 temperature readings is formula310.mml = 61.498, test H0 versus Ha and determine whether the power plant should be shut down and the cooling system repaired. Perform the hypothesis test by using a critical value and a p-value. Assume σ = 6. (Round your z to 2 decimal places and p-value to 4 decimal places.)z =p-value =(Select: Reject or Do not reject) H0. So the plant (Select: Should or Should not) shut down and the cooling system repaired.

Answers

Answer:

We conclude that the plant should shut down.

Step-by-step explanation:

We are given the following in the question:

Population mean, μ = 60

Sample mean, [tex]\bar{x}[/tex] = 61.498

Sample size, n = 100

Alpha, α = 0.05

Population standard deviation, σ = 6

a) First, we design the null and the alternate hypothesis  such that the power plant will be shut down when the null hypothesis is rejected.

[tex]H_{0}: \mu \leq 60\\H_A: \mu > 60[/tex]

We use One-tailed(right) z test to perform this hypothesis.

b) Formula:

[tex]z_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]z_{stat} = \displaystyle\frac{61.498 - 60}{\frac{6}{\sqrt{100}} } = 2.49[/tex]

Now, [tex]z_{critical} \text{ at 0.05 level of significance } = 1.64[/tex]

Since,  

[tex]z_{stat} > z_{critical}[/tex]

We reject the null hypothesis and accept the alternate hypothesis. Thus, the temperature of waste water discharged is greater than 60°F. We conclude that the power plant will shut down.

Calculating the p-value from the z-table:

P-value = 0.0063

Since,

P-value < Significance level

We reject the null hypothesis and accept the alternate hypothesis. Thus, the temperature of waste water discharged is greater than 60°F. We conclude that the power plant will shut down.

An electrical engineer wishes to compare the mean lifetimes of two types of transistors in an application involving high-temperature performance. A sample of 60 transistors of type A were tested and were found to have a mean lifetime of 1827 hours and a standard deviation of 176 hours. A sample of 180 transistors of type B were tested and were found to have a mean lifetime of 1658 hours and a standard deviation of 246 hours. Let μX represent the population mean for transistors of type A and μY represent the population mean for transistors of type B. Find a 95% confidence interval for the difference μX−μY . Round the answers to three decimal places.

Answers

Answer:

add the decimals thats all

Step-by-step explanation:

Suppose a television news broadcast reports that the proportion of people in the United States who are living with a particular disease is 0.09. A team of biomedical students examined a random sample of 527 medical records and found that 34 of them had this disease. They constructed the following 95% z z‑confidence interval for the proportion, p p, of people in the United States who have this disease. 0.0435 < p < 0.0855 0.0435

Answers

Answer:

On this case the 0.09 value is not included on the interval so we can say that the statement on the television news broadcast reports, is a value away from the real proportion at least at 95% of confidence.

Step-by-step explanation:

1) Notation and definitions

[tex]X=34[/tex] number of people living at USA with a particular disease.

[tex]n=527[/tex] random sample taken

[tex]\hat p=\frac{34}{527}=0.0645[/tex] estimated proportion of people living at USA with a particular disease

[tex]p[/tex] true population proportion of people living at USA with a particular disease.

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

The population proportion have the following distribution

[tex]p \sim N(p,\sqrt{\frac{\hat p(1-\hat p)}{n}})[/tex]

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2 =0.025[/tex]. And the critical value would be given by:

[tex]z_{\alpha/2}=-1.96, z_{1-\alpha/2}=1.96[/tex]

The confidence interval for the mean is given by the following formula:  

[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]

If we replace the values obtained we got:

[tex]0.0645 - 1.96\sqrt{\frac{0.0645(1-0.0645)}{527}}=0.0435[/tex]

[tex]0.0645 + 1.96\sqrt{\frac{0.0645(1-0.0645)}{527}}=0.0855[/tex]

The 95% confidence interval would be given by (0.0435;0.0855)

On this case the 0.09 value is not included on the interval so we can say that the statement on the television news broadcast reports, is a value away from the real mean at least at 95% of confidence.

Let X be the number of material anomalies occurring in a particular region of an aircraft gas-turbine disk. The article "Methodology for Probabilistic Life Prediction of Multiple-Anomaly Materials"� proposes a Poisson distribution for X. Suppose that ? = 4. (Round your answers to three decimal places.) (a) Compute both P(X ? 4) and P(X < 4). (b) Compute P(4 ? X ? 5). (c) Compute P(5 ? X). (d) What is the probability that the number of anomalies does not exceed the mean value by more than one standard deviation?

Answers

Answer:

0.6284,0.4335,0.1953.0.9786

Step-by-step explanation:

Given that X the number of material anomalies occurring in a particular region of an aircraft gas-turbine disk is following a poisson distribution with parameter 4

a) [tex]P(X\leq 4)=0.6284\\P(X<4)=0.4335[/tex]

b) [tex]P(4\leq x<5)\\=P(4)=0.1953\\[/tex]

c) P([tex]5\leq x)[/tex]=0.8046

d) the probability that the number of anomalies does not exceed the mean value by more than one standard deviation

=[tex]P(0\leq X\leq 8)\\=F(8)-F(0)\\=0.9786[/tex]

Compute the work done by the force F = sin(x + y), xy, (x^2)z> in moving an object along the trajectory that is the line segment from (1, 1, 1) to (2, 2, 2) followed by the line segment from (2, 2, 2) to (3, 6, 8) when force is measured in Newtons and distance in meters.

Answers

Parameterize the line segments by

[tex]\vec r(t)=(1-t)\langle1,1,1\rangle+t\langle2,2,2\rangle=\langle1+t,1+t,1+t\rangle[/tex]

and

[tex]\vec s(t)=(1-t)\langle2,2,2\rangle+t\langle3,6,8\rangle=\langle2+t,2+4t,2+6t\rangle[/tex]

both with [tex]0\le t\le1[/tex]. Then

[tex]\vec r'(t)=\langle1,1,1\rangle[/tex]

[tex]\vec s'(t)=\langle1,4,6\rangle[/tex]

so that the work done by [tex]\vec F(x,y,z)=\langle\sin(x+y),xy,x^2z\rangle[/tex] over the respective line segments is given by

[tex]\displaystyle\int_{C_1}\vec F\cdot\mathrm d\vec r=\int_0^1\langle\sin(2+2t),(1+t)^2,(1+t)^3\rangle\cdot\langle1,1,1\rangle\,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^1\sin(2+2t)+(1+t)^2+(1+t)^3\,\mathrm dt=\boxed{\frac{73+6\cos2-6\cos4}{12}}[/tex]

and

[tex]\displaystyle\int_{C_2}\vec F\cdot\mathrm d\vec s=\int_0^1\langle\sin(4+5t),(2+t)(2+4t),(2+t)^2(2+6t)\rangle\cdot\langle1,4,6\rangle\,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^1\sin(4+5t)+4(2+t)(2+4t)+6(2+t)^2(2+6t)\,\mathrm dt=\boxed{\frac{3695+3\cos4-3\cos9}{15}}[/tex]

(both measured in Newton-meters)

Final answer:

To compute the work done by the force in this scenario, we need to apply the principle of line integrals of force with respect to displacement, calculating work for each segment of the trajectory separately and then adding these results.

Explanation:

Computing work done by the given force while moving an object generally involves utilizing the line integral of the force with respect to displacement. The principle is simplistically shown in the equation W = F⋅d = Fd cos θ, where W represents work, F denotes force, and d symbolizes displacement, with '⋅' denoting the dot product, and cos θ representing the cosine of the angle between the force and displacement vectors. F can break down into its components, such as Fx, Fy, Fz, and similarly, d can be broken down to dx, dy, dz. Using these, we can express work for three dimensions as dW = Fxdx + Fydy + Fzdz which extends the notion of work done to three-dimensional space. This concept is categorically illustrated while calculating the infinitesimal work done by a variable force.

The trajectory (path) for this problem can be divided into two line segments, one from (1, 1, 1) to (2, 2, 2) and the other from (2, 2, 2) to (3, 6, 8). The work for each segment can be calculated independently, based on the variable force function and the displacement during each segment, after which the two results can be added up to determine the total work done.

Learn more about Work Done by Force in Three Dimensions here:

https://brainly.com/question/34648711

#SPJ11

Nestor Milk Powder is sold in packets with an advertised mean weight of 1.5kgs. The standard deviation is known to be 184 grams. A consumer group wishes to check the accuracy of the advertised mean and takes a sample of 52 packets finding an average weight of 1.49kgs. What is the set of hypotheses that should be used to test the accuracy of advertised weight?

(a) oH:μ= 1.49; 1H: μ≠1.49
(b) oH:μ= 1.5; 1H: μ< 1.5
(c) oH: μ= 1.5; 1H: μ≠1.5
(d) oH: x = 1.5; 1H: x < 1.5

Answers

Answer: c) [tex]H_0:\mu= 1.5\\\\H_a:\mu \neq1.5[/tex]

Step-by-step explanation:

Given: Nestor Milk Powder is sold in packets with an advertised mean weight of 1.5 kgs.  

i.e. [tex]\mu= 1.5[/tex]  

A consumer group wishes to check the accuracy of the advertised mean and takes a sample of 52 packets finding an average weight of 1.49 kgs.

So 1.49 is sample mean but hypothesis is the statement about the parameter which is [tex]\mu[/tex].

i.e. he wanted to check whether [tex]\mu= 1.5[/tex] or [tex]\mu \neq1.5[/tex]

Since null hypothesis[tex](H_0)[/tex] contains equality and alternative hypothesis[tex](H_a)[/tex] is against it.

Therefore, the set of hypotheses that should be used to test the accuracy of advertised weight would be :

[tex]H_0:\mu= 1.5\\\\H_a:\mu \neq1.5[/tex]

Hence, the correct answer is option c) oH: μ= 1.5; 1H: μ≠1.5

A queue with a single server receives 50 requests per second on average. The average time for the server to address a request is 10 milliseconds. What is the probability that there are exactly k requests in this system?

Answers

Answer:

[tex]P(X=k) = \displaystyle\frac{(2.5)^ke^{-2.5}}{k!}[/tex]

Step-by-step explanation:

This is a typical example where the Poisson distribution is a good choice to model the situation.

In this case we have an interval of time of 50 milliseconds as average time for the server to address one request and 50 requests per second.  

By cross-multiplying we determine the expected value of requests every 50 milliseconds.  

We know 1 second = 1,000 milliseconds

50 requests __________ 1000 milliseconds

 x requests __________ 50 milliseconds

50/x = 1000/50 ===> x = 2.5  

and the expected value is 2.5 requests per interval of 50 milliseconds.

According to the Poisson distribution, the probability of k events in 50 milliseconds equals

[tex]\bf P(X=k) = \displaystyle\frac{(2.5)^ke^{-2.5}}{k!}[/tex]

Compute the lower Riemann sum for the given function f(x)=x2 over the interval x∈[−1,1] with respect to the partition P=[−1,− 1 2 , 1 2 , 3 4 ,1].

Answers

Answer:

21/64

Step-by-step explanation:

First, we need to note that the function f(x) = x² is increasing on (0, +∞), and it is decreasing on (-∞,0)

The first interval generated by the partition is [-1, -1/2], since f is decreasing for negative values, we have that f takes its minimum values at the right extreme of the interval, hence -1/2.

The second interval is [-1/2, 1/2]. Here f takes its minimum value at 0, because f(0) = 0, and f is positive otherwise.

Since f is increasing for positive values of x, then, on the remaining 2 intervals, f takes its minimum value at their respective left extremes, in other words, 1/2 and 3/4 respectively.

We obtain the lower Riemman sum by multiplying this values evaluated in f by the lenght of their respective intervals and summing the results, thus

LP(f) = f(-1/2) * ((-1/2) - (-1)) + f(0) * (1/2 - (-1/2)) + f(1/2)* (3/4 - 1/2) + f(3/4) * (1- 3/4)

= 1/4 * 1/2 + 0 * 1 + 1/4 * 1/4 + 9/16 * 1/4 = 1/8 + 0 + 1/16 + 9/64 = 21/64

As a result, the lower Riemann sum on the partition P is 21/64

Final answer:

To compute the lower Riemann sum for the given function f(x) = x² over the interval x ∈ [-1,1] with respect to the partition P = [-1, -1/2, 1/2, 3/4 ,1], we need to find the height of each subinterval and multiply it by the width of the subinterval. The lower Riemann sum is 5/8.

Explanation:

To compute the lower Riemann sum for the given function f(x) = x² over the interval x ∈ [-1,1] with respect to the partition P = [-1, -1/2, 1/2, 3/4 ,1], we need to find the height of each subinterval and multiply it by the width of the subinterval.

First, let's calculate the width of each subinterval:

width of subinterval 1: (-1) - (-1) = 0

width of subinterval 2: (-1/2) - (-1) = 1/2

width of subinterval 3: (1/2) - (-1/2) = 1

width of subinterval 4: (3/4) - (1/2) = 1/4

width of subinterval 5: (1) - (3/4) = 1/4

Next, let's calculate the height of each subinterval by substituting the left endpoint of each subinterval into the function:f((-1/2))^2 = 1/4, f(1/2)² = 1/4, f(3/4)² = 9/16, f(1)² = 1

Finally, we compute the lower Riemann sum by multiplying the height by the width for each subinterval and summing them up:

(0 * 0) + (1/2 * 1/4) + (1 * 9/16) + (1/4 * 1) = 5/8.

The Martian Colonies elect their government through a lottery. There are100,000 people living on Mars, and every year, a council of 99 co-equalleaders is randomly selected from the population. In how many ways canthe leadership be elected? Give your answer in terms of permutations orcombinations and explain your choice. You do not have to evaluate.

Answers

Answer:

The answer is a 100,000-choose-99 (a combination.)

[tex]P(100000, 99) = \displaystyle \left( \begin{array}{c}100000\cr 99\end{array}\right)[/tex].

Step-by-step explanation:

A combination [tex]C(n, r)[/tex] or equivalently [tex]\displaystyle \left(\begin{array}{c}n \cr r\end{array}\right)[/tex] gives the number of ways to choose [tex]r[/tex] out of [tex]n[/tex] elements.

A permutation [tex]P(n, r)[/tex] also gives the number of ways to choose [tex]r[/tex] out of [tex]n[/tex] elements. On top of that, it accounts for the order of the elements. Two elements in different order counts twice in a permutation, but only once in a combination.

The question emphasize that the council members are "co-equal." That implies that the order of the members don't really matter. Hence a combination with [tex]n = 100000[/tex] and [tex]r = 99[/tex] would be a more suitable choice.

Salaries of 49 college graduates who took a statistics course in college have a​ mean, x overbar​, of $ 65 comma 300. Assuming a standard​ deviation, sigma​, of ​$17 comma 805​, construct a 95​% confidence interval for estimating the population mean mu.

Answers

Answer: [tex]60,540< \mu<70,060[/tex]

Step-by-step explanation:

The confidence interval for population mean is given by :-

[tex]\overline{x}-z^*\dfrac{\sigma}{\sqrt{n}}< \mu<\overline{x}+z^*\dfrac{\sigma}{\sqrt{n}}[/tex]

, where [tex]\sigma[/tex] = Population standard deviation.

n= sample size

[tex]\overline{x}[/tex] = Sample mean

z* = Critical z-value .

Given :  [tex]\sigma=\$17,000[/tex]

n= 49

[tex]\overline{x}= \$65,300[/tex]

Two-tailed critical value for 95% confidence interval = [tex]z^*=1.960[/tex]

Then, the 95% confidence interval would be :-

[tex]65,300-(1.96)\dfrac{17000}{\sqrt{49}}< \mu<65,300+(1.96)\dfrac{17000}{\sqrt{49}}[/tex]

[tex]=65,300-(1.96)\dfrac{17000}{7}< \mu<65,300+(1.96)\dfrac{17000}{7}[/tex]

[tex]=65,300-4760< \mu<65,300+4760[/tex]

[tex]=60,540< \mu<70,060[/tex]

Hence, the 95​% confidence interval for estimating the population mean [tex](\mu)[/tex] :

[tex]60,540< \mu<70,060[/tex]

Complete parts ​(a) through ​(c) below. ​
(a) Determine the critical​ value(s) for a​ right-tailed test of a population mean at the alphaequals0.01 level of significance with 10 degrees of freedom. ​
(b) Determine the critical​ value(s) for a​ left-tailed test of a population mean at the alphaequals0.10 level of significance based on a sample size of nequals15. ​
(c) Determine the critical​ value(s) for a​ two-tailed test of a population mean at the alphaequals0.01 level of significance based on a sample size of nequals12.

Answers

Answer:

a) t =  2.7638

b) t = - 2.6245

c) t = 3.1058      on the right side    and

   t  = -3.1058    on the left

Step-by-step explanation:

a)Determine critical value for a right-tail test  for α = 0.01 level of significance and 10 degrees of fredom

From t-student table we find:

gl  =  10   and α = 0.01       ⇒  t =  2.7638

b)Determine   critical value for a left-tail test  for α = 0.01 level of significance  and sample size n = 15

From t-student table we find:

gl  =  14   and α = 0.01           gl  =  n - 1      gl  = 15 - 1    gl = 14

t = - 2.6245

c) Determine critical value for a two tails-test  for α = 0.01 level of  significance the  α/2   =   0.005  and sample size  n = 12

Then

gl  =  11   and α = 0.005

t = 3.1058      on the right side of the curve and by symmetry

t = - 3.1058  

From t-student table we find:

One method for measuring air pollution is to measure the concentration of carbon monoxide, or CO, in the air. Suppose Nina, an environmental scientist, wishes to estimate the CO concentration in Budapest, Hungary. She randomly selects 48 locations throughout the city measures the CO concentration at each location. Based on her 48 samples, she computes the margin of error for a 95% t-confidence interval for the mean concentration of CO in Budapest, in g/m3, to be 4.28 What would happen to the margin of error if Nina decreases the confidence level to 90%? Nina increases the confidence level to 99%? Nina decreases the sample size to 34 locations? Nina increases the sample size to 70 locations? Answer Bank Decrease Stay the sameIncrease

Answers

Answer:

a) Nina decreases the confidence level to 90%?  (Decrease)

b) Nina decreases the sample size to 34 locations? (Increase)

c) Nina increases the sample size to 70 locations?   (Decrease)

Step-by-step explanation:

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X[/tex] represent the sample mean for the sample  

[tex]\mu[/tex] population mean (variable of interest)

s represent the sample standard deviation

n=48 represent the original sample size  

Confidence =95% or 0.95

ME=4.28 represent the margin of error.

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

In order to calculate the mean and the sample deviation we can use the following formulas:  

[tex]\bar X= \sum_{i=1}^n \frac{x_i}{n}[/tex] (2)  

[tex]s=\sqrt{\frac{\sum_{i=1}^n (x_i-\bar X)}{n-1}}[/tex] (3)  

And the margin of error is given by the following expression:

[tex]ME= t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (4)

Based on the formula (4) we can answer all the questions involved:

a) Nina decreases the confidence level to 90%?

On this case the value for [tex]t_{\alpha/2}[/tex] will also decrease so the margin of error would decrease.

b) Nina decreases the sample size to 34 locations?

If we analyze the original sample size of 48 we see that if we reduce the value of n to 34, the margin of error would increase, because n is on the denominator of the margin of error.

c) Nina increases the sample size to 70 locations?

If we analyze the original sample size of 48 we see that if we increase the value of n to 70, the margin of error would decrease, because n is on the denominator of the margin of error.

A survey of the mean number of cents off that coupons give was conducted by randomly surveying one coupon per page from the coupon sections of a recent San Jose Mercury News. The following data were collected: 20¢; 75¢; 50¢; 65¢; 30¢; 55¢; 40¢; 40¢; 30¢; 55¢; $1.50; 40¢; 65¢; 40¢. Assume the underlying distribution is approximately normal. (a) Determine the sample mean in cents (Round to 3 decimal places)

Answers

Answer:

53¢

Step-by-step explanation:

First, I'll put these in order.

20¢;30¢; 30¢;75¢;40¢;40¢;40¢;40¢;50¢;55¢55¢65¢;65¢; $1.50;  

Then, I'll combine like terms.

30+30=60

40+40+40+40(or 40 x 4)=160

55+55=110

65+65=130

60+160+110+130+20+75+50+$1.50=$7.55/14=53¢

PLZ correct me if i'm wrong :-D

The area of a rectangular plot 24 feet long and 16 feet wide will be doubled by adding an equal width to each side of the plot. Which equation can be used to find this added width?

(2x + 24)(2x + 16) = 768

(x + 24)(x + 16) = 384

(x + 24)(x + 16) = 768

(2x + 24)(2x + 16) = 384

Answers

Answer:

B

Step-by-step explanation:

Other Questions
A certain type of automobile battery is known to last an average of 1140 days with a standard deviation of 80 days. If 400 of these batteries are selected, find the following probabilities for the average length of life of the selected batteries. (Round your answers to four decimal places.) (a) The average is between 1128 and 1140. (b) The average is greater than 1152. (c) The average is less than 940. Lisa and Elizabeth are both calculating asset values to determine if any previously impaired assets are further impaired. Instead of additional asset impairment, they found that they each had an asset that had increased in value. Lisa recorded this increase in value, but Elizabeth did not. Why? What is the importance of the epipelagic zone to the ocean food web? Read the sentence from Samuel Johnsons preface to A Dictionary of the English Language.To have attempted much is always laudable, even when the enterprize is above the strength that undertakes it.laudable is the underlined word!!!What is the best definition of the underlined word as it is used in the sentence?A. foolish or unwise; rashB. displaying intellect; academicC. humorous or comical; drollD. deserving praise; admirable How many moles are in 25.0 mL of C2H6O? The density of C2H6O is 0.785 h/mL.Hint: use formula: mass = density x volume. ) A pension plan is obligated to make disbursements of $2.5 million, $3.5 million, and $2.5 million at the end of each of the next three years, respectively. The annual interest rate is 8%. If the plan wants to fully fund and immunize its position, how much of its portfolio should it allocate to one-year zero-coupon bonds and perpetuities, respectively, if these are the only two assets funding the plan? (Do not round intermediate calculations. Round your answers to 2 decimal places.) The auditory canal behaves like a resonant tube to aid in hearing. One end terminated at the eardrum, while the other opens to the outside. Typically, the canal is about 2.4 cm long. At which frequency would it resonate in its first harmonic? 4.2 kHz3.6 kHz2.9 kHz5.7 kHz Which was a negative outcome of the Dawes severalty act In humans, the trait of freckles exhibits simple Mendelian inheritance patterns. The allele for freckles is dominant (F), and the allele for no freckles is recessive (f). An individual who is heterozygous for freckles would have which of the following phenotypes?A) FrecklesB) No frecklesC) FfD) FFE) ff *******************Challenge: Ms. Dortch's class wants to go to ona camping trip. The cost of the trip is $235. Theclass has a bake sale to raise money. They canmake $45 a week for 5 weeks. How much moremoney will they need?The Clever factory I got n= 8/5, -1, but I don't think it's right. I would really appreciate any help with this :) Robert F. Kennedy was assassinated in 1968. Which of these is true about his assassination?A)He was assassinated in Dallas, Texas during a parade.B)He was assassinated by Lee Harvey Oswald because of his stance on civil rights.C)He was assassinated while working to end a worker's strike in Memphis, Tennessee.D)He was assassinated while campaigning to be the Democratic candidate for the presidential election in 1968. Totalitarian regimes often come to power because ____.A) Economic issues cause unrestB) People are angry about the elected leaderC) There has been some sort of warD) The economy is stable and religious values are threatenedI am marking brainiest Which factor is most likely to have contributed to the high fertility rate inAfrica?OA. Lack of modern transportation systemsOB. Lack of modern agricultural technologyOc. Lack of economic opportunity for womenOD. Lack of access to fresh water The graph of function f a shown. Use the zeros and the turning points of the graph to find the rule for f. Bb SPEAKING Interview your partner using the correctquestions in 6a.Do you think family dinners are important?Yes, I do. You can talk and findout how everybody is. Charles and Lisa were having a apple eating contest. They ate eighteen apples between the two of them. Lisa ate two more apples than Charles. How many apples did Lisa eat?A.6B.10C.12D.15 flows into a catalytic reactor at 26.2 atm and 250.C with a flow rate of 1100. L/min. Hydrogen at 26.2 atm and 250.C flows into the reactor at a flow rate of 1400. L/min. If 13.9 kg is collected per minute, what is the percent yield of the reaction? Think of some aspect of the world you would like to change for the betteranything youd like. For example, it could be a social problem, like bullying or stereotypes; on the other hand, maybe you think theres something missing in the game industry, like not enough games that appeal to some kinds of gamers (minorities, pet owners, senior gamers). Maybe you want your friend to play games with you, but they think most games are too hard to learn. Identify your chosen problem, and then propose a game design that you believe would have a positive impact on the world, something that could make that change. Use brainstorming techniques to help you come up with the answer! In the electrochemical cell using the redox reaction below, the anode half reaction is ________. Sn4+ (aq) + Fe (s) Sn2+ (aq) + Fe2+ (aq) In the electrochemical cell using the redox reaction below, the anode half reaction is ________. (aq) + (s) (aq) + (aq) FeFe2++2e Sn4+Sn2++2e Fe+2eFe2+ Sn4++2eSn2+ Fe+2eSn2+ Request Answer