The probability of guessing a 3-digit pin correctly on the first attempt, when repetition of digits is allowed, is 1 out of 1000, or 0.001.
Explanation:The subject under scrutiny is related to the concept of probability in mathematics. To solve this, we need to consider that there are 10 possible digits (0 to 9) on the keypad for each of the 3 input spots in the pin. Since a digit can be repeated, each spot has 10 possibilities. The total number of possible pin combinations is thus 10*10*10 = 1000.
The probability of guessing the pin correctly on the first attempt would be 1 (since there's only one correct pin) divided by the total number of possibilities, which is 1000. Therefore, the probability of this happening is 1/1000 or 0.001.
Learn more about probability here:https://brainly.com/question/32117953
#SPJ12
The probability of a correct guess on the first try is 1/729.
Explanation:In this scenario, the thief must randomly guess the correct three-digit pin code from a 9-key keypad where repetition of digits is allowed. To determine the probability of a correct guess on the first try, we need to calculate the ratio of favorable outcomes to total outcomes.
There are 9 possible digits to choose from, and repetition is allowed. Therefore, the number of outcomes is 9 raised to the power of 3 (since the thief needs to guess a three-digit pin code). This gives us 729 total outcomes. There is only one favorable outcome in this case, which is the correct pin code. Therefore, the probability of a correct guess on the first try is 1/729.
Learn more about Probability here:https://brainly.com/question/32117953
#SPJ12
NEED HELP PLEASE ASAP Given: AEDFG AABF
Name the postulate or theorem you can use to prove AADE & AEBA
е СРСтс
AAS Theorem
HL Theorem
ASA Postulate
Answer:
H-L Theorem
Step-by-step explanation:
They tell you that they are right triangles, and you have your congruency marks. If they never had right angle indicators, this theorem would never work.
I hope this helps you out, and as always, I am joyous to assist anyone at any time.
What is the volume of the cylinder shown below? I WILL MARK BRAINLIEST
Answer:
[tex] H.~~ 138.16~ft^3 [/tex]
Step-by-step explanation:
Start with the volume formula for a cylinder.
[tex] V = \pi r^2h [/tex]
Now use the given information.
r = 2 ft
h = 11 ft
Use 3.14 for pi.
[tex] V = 3.14 \times (2~ft)^2 \times 11 ft [/tex]
[tex] V = 3.14 \times 4~ft^2 \times 11 ft [/tex]
[tex] V = 3.14 \times 44~ft^3 [/tex]
[tex] V = 138.16~ft^3 [/tex]
The function f(x) = 4(2) ^x represents the number of people who share a cat
video x hours after it first appears on a website. How does the number of
people sharing the video change each hour?
Answer:
It will double every hour.
Step-by-step explanation:
f(x) = 4(2)^x
This is an exponential function so the number of people will increase at a faster rate each hour. It will accelerate.
Lets try entering a few values:
After 1 hour, people = 4*2 = 8
After 2 hours , people =4*2^2 = 16
After 3 hours, people = 4(2)^3 = 32
After 4 hours, people = 4(2)^4 = 64.
It is doubling every hour.
.
What is the volume of the prism below 4 height length 18 9width
The volume of the prism is [tex]\(V = 648 \, \text{cubic units}\).[/tex]
The formula for the volume (V) of a rectangular prism is given by [tex]\(V = lwh\),[/tex] where (l) is the length, (w) is the width, and (h) is the height. In this case, the provided dimensions are length (l = 18), width (w = 9), and height (h = 4). Substituting these values into the formula: [tex]\[ V = 18 \times 9 \times 4 = 648 \, \text{cubic units}. \][/tex] Therefore, the volume of the prism is [tex]\(648 \, \text{cubic units}\).[/tex]
Understanding the concept of volume in three-dimensional geometry is vital. The formula [tex]\(V = lwh\)[/tex] reflects the relationship between the length, width, and height of a rectangular prism. Multiplying these dimensions provides the total space enclosed by the prism in cubic units. In this instance, with a length of 18 units, a width of 9 units, and a height of 4 units, the volume calculation yields [tex]\(648 \, \text{cubic units}\),[/tex] representing the spatial capacity of the given prism.
Calculating the volume of prisms is a fundamental skill in geometry and has practical applications in various fields, including architecture and engineering. This calculation allows us to quantify the amount of space a three-dimensional object occupies, providing essential information for design and analysis. In this case, the resulting volume, [tex]\(648 \, \text{cubic units}\),[/tex] represents the capacity of the rectangular prism specified by the given dimensions.
(3k/k-2)+(6/2-k)
3
-3
3k+6/k-2
3k+6/k+2
Answer:
Therefore, the answer is 3
Step-by-step explanation:
The given expression is:
[tex]\frac{3k}{k-2} + \frac{6}{2-k} \\\\Taking\ LCM\\= \frac{3k(2-k)+6(k-2)}{(k-2)(2-k)} \\=\frac{6k-3k^2+6k-12}{(k-2)(2-k)}\\= \frac{-3k^2+12k-12}{(k-2)(2-k)}\\\\Applying\ formula\\=\frac{-3(k^2-4k+4)}{(k-2)(2-k)}\\=\frac{-3((k)^2-2*2*k+(2)^2)}{(k-2)(2-k)}\\=\frac{-3(k-2)^2}{(k-2)(2-k)}\\=\frac{-3(k-2)}{(2-k)}\\=\frac{3(2-k)}{2-k}\\=3[/tex]
Answer: 2k
Step-by-step explanation:
-k + 3k = (-1 + 3)k = 2k
this is a question from MathXL Pearson Statistics. please help
Answer:
Event A has 13/52 outcomes.
Step-by-step explanation:
Total no of cards in a deck = 52
No of clubs in a deck = 13
Event A has outcomes = No of clubs in a deck/Total no of cards in a deck
= 13/52
So, Event A has 13/52 outcomes.
on the coordinate grid, the graph of y= 3/x-1+3 is shown. it is a translation of y =3/x
The question is about translating the graph of the function y = 3/x. The graph of y = 3/(x - 1) + 3 results from shifting the parent function to the right by 1 unit and upwards by 3 units on the coordinate grid.
Explanation:The question pertains to the translation of a rational function on the coordinate grid and is related to graph transformations. The function y = 3/x is known as the parent function, and y = 3/(x - 1) + 3 is the transformed function. To illustrate the translation, we can understand the changes in terms. Here x - 1 indicates a horizontal shift to the right by 1 unit, and +3 signifies a vertical shift upwards by 3 units. The new graph represents these translations on the coordinate system, which is a two-dimensional representation with x and y-axes as described in the reference information provided.
Find RS in the picture please
Answer:
D 5
Step-by-step explanation:
PQ + QR + RS = PS
Substituting what we know
2x-6 + 1 + x-4 = 18
Combine like terms
3x-9 = 18
Add 9 to each side
3x-9+9 =18+9
3x= 27
Divide each side by 3
3x/3 =27/3
x=9
We want to find RS
RS = x-4
= 9-4
=5
A brand new motorcycle gets 70 miles per gallon of gas. If the motorcycle drives 520 miles before running out of gas, how much gas started in the tank? Write you answer as a mixed number.
Answer:
[tex]x=7 \frac{3}{7}[/tex] gallons
Step-by-step explanation:
So we are given:
70 miles -> 1 gallon is used.
520 miles -> x gallons is used.
Set up a proportional to solve.
I lined up everything already above:
[tex]\frac{70}{520}=\frac{1}{x}[/tex]
Cross multiply:
[tex]70(x)=520(1)[/tex]
[tex]70x=520[/tex]
Divide both sides by 70:
[tex]x=\frac{520}{70}[/tex]
Reduce the fraction (divide top and bottom by 10):
[tex]x=\frac{52}{7}[/tex]
How many 7's are in 52? 7 because 7(7)=49
How much is left over after seven 7's go into 52? 52-49=3
So the answer as a mixed fraction is:
[tex]x=7 \frac{3}{7}[/tex]
To find out how much gas was in the motorcycle's tank, divide the total distance driven by the fuel efficiency. In this case, 520 miles / 70 miles per gallon equals 7 2/5 gallons of gas.
To determine how much gas started in the tank of the motorcycle that gets 70 miles per gallon and drove 520 miles before running out of gas, we use the formula:
Calculate the number of gallons used by dividing the total distance driven by the mileage per gallon. This gives us the formula: Gallons Used = Total Miles Driven / Mileage (Miles per Gallon).Divide the total miles driven, which is 520 miles, by the mileage per gallon, which is 70 miles per gallon.The result is 520 miles / 70 miles per gallon = 7.4285714286 gallons.To express this as a mixed number, we take the integer part, which is 7 gallons, and then write the decimal part as a fraction. The decimal part is approximately 0.4286, which can be rounded to 4\/10 or simplified to 2/5. So the mixed number is 7 2/5 gallons.Todd is playing a board game and rolls two number cubes. Let A={the sum of the number cubes is even} and let B={the sum of the number cubes is divisible by 2}. List the outcomes A n B A)3,6,9,12 B) 2,4,6,8,10,12 c) 2,3,4,5,6,7,8,9,10 or D) 0,2,4,6,8,12
Answer:
The correct option is B
Step-by-step explanation:
Todd rolls two number cubes.
Let A={the sum of the number cubes is even}
A={2,4,6,8,10,12}
Let B={the sum of the number cubes is divisible by 2}
B = {2,4,6,8,10,12}
Now we have to find A∩B
Intersection refers to the values which are common in both the sets. The sums in both sets are even and divisible by 2.
So,
A={2,4,6,8,10,12} B = {2,4,6,8,10,12}
A∩B = {2,4,6,8,10,12}
Thus the outcomes A∩B = {2,4,6,8,10,12}
The correct option is B....
Answer:
B
Step-by-step explanation:
Which equations and/or functions represent the graphed line? Select three options.
f(x)=1/5x-4
f(x)=1/2x+2
f(x)=1/2x+1
y-3=1/2(x-2)
y-1=1/2(x+2)
Answer:
f(x) = 1/2x + 2
y - 3 = 1/2(x - 2)
y - 1 = 0.5(x + 2)
Step-by-step explanation:
The equations that represent the graphed line are f(x) = 1/2x + 2, f(x) = 1/2x + 1, and y - 1 = 1/2(x + 2).
Explanation:The equation of a line in slope-intercept form is given by y = mx + b, where m is the slope of the line and b is the y-intercept. In the given options, the equations that represent the graphed line are:
f(x) = 1/2x + 2f(x) = 1/2x + 1y - 1 = 1/2(x + 2)These equations have the same slope and y-intercept as the graphed line.
True or False? The circumcenter of a triangle is the center of the only circle
that can be inscribed about it.
Answer:
The statement is False
Step-by-step explanation:
we know that
An inscribed circle is the largest circle contained within the triangle. The center of the circle inscribed in a triangle is the incenter of the triangle.
The incenter is the point where the angle bisectors of the triangle intersect.
The circumscribed circle is the circle that passes through all three vertices of the triangle. The center of the circumscribed circle is called the circumcenter of the triangle
The circumcenter is the point where the perpendicular bisectors of the sides intersect.
therefore
The circumcenter of a triangle is the center of the only circle
that can be circumscribed about it.
The statement is false
The circumcenter of a triangle is the center of the only circle that can be inscribed about it. True or false?
Answer: False
Find the range of the function f(x) = 4x - 1 for the domain (-1,0, 1, 2, 3}.
For this case we have a fucnion of the form [tex]y = f (x)[/tex]
Where:
[tex]f (x) = 4x-1[/tex]
By definition, the rank of a function is given by:
The set of the real values that the variable y or f (x) takes.
So:
[tex]f (-1) = 4 (-1) -1 = -4-1 = -5\\f (0) = 4 (0) -1 = 0-1 = -1\\f (1) = 4 (1) -1 = 4-1 = 3\\f (2) = 4 (2) -1 = 8-1 = 7\\f (3) = 4 (3) -1 = 12-1 = 11[/tex]
ANswer:
The range is: -5, -1,3,7,11
Answer:
{-5,-1,3,7,11}
Step-by-step explanation:
The range is the output of the function
We have the inputs
f(x) = 4x - 1
f(-1) = 4(-1)-1 = -4-1 = -5
f(0) = 4(0)-1 = 0-1 = -1
f(1) = 4(1)-1 = 4-1 = 3
f(2) = 4(2)-1 = 8-1 = 7
f(3) = 4(3)-1 = 12-1 = 11
The outputs for the given inputs are
{-5,-1,3,7,11}
Alexa is designing a paper airplane whose final shape, when viewed from the top or bottom, is a trapezoid. A sketch of her plane, viewed from the top, is shown on the left.
What are the dimensions of one of the identical triangular pieces of the plane?
2 cm base, 3 cm height
3 cm base, 3 cm height
3 cm base, 4 cm height
3 cm base, 6 cm height
Answer:
2 cm base, 3 cm height
Step-by-step explanation:
Let
x -----> the height of one of the identical triangles pieces of the plane
y ----> the base of one of the identical triangles pieces of the plane
we know that
x=3 cm
2y+2=6
solve for y
2y=6-2
2y=4
y=2 cm
therefore
The dimensions of one of the identical triangles pieces of the plane are 2 cm base and 3 cm height
Answer:
The correct option is 1. The dimensions of one of the identical triangular pieces of the plane are 2 cm base and 3 cm height.
Step-by-step explanation:
From the given figure it is noticed that the length of parallel sides of the trapezoid are 6 cm and 2 cm.
The height of triangular pieces is same as the height of trapezoid. So the height of triangular pieces is 3 cm.
Let the measure of base of the triangular pieces be x.
[tex]x+2+x=6[/tex]
Combine like terms.
[tex]2x+2=6[/tex]
Subtract 2 form both the sides.
[tex]2x+2-2=6-2[/tex]
[tex]2x=4[/tex]
Divide both sides by 2.
[tex]x=\frac{4}{2}[/tex]
[tex]x=2[/tex]
The base of the triangles is 2 cm.
The dimensions of one of the identical triangular pieces of the plane are 2 cm base and 3 cm height. Therefore the correct option is 1.
What should be added to the difference of 1 and 1/2 and 2/6 to get 1 and 2/3?
Rewrite 1/2 to have a common denominator with 2/6
1/2 x 3 = 3/6
Now you have 1 and 3/6 - 2/6 = 1 and 1/6
Now rewrite 2/3 to have a common denominator with 1/6: 2/3 x 2 = 4/6
Subtract 1/6 from 4/6:
4/6 - 1/6 = 3/6 = 1/2
You will need to add 1/2
To get from the difference between 1 and 1/2 and 2/6 to 1 and 2/3, one must add 1/2 after ensuring both differences have a common denominator.
To find out what should be added to the difference between 1 and 1/2 and 2/6 to get 1 and 2/3, we need to perform a few steps involving fractions. First, let's convert 1 and 1/2 into an improper fraction by multiplying 1 (the whole number) by 2 (the denominator of the fractional part) and adding 1 (the numerator of the fractional part), which gives us 3/2. Now, to find the difference between 3/2 and 2/6, we must have a common denominator, which is 6 in this case. Multiplying the numerator and denominator of 3/2 by 3 gives us 9/6.
Now we subtract 2/6 from 9/6 to get the difference, which is 7/6 or 1 and 1/6. To find what needs to be added to this difference to get 1 and 2/3, we must also express 1 and 2/3 as an improper fraction. Multiplying 1 (the whole number) by 3 (the denominator) and adding 2 (the numerator) gives us 5/3.
To compare 7/6 with 5/3, we need the same denominator, which is 6. So we multiply the numerator and denominator of 5/3 by 2 to get 10/6. Subtracting 7/6 from 10/6, we find the missing number to be 3/6, which simplifies to 1/2.
Find the first three terms of the arithmetic series described.
a_1=1,a_n=19,S_n=100
Answer:
1, 3, 5
Step-by-step explanation:
The sum of an arithmetic series is:
S_n = n (a_1 + a_n) / 2
100 = n (1 + 19) / 2
n = 10
The nth term of an arithmetic sequence is:
a_n = a_1 + d (n − 1)
19 = 1 + d (10 − 1)
d = 2
The common difference is 2. So the first three terms are 1, 3, and 5.
How do you find the focus and directrix of y=-2x^2 +8x-15?
Answer: [tex]\bold{focus: \bigg(2, -7 \dfrac{1}{8}\bigg), \quad directrix: y = -6 \dfrac{7}{8}}[/tex]
Step-by-step explanation:
First, rearrange the equation into vertex form: y = a(x - h)² + k where
(h, k) is the vertex[tex]a = \dfrac{1}{4p}[/tex]NOTE: p is the distance from the vertex to the focus
y = -2x² + 8x - 15
y + 15 = -2x² + 8x → added 15 to both sides
y + 15 = -2(x² - 4x) → factored out -2 from the right side
y + 15 + (-2)(4) = -2(x² - 4x + 4) → completed the square
y + 7 = -2(x - 2)² → simplified
y = -2(x - 2)² - 7 → subtracted 7 from both sides
Now it is in vertex form where:
(h, k) = (2, -7)a = -2 ⇒ [tex]-2=\dfrac{1}{4p}[/tex] ⇒ [tex]p=-\dfrac{1}{8}[/tex]Focus = (2, -7 + p) → Focus = (2, -7 + (-1/8)) → [tex]Focus = \bigg(2, -7 \dfrac{1}{8}\bigg)[/tex]
Directrix: y = -7 - p → Directrix: y = -7 - (-1/8) → [tex]Directrix: y = -6 \dfrac{7}{8}[/tex]
15 points!!
Look at the picture to see the problem. What do you think?
Answer:
I don't remember well, and I'm not sure if this is correct, but, I think the answer is This is beacuse ∠FCD are facing with ∠CDG meaning it would be a same side interior angle.
Answer:
Step-by-step explanation:
If you extend BF until it meets AG and consider the the triangle CD and the meeting point, then angle FCD is an interior angle.
If on the other hand it might just be the supplement of DCB which would make it neither. I can see why you want us to take a shot at it. That is a seat of my pants answer. If someone has a better reason, take that one.
How would you get the answer of how much change he received
Answer:
Step-by-step explanation:
Givens
I foot of sill = 1.75
35 feet of sill = x
Paid with 100 dollars.
Solution
First part
Solve the proportion
1/35 = 1.75/ x Cross multiply
1*x = 35 * 1.75
x = 61.25
=========
Second part
Get the change.
Change = 100 - 61.25
Change = 38.75
============
The change =
3 tens 30.00
1 five 5.00
3 ones 3.00
3 quarters .75
Total 38.75
Find the sum of this infinite geometric series where a1=0.3 and r=0.1
Answer:
1/3
Step-by-step explanation:
The formula for computing the sum of an infinite geometric series is
[tex]S=\frac{a_1}{1-r}[/tex] where r is between -1 and 1 and [tex]r[/tex] is the common ratio, and [tex]a_1[/tex] is the first term of the series.
So let's plug in:
[tex]S=\frac{0.3}{1-0.1}[/tex]
[tex]S=\frac{0.3}{0.9}[/tex]
[tex]S=\frac{3}{9}[/tex] I multiplied bottom and top by 10.
[tex]S=\frac{1}{3}[/tex] I divided top and bottom by 3.
The sum is 1/3.
The sum of the infinite geometric series is 1 / 3.
What is geometric progression?When there is a constant between the two successive numbers in the series then it is called a geometric series. In other words, every next term is multiplied with that constant term to form a geometric progression.
Given that the first term a₁ = 0.3 and common ratio r = 0.1. The sum of the geometric series is calculated by using the formula below:-
S = a₁ / ( 1 - r )
S = 0.3 / ( 1 - 0.1 )
S = 0.3 / 0.9
S = 3 / 9
S = 1 / 3
Therefore, the sum of the infinite geometric series is 1 / 3.
To know more about geometric progression follow
https://brainly.com/question/12006112
#SPJ2
A concrete mix calls for 3 buckets of sand for every gallon of water. How much water is needed for 1 bucket of sand?
Step-by-step explanation:
Write a proportion:
3 buckets / 1 gallon = 1 bucket / x gallons
Cross multiply and solve:
3x = 1
x = 1/3
You need 1/3 of a gallon of water.
Solve the following system of equations by graphing and select the correct answer below:
4x + 3y = 29
2x − 3y = 1
a) x = 3, y = 5
b) x = −3, y = 5
c)x = 5, y = 3
d) x = 5, y = −3
Answer: option c
Step-by-step explanation:
Find the x-intercept and y-intercept of each line.
To find the x-intercept, substitute [tex]y=0[/tex] into the equation and solve for "x".
To find the y-intercept, substitute [tex]x=0[/tex] into the equation and solve for "y".
- For the first equation:
x-intercept
[tex]4x + 3y = 29\\\\4x + 3(0)= 29\\\\4x=29\\\\x=\frac{29}{4}\\\\x=7.25[/tex]
y-intercept
[tex]4x + 3y = 29\\\\4(0) + 3y = 29\\\\3y=29\\\\y=\frac{29}{3}\\\\y=9.66[/tex]
Graph a line that passes through the points (7.25, 0) and (0, 9.66)
- For the second equation:
x-intercept
[tex]2x - 3y = 1 \\\\2x - 3(0) = 1 \\\\2x=1\\\\x=0.5[/tex]
y-intercept
[tex]2x - 3y = 1\\\\2(0) - 3y = 1\\\\-3y=1\\\\y=-0.33[/tex]
Graph a line that passes through the points (0.5, 0) and (0, -0.33)
Observe the graph attached. You can see that point of intersection of the lines is (5,3); then this is the solution of the system. Therefore:
[tex]x=5\\y=3[/tex]
ANSWER
c)x = 5, y = 3
EXPLANATION
The given system has equations:
[tex]4x + 3y = 29[/tex]
and
[tex]2x - 3y = 1[/tex]
We graph the above equations using a graphing software to obtain the graph shown in the attachment.
The solution to the given system is the point of intersection of the two straight lines.
From the graph, the two straight lines intersected at (5,3).
This implies that the solution to the system is:
[tex]x = 5 \: and \: y = 3[/tex]
The correct answer is option is C
HELPPPPPP!!
Leila, Larry, and Cindy are running for 12th grade class offices. They will be named to the positions of president, vice-president, and secretary according to the number of votes each receives. The person with the most votes will be president, the person with the second-highest number of votes will be vice-president, and so on. In how many different ways can the three students form a set of class officers?
Answer:
In 6 different ways can the three students form a set of class officers.
Step-by-step explanation:
There are 3 people Leila, Larry, and Cindy and 3 positions president, vice-president, and secretary.
We need to find In how many different ways can the three students form a set of class officers.
This problem can be solved using Permutation.
nPr = n!/(n-r)! is the formula.
Here n = 3 and r =3
So, 3P3 = 3!/(3-3)!
3P3 = 3!/1
3P3 = 3*2*1/1
3P3 = 6
So, in 6 different ways can the three students form a set of class officers.
how many possible outcomes are there when you roll four dice
Answer:
24
Step-by-step explanation:
I think you would do 6 sides on the dice times 4 dice.
Answer:
There is 1,296 possible outcomes
Step-by-step explanation:
You are rolling a die which has 6 faces 4 times.
Each of those rolls has 6 outcomes. That other outcome has 6 other outcomes, which goes on for 4 rolls.
SO you multiply 6*6*6*6=1296 possible outcomes
PLZ VOTE ME FOR BRAINLEST
what is the value of x?
Answer:
x = 130
Step-by-step explanation:
The sum of the exterior angles of a polygon is always 360
140 + x + 56+ 34 = 360
Combine like terms
230 +x = 360
Subtract 230 from each side
230+x-230 = 360-230
x =130
How do you Divide 7÷135
The area of the trapezoid is 40 square units.
What is the height of the trapezoid?
3 units
5 units
10 units
12 units
Hey there!
The area of a trapezoid is h(a+b/2), where h is the height and a and b are the two bases. We already have our area, so let's solve for our height in the equation.
40= x(16/2)
40=8x
x=5
Therefore, the height is B) five units.
I hope this helps!
Answer:
answer is 5
Step-by-step explanation:
Which two events are independent?
A and X
A and Y
B and X
B and Y
Answer:
A and X
Step-by-step explanation:
None
Find the surface area of the triangular prism
Match each variable with what it represents in a sequence formula. 1. r the value of the first term 2. d the value of the nth term 3. n common ratio 4. an common difference 5. a1 term number
Answer:
r is the common ratio (in geometric sequence)
d is the common difference (in arithmetic sequence)
n is the term number
a1 is the value of the first term
an is the value of the nth term
Step-by-step explanation:
For the sequence formula, each term represent as follows,
[tex]r[/tex]: common ratio
[tex]d[/tex]: common difference
[tex]n[/tex]: term number
[tex]a_{n}[/tex]: the value of the [tex]nth[/tex] term
[tex]a_{1}[/tex]: the value of the first term
What is the sequence?"Sequence is defined representation of a number in a particular order using some formula."
According to the question,
For the sequence formula,
Each variable is matched with the following term,
[tex]r[/tex]: common ratio
[tex]d[/tex]: common difference
[tex]n[/tex]: term number
[tex]a_{n}[/tex]: the value of the [tex]nth[/tex] term
[tex]a_{1}[/tex]: the value of the first term
Hence, for the sequence formula, each term represent as follows,
[tex]r[/tex]: common ratio
[tex]d[/tex]: common difference
[tex]n[/tex]: term number
[tex]a_{n}[/tex]: the value of the [tex]nth[/tex] term
[tex]a_{1}[/tex]: the value of the first term
Learn more about sequence here
https://brainly.com/question/21961097
#SPJ2