A uniform disk of mass 20.0 kg and radius 20.0 cm has an additional rim of mass 20.0 kg as well as four symmetrically placed masses, each of mass 1/4th of the mass of the disk, fastened at positions having position vectors (10.0 i + 10.0 j) cm, (10.0 i - 10.0 j) cm, (-10.0i - 10.0 j cm, (-10.0 i + 10.0 j) cm (with respect to the center of the disk). What is the moment of inertia of the whole unit about an axis perpendicular to the disk and passing through its center?

Answers

Answer 1

Answer:

[tex]I = 1.6 kg m^2[/tex]

Explanation:

Moment of inertia of disc is given as

[tex]I = \frac{1}{2}mR^2[/tex]

now we have

m = 20 kg

R = 20.0 cm = 0.20 m

now we have

[tex]I_{disc} = \frac{1}{2}(20 kg)(0.20 m)^2[/tex]

[tex]I_{disc} = 0.4 kg m^2[/tex]

Now the additional mass of 20 kg is placed on its rim so it will behave as a ring so moment of inertia of that part of the disc is

[tex]I = mR^2[/tex]

m = 20 kg

R = 20 cm = 0.20 m

[tex]I_{ring} = 20(0.20^2)[/tex]

[tex]I_{ring} = 0.8 kg m^2[/tex]

Now four point masses each of the mass of one fourth of mass of disc is placed at four positions so moment of inertia of these four masses is given as

[tex]I_{mass} = 4( m'r^2)[/tex]

here we have

[tex]m' = \frac{m}{4}[/tex]

[tex]I_{mass} = 4(\frac{m}{4})(0.10^2 + 0.10^2)[/tex]

[tex]I_{mass} = 20(0.02) = 0.40 kg m^2[/tex]

Now total moment of inertia of the system is given as

[tex]I = I_{disc} + I_{ring} + I_{mass}[/tex]

[tex]I = 0.4 + 0.8 + 0.4 = 1.6 kg m^2[/tex]


Related Questions

An aircraft with a mass of 10,000 kg starts from rest at sea level and takes off, then flies to a cruising speed of 620 km/h and altitude of 10 km. Assume g = 9.8 m/s' throughout the process What is the aircraft's change in potential energy? What is the aircraft's change in kinetic energy? a. b. Answers: About 1000 and 150 MJ, respectively

Answers

Answer:

The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.

Explanation:

Given that,

Mass of aircraft = 10000 kg

Speed = 620 km/h = 172.22 m/s

Altitude = 10 km = 1000 m

We calculate the change in potential energy

[tex]\Delta P.E=mg(h_{2}-h_{1})[/tex]

[tex]\Delta P.E=10000\times9.8\times(10000-0)[/tex]

[tex]\Delta P.E=10000\times9.8\times10000[/tex]

[tex]\Delta P.E=980000000\ J[/tex]

[tex]\Delta P.E=980\ MJ[/tex]

For g = 10 m/s²,

The change in potential energy will be 1000 MJ.

We calculate the change in kinetic energy

[tex]\Delta K.E=\dfrac{1}{2}m(v_{2}^2-v_{1}^2)[/tex]

[tex]\Delta K.E=\dfrac{1}{2}\times10000\times(172.22^2-0^2)[/tex]

[tex]\Delta K.E=\dfrac{1}{2}\times10000\times(172.22^2)[/tex]

[tex]\Delta K.E=148298642\ J[/tex]

[tex]\Delta K.E=148.3\ MJ[/tex]

For g = 10 m/s²,

The change in kinetic energy will be 150 MJ.

Hence, The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.

Kevin has a mass of 87- kg and is skating with in-line skates. He sees his 22-kg younger brother up ahead standing on the sidewalk, with his back tuned. Coming up, grabs his just before he brother and rolls off at a speed of 2.4 m/s. Ignoring friction, find Kevin speed just before he grabbed his brother.

Answers

Answer:

3 m/s

Explanation:

M1 = 87 kg, u1 = ?

M2 = 22 kg, u = 0

After grabbing, let the velocity is V.

V = 2.4 m/s

By using the conservation of momentum

Momentum before grabbing = momentum after grabbing

M1 x u1 + M2 x u2 = (M1 + M2) x V

87 x u1 + 0 = (87 + 22) x 2.4

87 u1 = 261.6

u1 = 3 m/s

Two long straight current-carrying wires run parallel to each other. The current in one of the wires is 7.2A, their separation is 18.1 cm and they repel each other with a force per unit length of 2.6 x104 N/m. Determine the current in the other wire.

Answers

Answer:

3.26 x 10^9 A

Explanation:

I1 = 7.2 A, r = 18.1 cm = 0.181 m, F/l = 2.6 x 10^4 N/m

Let teh current in other wire is I2.

Use the formula of force per unit length

[tex]F / l = \frac{\mu _{0}}{4\pi }\times \frac{2 I_{1}I_{2}}{r}[/tex]

[tex]2.6 \times 10^{4} = 10^{-7}\frac{2 \times 7.2I_{2}}{0.181}[/tex]

I2 = 3.26 x 10^9 A

Final answer:

The current in the second wire is 2.0 A.

Explanation:

The current in the second wire is 2.0 A.

Given that the force per unit length between the wires is directly proportional to the product of their currents, we can set up a proportion to find the current in the second wire:

[tex](7.2 A) / (2.6 x 10^4 N/m) = (x A) / (2.6 x 10^4 N/m)[/tex]

Solving for x gives x = 2.0 A, which is the current in the second wire.

Jupiter’s Great Red Spot rotates completely every six days. If the spot is circular (not quite true, but a reasonable approximation for this matter) and 26,000 km in diameter, what are the wind speeds (i.e. how fast the gas is moving) at the outer edges ofthe storm (in km/hr)? (Hints: Recall the definition of speed. Think about how far a cloud on the edge of the storm must travel.)

Answers

Answer:

[tex]v = 567.2 km/h[/tex]

Explanation:

As we know that if Jupiter Rotate one complete rotation then it means that the it will turn by 360 degree angle

so here the distance covered by the point on its surface in one complete rotation is given by

[tex]distance = 2\pi r[/tex]

[tex]distance = \pi D[/tex]

now we will have the time to complete the rotation given as

[tex]t = 6 days[/tex]

[tex]t = 6 (24 h) = 144 h[/tex]

now the speed is given by

[tex]speed = \frac{distance}{time}[/tex]

[tex]speed = \frac{\pi D}{t}[/tex]

[tex]speed = \frac{\pi(26000 km)}{144}[/tex]

[tex]v = 567.2 km/h[/tex]

The potential difference between the accelerating plates of a TV set is about 25 kV. If the distance between the plates is 1.0 cm, find the magnitude of the uniform electric field in the region between the plates.

Answers

Answer:

E = 2.5 x 10⁶ N/C

Explanation:

V = Potential difference between the plates of a TV set = 25 kV = 25000 Volts

d = Distance between the plates of TV set = 1.0 cm = 0.01 m

E = Electric field in the region between the plates

Electric field between the plates is given as

[tex]E= \frac{V}{d}[/tex]

Inserting the values

[tex]E= \frac{25000}{0.01}[/tex]

E = 2.5 x 10⁶ N/C

The uniform electric field is the field in which the value of the electric field strength remain same at each point.

The magnitude of the uniform electric field in the region between the plates  [tex]2.5\times10^6 \rm N/C[/tex].

What is uniform electric field?

The uniform electric field is the field in which the value of the electric field strength remain same at each point.

It can be given as,

[tex]E=\dfrac{V}{d}[/tex]

Here, [tex]V[/tex] is the  potential difference between two points and [tex]d[/tex] is the distance between two points.

Given information-

The  potential difference between the accelerating plates of a TV set is about 25 k-V or 25000 V.

The distance between the plates is 1.0 cm or 0.01 meters.

Use the above formula to find the magnitude of the uniform electric field in the region between the plates as,

[tex]E=\dfrac{25000}{0.01}\\E=2.5\times10^6 \rm N/C[/tex]

Thus the magnitude of the uniform electric field in the region between the plates  [tex]2.5\times10^6 \rm N/C[/tex].

Learn more about uniform electric field here;

https://brainly.com/question/14632877

A projectile is fired into the air at a nonzero angle with the horizontal. When the projectile reaches its maximum height, the speed of the projectile is 50.8% of its original speed. What angle was the projectile originally fired at?

Answers

Answer:

59.5 deg

Explanation:

[tex]v[/tex] = original speed at which the projectile is launched

θ = angle of launch of projectile

[tex]v_{x}[/tex] = component of speed along the horizontal direction =  [tex]v [/tex] Cosθ

At the highest position, the vertical component of velocity becomes zero and there is only horizontal component of velocity, hence

[tex]v_{highest}[/tex] = velocity at the highest point = [tex]v_{x}[/tex] = [tex]v [/tex] Cosθ

it is given that

[tex]v_{highest}[/tex] = 0.508 [tex]v[/tex]

so

[tex]v[/tex] Cosθ = 0.508 [tex]v[/tex]

Cosθ = 0.508

θ = 59.5 deg

The displacement (in meters) of a particle moving in a straight line is given by the equation of motion s = 6/t2, where t is measured in seconds. Find the velocity of the particle at times t = a, t = 1, t = 2, and t = 3.

Answers

Answer:

Velocity of the particle at time t = a

        [tex]v(a)=-\frac{12}{a^3}[/tex]

Velocity of the particle at time t = 1

         [tex]v(1)=-12m/s[/tex]

Velocity of the particle at time t = 2

         [tex]v(2)=-1.5m/s[/tex]

Velocity of the particle at time t = 3

          [tex]v(3)=-0.44m/s[/tex]

Explanation:

Displacement,

          [tex]s(t)=\frac{6}{t^2}[/tex]

Velocity is given by

          [tex]v(t)=\frac{ds}{dt}=\frac{d}{dt}\left ( \frac{6}{t^2}\right )=-\frac{12}{t^3}[/tex]

Velocity of the particle at time t = a

        [tex]v(a)=-\frac{12}{a^3}[/tex]

Velocity of the particle at time t = 1

         [tex]v(1)=-\frac{12}{1^3}=-12m/s[/tex]

Velocity of the particle at time t = 2

         [tex]v(2)=-\frac{12}{2^3}=-1.5m/s[/tex]

Velocity of the particle at time t = 3

          [tex]v(3)=-\frac{12}{3^3}=-0.44m/s[/tex]

Final answer:

The velocity of the particle for different times (t = a, 1, 2, and 3 seconds) is found by differentiating the displacement equation s = 6/t^2 and applying the values of t to get the velocities: v(a) = -12/a^3, v(1) = -12 m/s, v(2) = -1.5 m/s, and v(3) ≈ -0.44 m/s.

Explanation:

The question you've asked is about finding the velocity of a particle moving in a straight line where its displacement is given by s = 6/t2, and t is the time in seconds. To find the velocity (v) at any given time, we need to take the derivative of the displacement with respect to time. So the derivative of s with respect to t gives us v = -12/t3. Let's apply this formula for t = a, 1, 2, and 3 seconds.

For t = a: v(a) = -12/a3 m/sFor t = 1 second: v(1) = -12/13 m/s = -12 m/sFor t = 2 seconds: v(2) = -12/23 m/s = -12/8 m/s = -1.5 m/sFor t = 3 seconds: v(3) = -12/33 m/s = -12/27 m/s ≈ -0.44 m/s

Note that the negative sign indicates the direction of velocity is opposite to the direction assumed as positive in the displacement equation.

What is the wavelength of light that is deviated in the first order through an angle of 13.1 ∘ by a transmission grating having 5000 slits/cm? Assume normal incidence.

Answers

Answer:

The wavelength of light is [tex]4.53\times10^{-7}\ m[/tex]

Explanation:

Given that,

Angle = 13.1°

Number of slits = 5000

We need to calculate the wavelength of light

Diffraction of first order is defined as,

[tex]d \sin\theta=n\lambda[/tex].....(I)

The separation of the slits

[tex]d = \dfrac{1}{N}[/tex]

[tex]d=\dfrac{1}{5000}[/tex]

[tex]d=2\times10^{-6}\ m[/tex]

Now put the value in equation (I)

[tex]2\times10^{-6}\sin13.1^{\circ}=\lambda[/tex]

Here, n = 1

[tex]\lambda=4.53\times10^{-7}\ m[/tex]

Hence, The wavelength of light is [tex]4.53\times10^{-7}\ m[/tex]

Each plate of an air-filled parallel-plate capacitor has an area of 45.0 cm2, and the separation of the plates is 0.080 mm. A battery with voltage V is attached to the capacitor and an energy density of u- 100 J/m is stored between the plates. Determine the amount of charge that this capacitor has on its positive plate. (Watch the prefixes-they are not all the same) a. 8.8 pC b. 0.75 nC c. 28 nC d. 84 nC e. 190 nC

Answers

Answer:

Option (e)

Explanation:

A = 45 cm^2 = 0.0045 m^2, d = 0.080 mm = 0.080 x 10^-3 m,

Energy density = 100 J/m

Let Q be the charge on the plates.

Energy density = 1/2 x ε0 x E^2

100 = 0.5 x 8.854 x 10^-12 x E^2

E = 4.75 x 10^6 V/m

V = E x d

V = 4.75 x 10^6 x 0.080 x 10^-3 = 380.22 V

C = ε0 A / d

C = 8.854 x 10^-12 x 45 x 10^-4 / (0.080 x 10^-3) = 4.98 x 10^-10 F

Q = C x V = 4.98 x 10^-10 x 380.22 = 1.9 x 10^-7 C

Q =  190 nC

Calculate final temperature of 50 g of water heated with 20000 J. The heat capacity of water is 4190 J /kg/ ºC.

Answers

Answer:

95.47 C

Explanation:

Heat added = mass × heat capacity × rise in temperature

So, rise in temperature =

20000 / (0.05 × 4190)

Rise in temperature = 95.47 C

To calculate the final temperature of [tex]50 g[/tex]  of water heated with [tex]20000 J[/tex], you use the equation [tex]Q = mc\Delta T[/tex]. The calculated temperature change is [tex]95.5^{\circ}C[/tex], and adding this to an initial temperature of [tex]25^{\circ}C[/tex] gives [tex]120.5^{\circ}C[/tex]. Because water boils at [tex]100^{\circ}C[/tex], the final temperature would be limited to [tex]100^{\circ}C[/tex].

To calculate the final temperature of [tex]50 g[/tex] of water heated with [tex]20000 J[/tex] of energy, we can use the equation:

[tex]Q = mc\Delta T[/tex]

where:

Heat energy, [tex]Q = (20000 J)[/tex]

Mass of water. [tex]m = (50 g = 0.05 kg)[/tex]

Specific heat capacity of water, [tex]c = (4190 \, \text{J/kg°C})[/tex]

Change in temperature, [tex]\Delta T = (T_{\text{final}} - T_{\text{initial}})[/tex]

Rearrange the equation to solve for[tex]\Delta T[/tex]:

[tex]\Delta T = \frac{Q}{mc}[/tex]

Substitute the values:

[tex]\Delta T = \frac{20000 \, \text{J}}{0.05 \, \text{kg} \times 4190 \, \text{J/kgC}}[/tex]

[tex]\approx 95.5^{\circ}C[/tex]

If the initial temperature of the water was[tex]25^{\circ}C[/tex] (for example), then the final temperature would be:

[tex]T_{\text{final}} = T_{\text{initial}} + \Delta T\\T_{\text{final}} = 25^\circ \text{C} + 95.5^\circ \text{C} = 120.5^\circ \text{C}[/tex]

However, remember that water boils at 100°C under standard pressure, so the actual final temperature would be limited to .

A 250-lb block is subjected to a horizontal force P. The coefficient of friction between the block and surface is µs = 0.2. Determine the force P required to start moving the block up the incline

Answers

Answer:

force required to push the block = 219.714 lb

Explanation:

GIVEN DATA:

weight W of block = 250 lb

coefficient of friction = 0.2

consider equilibrium condition in x direction

[tex]P*cos(30)-W*sin(30)-\mu _{s}N = 0[/tex]

[tex]P*0.866-0.2N = 125[/tex].........................(1)

consider equilibrium condition in Y direction

[tex]N-Wcos(30)-Psin(30)= 0[/tex]

[tex]N-0.5P=216.503[/tex].....................(2)

SOLVING 1 and 2 equation we get N value

N = 326.36 lb

putting N value in either equation we get force required to push the block = 219.714 lb

The amount of heat energy required to raise the temperature of a unit mass of a material one degree is: A. absolute zero. B. a Joule. C. a Btu. D. its heat capacity

Answers

Answer:

Option (D)

Explanation:

The definition of specific heat is given below

The amount of heat required to raise the temperature of 1 kg substance by 1 degree Celsius.

Q = m c (T2 - T1)

c = Q / m × (T2 - T2)

(b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom?

Answers

Answer:

Explanation:

a) using the energy conservation  equation

mgh = 0.5mv^2 + 0.5Iω^2

I(moment of inertia) (basket ball) = (2/3)mr^2

mgh = 0.5mv^2 + 0.5( 2/3mr^2) ( v^2/r^2)

gh = 1/2v^2 + 1/3v^2

gh = v^2( 5/6)

v =  [tex]\sqrt{\frac{6gh}{5} }[/tex]

putting the values we get

[tex]6.6 ^{2} = \frac{6\times9.8h}{5}[/tex]

solving for h( height)

h = 3.704 m apprx

b) velocity of solid cylinder

mgh = 0.5mv^2 + 0.5( mr^2/2)( v^2/r^2) where ( I ofcylinder = mr^2/2)

g*h = 1/2v^2 + 1/4v^2

g*h = 3/4v^2

putting the value of h and g we get

v= = 6.957 m/s apprx

What is the pressure ratio for a sound that is 90 dB SPL?

Answers

Solution:

To calculate the pressure ratio for a sound for measuring sound, we use the following logarithmic formula of Sound Pressure Level  (SPL):

SPL = [tex]20\log_{10}\frac{p}{p_{ref}} dB[/tex]

where,

p = pressure to be measured

[tex]p_{ref} [/tex] = reference pressure

[tex]\frac{90}{20}[/tex] =  [tex]\log_{10}\frac{p}{p_{ref}} dB[/tex]

[tex]10^{4.5}[/tex] =  [tex]\frac{p}{p_{ref}}[/tex]

pressure ratio is :

[tex]\frac{p}{p_{ref}}[/tex] = [tex]3.16\times 10^{5}[/tex]

Final answer:

A 90 dB sound has a pressure ratio [tex]10^{4.5[/tex] times greater than the threshold of hearing (0 dB). Every 10 dB increase corresponds to doubling the sound pressure level, so a 90 dB sound is exponentially more intense than the reference level.

Explanation:

To compute the pressure ratio for a sound that is 90 dB SPL (Sound Pressure Level), we must first understand the relationship between decibels and pressure ratios. The reference pressure for 0 dB is 20 micropascals, which is equivalent to 10⁻⁹ atm. A change of 20 dB represents a tenfold increase in the pressure amplitude.

Since every 10 dB increase corresponds to the sound pressure level doubling, a 90 dB sound is 9 factors of 10 or 10⁹ times more intense than the threshold of hearing (0 dB). Therefore, the pressure ratio of a 90 dB sound compared to the reference sound (0 dB) is 10⁹ times greater.

To confirm, every 20 dB increase multiplies the pressure ratio by 10, so:
0 dB = 1 (reference level)
20 dB = 10
40 dB = 10²
60 dB = 10³
80 dB = 10
90 dB =[tex]10^{4.5[/tex]
Thus, a 90 dB sound signal is 1[tex]10^{4.5[/tex] times the pressure of the reference signal.

A fish appears to be 3 m below the surface of a pond when viewed almost directly above by a fisherman. What is the actual depth of the fish? (n water = 1.33) A fish appears to be 3 m below the surface of a pond when viewed almost directly above by a fisherman. What is the actual depth of the fish? (n water = 1.33) 0.44 m 0.25 m 3.99 m 2.26 m

Answers

Answer:

3.99 m option c

Explanation:

n = 1.33

Real depth / Apparent depth = n

Real depth = n × apparent depth

Real depth = 1.33 × 3

Real depth = 3.99 m

Final answer:

The apparent depth of the fish is not the same as its actual depth due to refraction. The actual depth can be calculated using the equation for apparent depth and the refractive index of water. In this case, the actual depth of the fish is 2.26 m.

Explanation:

The apparent depth of an object submerged in water can be different from its actual depth due to refraction. In this case, the fish appears to be 3 m below the surface when viewed from above by a fisherman. To find the actual depth, we can use the equation for apparent depth, which states that the apparent depth is equal to the actual depth divided by the refractive index of the medium.

Using this equation, we can calculate the actual depth as follows:

Actual depth = Apparent depth ÷ Refractive index of water

Given that the refractive index of water is 1.33, we can substitute the values and calculate the actual depth.

Learn more about Calculating actual depth of submerged objects here:

https://brainly.com/question/31683715

#SPJ3

A rock is thrown downward into a well that is 7.92 m deep. Part A If the splash is heard 1.17 seconds later, what was the initial speed of the rock? Take the speed of sound in the air to be 343 m/s.

Answers

Answer:

Explanation:

Givens

Time taken to go down + time taken for the sound to come up = 1.17 seconds.

d = 7.92 m

a = 9.81 m/s^2

t (see below)

vi = ???

Solution to How long it takes to come back up.

v = 343 m/s

d = 7.92 meters

t = ?

t = d/v

t = 7.92 m / 343 m/s

t = 0.0231 seconds.

Solution to time taken to go down.

Time_down = 1.17 - 0.0231

time_down = 1.147 seconds

Solution to vi

d = vi*t + 1/2 a t^2

7.92 = vi*1.147 + 1/2 * 9.81 * 1.147^2

7.92 = vi*1.147 + 6.452                    Subtract 6.452 from both sides.

7.92 - 6.452 = 1.147*vi

1.468 = 1.147 * vi                              Divide by 1.147

1.468 / 1.147 = vi            

1.279 m/s = vi

Compute the binomial expansion for (1+x)^5

Answers

Answer:

1+5x+10x^2+10x^3+5x^4+x^5

Explanation:

You just make it (1+x)(1+x)(1+x)(1+x)(1+x) and multiply it out until it's all one big term.

Focal Lengths II If you were handed an unmarked convex lens (no optical track) and asked to estimate its focal length quickly, how would you do it? Explain.

Answers

Answer:

Explanation:

To estimate the focal length of a convex lens follow the following steps.

1. take a convex lens.

2. Stand near a window which is just opposite to a wall.

3. Look at a tree which is far away from the window by the convex lens.

4. focus the image of the tree on the wall which is opposite to the window.

5. You wll observe that by changing the position of convex lens a sharp and inverted and small image is seen on the wall.

5. Now measure the distance between the lens and the wall.

7. This distance is the rough focal length of the convex lens.

Final answer:

To estimate the focal length of an unmarked convex lens, you can hold the lens in front of a bright object and project the image onto a blank wall until it's clear and at its smallest size. The distance between the lens and wall is the focal length. Refraction of light in materials like water changes their lens properties.

Explanation:

To estimate the focal length of an unmarked convex lens quickly, you can employ a simple method using readily available materials. Here's a step-by-step explanation of this experimental process:

Hold the convex lens in front of a bright object, such as a distant light source or window, and slowly move it towards a blank wall or screen until a clear image of the object is seen on the wall.The distance between the lens and the wall at this point is the approximate focal length of the lens. Ensure that the image formed on the wall is at its smallest size, which indicates that it is focused at the lens' focal point.For accuracy, repeat the process several times and take the average of the measured distances.

This method is based on the fact that when an object is placed at a great distance from a converging lens (much greater than the focal length), the image is formed at the focal point on the other side of the lens. By finding this point of clear image formation, you effectively measure the focal length of the convex lens.

Impact of Refraction

When you fill a glass or plastic bottle with water, it can act as a converging lens due to the refraction of light. The water inside the bottle has a different index of refraction compared to the air, which allows the bottle to focus light and form images like a lens. The curvature of the bottle and the water's index of refraction contribute to the lens properties and focal length of the water bottle lens.

A spring is stretched 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant of 0.25 lb·s/ft and is acted on by an external force of 4 cos 2t lb. (a) Determine the steady state response of this system.

Answers

Answer:

y= 240/901 cos 2t+ 8/901 sin 2t

Explanation:

To find mass m=weighs/g

  m=8/32=0.25

To find the spring constant

Kx=mg    (given that c=6 in and mg=8 lb)

K(0.5)=8               (6 in=0.5 ft)

K=16 lb/ft

We know that equation for spring mass system

my''+Cy'+Ky=F  

now by putting the values

0.25 y"+0.25 y'+16 y=4 cos 20 t  ----(1) (given that C=0.25 lb.s/ft)

Lets assume that at steady state the equation of y will be

y=A cos 2t+ B sin 2t

To find the constant A and B we have to compare this equation with equation 1.

Now find y' and y" (by differentiate with respect to t)

y'= -2A sin 2t+2B cos 2t

y"=-4A cos 2t-4B sin 2t

Now put the values of y" , y' and y in equation 1

0.25 (-4A cos 2t-4B sin 2t)+0.25(-2A sin 2t+2B cos 2t)+16(A cos 2t+ B sin 2t)=4 cos 20 t

So by comparing the coefficient both sides

30 A+ B=8

A-30 B=0

So we get

A=240/901 and B=8/901

So the steady state response

y= 240/901 cos 2t+ 8/901 sin 2t

A steady-state response is the behavior of a circuit over a lengthy period of time when stable conditions have been achieved. The steady-state response of this system will be y= 240/901 cos 2t+ 8/901 sin 2t.

What is a steady-state response?

A steady-state response is the behavior of a circuit over a lengthy period of time when stable conditions have been achieved following an external stimulus.

The given data in the problem will bge;

C=0.25 lb.s/ft

Weight is defined as the product of mass and gravity.

[tex]\rm{m=\frac{W}{g} }\\\\\rm{m=\frac{8}{32}[/tex]

[tex]\rm m=0.25[/tex]

Spring constant is defined as the ratio of force per unit displaced length.

The spring force is balanced by the weight;

[tex]\rm Kx=mg\\\\ \rm x= \frac{mg}{K} \\\\ \rm x=\frac{8}{0.5} lb/ft[/tex]

The equation for the spring-mass system is given by;

[tex]\rm {my''+Cy'+Ky=F }[/tex]

[tex]\rm 0.25 y"+0.25 y'+16 y=4 cos 20 t[/tex]

Steady-state equation;

[tex]\rm y=A cos 2t+ B sin 2t[/tex]

For finding the value of A and B

[tex]\rm y'= -2A sin 2t+2B cos 2ty"=-4A cos 2t-4B sin 2t[/tex]

By putting the value we got

[tex]\rm 0.25 (-4A cos 2t-4B sin 2t)+0.25(-2A sin 2t+2B cos 2t)+16(A cos 2t+ B sin 2t)=4 cos 20 t[/tex]

The value of cofficient obtained from the equation

[tex]30 A+ B=8[/tex]

Getting the value as

[tex]A= \frac{240/901}\\\\ B=\frac{8}{901}[/tex]

The steady-state response got

[tex]y= 240/901 cos 2t+ 8/901 sin 2t[/tex]

Hence the steady-state response of this system.y= 240/901 cos 2t+ 8/901 sin 2t

To learn about the steady-state response refer to the link;

https://brainly.com/question/14960844

A 81 cm long brass rod has a diameter of 3 mm. The temperature of one end is 50 degrees higher than the other end. How much heat is conducted in 1.8 mins?

Answers

Answer:

5.14 J

Explanation:

l = 81 cm = 0.81 m

diameter = 3 mm

Radius, r = 1.5 mm = 1.5 x 10^-3 m

Change in temperature, T2 - T1 = 50 degree

t = 1.8 minutes = 1.8 x 60 = 108 s

k = 109 W/mk

Heat transfer = K A (T2 - T1) t / l

H = 109 x 3.14 x 1.5 x 10^-3 x 1.5 x 10^-3 x 50 x 108 / 0.81

H = 5.14 J

The British gold sovereign coin is an alloy of gold and copper having a total mass of 7.988 g, and is 22-karat gold. (a) Find the mass of gold in the sovereign in kilograms using the fact that the number of carats = 24 ✕ (mass of gold)/(total mass). kg (b) Calculate the volumes of gold and copper, respectively, used to manufacture the coin. volume of gold m3 volume of copper m3 (c) Calculate the density of the British sovereign coin.

Answers

Answers:

(a) [tex]0.0073kg[/tex]

(b) Volume gold: [tex]3.79(10)^{-7}m^{3}[/tex], Volume cupper: [tex]7.6(10)^{-8}m^{3}[/tex]

(c) [tex]17633.554kg/m^{3}[/tex]

Explanation:

(a) Mass of gold

We are told the total mass [tex]M[/tex] of the coin, which is an alloy  of gold and copper is:

[tex]M=m_{gold}+m_{copper}=7.988g=0.007988kg[/tex]   (1)

Where  [tex]m_{gold}[/tex] is the mass of gold and [tex]m_{copper}[/tex] is the mass of copper.

In addition we know it is a 22-karat gold and the relation between the number of karats [tex]K[/tex] and mass is:

[tex]K=24\frac{m_{gold}}{M}[/tex]   (2)

Finding [tex]{m_{gold}[/tex]:

[tex]m_{gold}=\frac{22}{24}M[/tex]   (3)

[tex]m_{gold}=\frac{22}{24}(0.007988kg)[/tex]   (4)

[tex]m_{gold}=0.0073kg[/tex]   (5)  This is the mass of gold in the coin

(b) Volume of gold and cupper

The density [tex]\rho[/tex] of an object is given by:

[tex]\rho=\frac{mass}{volume}[/tex]

If we want to find the volume, this expression changes to: [tex]volume=\frac{mass}{\rho}[/tex]

For gold, its volume [tex]V_{gold}[/tex] will be a relation between its mass [tex]m_{gold}[/tex]  (found in (5)) and its density [tex]\rho_{gold}=19.30g/cm^{3}=19300kg/m^{3}[/tex]:

[tex]V_{gold}=\frac{m_{gold}}{\rho_{gold}}[/tex]   (6)

[tex]V_{gold}=\frac{0.0073kg}{19300kg/m^{3}}[/tex]   (7)

[tex]V_{gold}=3.79(10)^{-7}m^{3}[/tex]   (8)  Volume of gold in the coin

For copper, its volume [tex]V_{copper}[/tex] will be a relation between its mass [tex]m_{copper}[/tex]  and its density [tex]\rho_{copper}=8.96g/cm^{3}=8960kg/m^{3}[/tex]:

[tex]V_{copper}=\frac{m_{copper}}{\rho_{copper}}[/tex]   (9)

The mass of copper can be found by isolating [tex]m_{copper}[/tex] from (1):

[tex]M=m_{gold}+m_{copper}[/tex]  

[tex]m_{copper}=M-m_{gold}[/tex]  (10)

Knowing the mass of gold found in (5):

[tex]m_{copper}=0.007988kg-0.0073kg=0.000688kg[/tex]  (11)

Now we can find the volume of copper:

[tex]V_{copper}=\frac{0.000688kg}{8960kg/m^{3}}[/tex]   (12)

[tex]V_{copper}=7.6(10)^{-8}m^{3}[/tex]   (13)  Volume of copper in the coin

(c) Density of the sovereign coin

Remembering density is a relation between mass and volume, in the case of the coin the density [tex]\rho_{coin[/tex] will be a relation between its total mass [tex]M[/tex] and its total volume [tex]V[/tex]:

[tex]\rho_{coin}=\frac{M}{V}[/tex] (14)

Knowing the total volume of the coin is:

[tex]V=V_{gold}+V_{copper}=3.79(10)^{-7}m^{3}+7.6(10)^{-8}m^{3}=4.53(10)^{-7}m^{3}[/tex] (15)

[tex]\rho_{coin}=\frac{0.007988kg}{4.53(10)^{-7}m^{3}}[/tex] (16)

Finally:

[tex]\rho_{coin}=17633.554kg/m^{3}}[/tex] (17)  This is the total density of the British sovereign coin

Axial flow pumps can usually handle large flow rates. They hence have a. low specific speed b.high specific speed c. medium specific speed d. no specific speed

Answers

Answer:

Axial flow pumps can usually handle large flow rates. They hence have high specific speed - b.

Final answer:

Axial flow pumps are capable of handling large flow rates and have a high specific speed, which is a contrast to positive displacement pumps like diaphragm pumps that deliver a constant flow regardless of pressure.

Explanation:

Axial flow pumps are designed to handle large flow rates, which indicates their ability to move a high volume of fluid. The specific speed of a pump describes how efficient it is at handling different flow rates. In this context, axial flow pumps that can handle large flow rates usually have low specific speed (a) as they are more effective at high flow rates than pumps with higher specific speeds.

Axial flow pumps are designed to handle very large flow rates and are characterized by their ability to deliver fluid primarily in a direction parallel to the pump shaft. This capability allows them to operate efficiently under conditions where a significant volume of liquid needs to be moved across relatively short distances with lower head (pressure) requirements. The concept of specific speed is important when discussing pump performance. It is a dimensionless number that describes a pump's shape and characteristics based on its speed, flow rate, and head. Given that axial flow pumps are optimal for applications with high flow rates and lower head, they are distinguished by a high specific speed. This is in contrast to positive displacement pumps, like diaphragm pumps, which deliver a constant flow for each revolution of the pump shaft, regardless of changes in pressure, highlighting a key difference in operation and efficiency between pump types.

A balloon having an initial temperature of 17.8°C is heated so that the volume doubles while the pressure is kept fixed. What is the new value of the temperature?

Answers

Answer:

[tex]T = 308.6 ^0 C[/tex]

Explanation:

Here by ideal gas equation we can say

[tex]PV = nRT[/tex]

now we know that pressure is kept constant here

so we will have

[tex]V = \frac{nR}{P} T[/tex]

since we know that number of moles and pressure is constant here

so we have

[tex]\frac{V_2}{V_1} = \frac{T_2}{T_1}[/tex]

now we know that initial temperature is 17.8 degree C

and finally volume is doubled

So we have

[tex]\frac{2V}{V} = \frac{T_2}{(273 + 17.8)}[/tex]

so final temperature will be

[tex]T_2 = 581.6 k[/tex]

[tex]T_2 = 308.6 ^o C[/tex]

Initially a wheel rotating about a fixed axis at a constant angular deceleration of 0.7 rad/s 2 has an angular velocity of 0 rad/s and an angular position of 8.8 rad. What is the angular position of the wheel after 2.7 s? Answer in units of rad.

Answers

Answer:

The angular position of the wheel after 2.7 seconds is θf= 11.35 rad.

Explanation:

θi= 8.8 rad

ωi= 0 rad/seg

α= 0.7 rad/seg²

θf= θi + ωi * t + α * t² / 2

θf= 11.35 rad

Water is flowing in a pipe with a varying cross-sectional area, and at all points the water completely fills the pipe. At point 1 the cross-sectional area of the pipe is 0.070m2, and the magnitude of the fluid velocity is 3.50m/s.

part A

What is the fluid speed at point in the pipe where the cross-sectional area is 0.105m2?

part b

What is the fluid speed at point in the pipe where the cross-sectional area is 0.047m2?

part c

Calculate the volume of water discharged from the open end of the pipe in 1.00hour.

Answers

Answer:

a) 2.33 m/s

b) 5.21 m/s

c) 882 m³

Explanation:

Using the concept of continuity equation

for flow through pipes

[tex]A_{1}\times V_{1} = A_{2}\times V_{2}[/tex]

Where,

A = Area of cross-section

V = Velocity of fluid at the particular cross-section

given:

[tex]A_{1} = 0.070 m^{2}[/tex]

[tex]V_{1} = 3.50 m/s[/tex]

a) [tex]A_{2} = 0.105 m^{2}[/tex]

substituting the values in the continuity equation, we get

[tex]0.070\times 3.50 = 0.105\times V_{2}[/tex]

or

[tex]V_{2} = \frac{0.070\times 3.5}{0.150}m/s[/tex]

or

[tex]V_{2} = 2.33m/s[/tex]

b) [tex]A_{2} = 0.047 m^{2}[/tex]

substituting the values in the continuity equation, we get

[tex]0.070\times 3.50 = 0.047\times V_{2}[/tex]

or

[tex]V_{2} = \frac{0.070\times 3.5}{0.047}m/s[/tex]

or

[tex]V_{2} = 5.21m/s[/tex]

c) we have,

Discharge[tex]Q = Area (A)\times Velocity(V)[/tex]

thus from the given value, we get

[tex]Q = 0.070m^{2}\times 3.5m/s\[/tex]

[tex]Q = 0.245 m^{3}/s[/tex]

Also,

Discharge[tex]Q = \frac{volume}{time}[/tex]

given time = 1 hour = 1 ×3600 seconds

substituting the value of discharge and time in the above equation, we get

[tex]0.245m^{3}/s = \frac{volume}{3600s}[/tex]

or

[tex]0.245m^{3}/s\times 3600 = Volume[/tex]

volume of flow = [tex]882 m^{3}[/tex]

Final answer:

Using the continuity equation for incompressible fluids, we calculated the velocity of water at points in a pipe with different cross-sectional areas and also determined the volume of water discharged from the pipe in one hour.

Explanation:

To answer the fluid dynamics question, we will use the principle of conservation of mass, specifically the continuity equation for incompressible fluids, which states that the product of the cross-sectional area (A) and the velocity (v) of the fluid must remain constant at all points in the flow. This can be written as A1 * v1 = A2 * v2, where A1 and v1 are the area and velocity at point 1, and A2 and v2 are the corresponding values at point 2.

Part A

To find the fluid speed at the point where the cross-sectional area is 0.105 m2, we use the provided information:

A1 = 0.070 m2v1 = 3.50 m/sA2 = 0.105 m2

Thus, v2 = (A1 * v1) / A2 = (0.070 m2 * 3.50 m/s) / 0.105 m2 = 2.33 m/s

Part B

Next, to find the fluid speed at the point where the cross-sectional area is 0.047 m2, we have:

A3 = 0.047 m2

The velocity at this point can be calculated as v3 = (A1 * v1) / A3 = (0.070 m2 * 3.50 m/s) / 0.047 m2 = 5.21 m/s

Part C

For the volume discharged from the open end of the pipe in 1.00 hour, we use the flow rate at point 1, with A1 and v1. The flow rate Q1 = A1 * v1 = 0.070 m2 * 3.50 m/s = 0.245 m3/s. To get the volume for one hour, we need to convert seconds to hours, knowing that there are 3600 seconds in one hour:

Volume = Q1 * time = 0.245 m3/s * 3600 s = 882 m3

Learn more about Fluid Dynamics here:

https://brainly.com/question/11937154

#SPJ3

In SI units, the electric field in an electromagnetic wave is described by Ey = 112 sin(1.40 107x − ωt). (a) Find the amplitude of the corresponding magnetic field oscillations. µT (b) Find the wavelength λ. µm (c) Find the frequency f. Hz

Answers

Explanation:

The electric field in an electromagnetic wave is described by:

[tex]E_y=112\ sin(1.4\times 10^7x-\omega t)[/tex]

The general equation is given by :

[tex]E=E_0\ sin(kx-\omega t)[/tex]

Here,

The amplitude in electric field is [tex]E_0=112[/tex]

Propagation constant, [tex]k=1.4\times 10^7[/tex]

[tex]\omega[/tex] is the angular frequency

(a) The amplitude of the corresponding magnetic field oscillations is given by :

[tex]B_0=\dfrac{E_0}{c}[/tex]

[tex]B_0=\dfrac{112}{3\times 10^8}[/tex]

[tex]B_0=3.73\times 10^{-7}\ T[/tex]

[tex]B_0=0.37\ \mu T[/tex]

(b) We know that the propagation constant is given by :

[tex]k=\dfrac{2\pi}{\lambda}[/tex]

[tex]\lambda=\dfrac{2\pi}{k}[/tex]

[tex]\lambda=\dfrac{2\pi}{1.4\times 10^7}[/tex]

[tex]\lambda=4.48\times 10^{-7}\ m[/tex]

[tex]\lambda=0.44\ \mu T[/tex]

(c) [tex]f=\dfrac{c}{\lambda}[/tex]

[tex]f=\dfrac{3\times 10^8\ m/s}{4.48\times 10^{-7}\ m}[/tex]

[tex]f=6.69\times 10^{14}\ Hz[/tex]

A quantity of gas has a volume of 0.20 cubic meter and an absolute temperature of 333 degrees kelvin. When the temperature of the gas is raised to 533 degrees kelvin, what is the new volume of the gas? (Assume that there's no change in pressure.) A. 0.0006 m^3 B. 0.2333 m^3 C. 0.3198m^3 D. 0.2146 m^3

Answers

Answer:

Option C is the correct answer.

Explanation:

By Charles's law we have

        V ∝ T

That is

       [tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

Here given that

      V₁ = 0.20 cubic meter

      T₁ = 333 K

      T₂ = 533 K

Substituting

      [tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}\\\\\frac{0.20}{333}=\frac{V_2}{533}\\\\V_2=\frac{0.20}{333}\times 533=0.3198m^3[/tex]

New volume of the gas  = 0.3198 m³

Option C is the correct answer.

A 2.74 F and a 7.46 F capacitor are connected in series across a 40.0-V battery. A 10.1 F capacitor is then connected in parallel across the 2.74-uF capacitor. Determine the voltage across the 10.1 F capacitor.

Answers

Answer:

14.7 Volt

Explanation:

C1 = 2.74 F, C2 = 7.46 F, C3 = 10.1 F

Here C1 and C3 are in parallel

So, Cp = C1 + C3 = 2.74 + 10.1 = 12.84 F

Now Cp and C2 are in series

1 / C = 1 / Cp + 1 / C2

1 / C = 1 / 12.84 + 1 / 7.46

C = 4.72 F

Let q be the total charge

q = C V = 4.72 x 40 = 188.8 C

Voltage across C2

V2 = q / C2 = 188.8 / 7.46 = 25.3 V

Voltage across C2 or c3

V' = V - V2 = 40 - 25.3

V' = 14.69

V' = 14.7 Volt

Two resistors, of R1 = 3.93 Ω and R2 = 5.59 Ω, are connected in series to a battery with an EMF of 24.0 V and negligible internal resistance. Find the current I1 through the first resistor and the potential difference ΔV2 between the ends of the second resistor.]

Answers

Answer:

2.521 (A); 14.0924 (V)

Explanation:

more info in the attachment, the answers are marked with red colour.

A camera of weight 8.9 newtons is dropped from a drone at a height of 18.6 meters and enters free fall. Assuming no air resistance, what is the final velocity of the camera a moment before it shatters on the ground?

Answers

Answer:

19.09 m/s

Explanation:

u = 0, h = 18.6 m

Use third equation of motion

v^2 = u^2 + 2 g h

v^2 = 0 + 2 x 9.8 x 18.6

v = 19.09 m/s

Other Questions
Which of the following sentences uses the bolded vocabulary word correctly?She beseeched her boss with a thank-you note and flowers.The children's choir was beautifully clamorous.Everything on the menu is great, but the chicken sandwich is especially exception.No amount of recompense can make up for the suffering I've endured. Which is the inverse of the function f(x)=1/3x+5 The table represents the multiplication of two binomials.What is the value of A?A: -3xB: -3x^2C: -5xD: -5x^2 Why are stains such as Methylene Blue used when observing cells under the microscope? Suppose you exert a force of 180 N tangential to a 0.280-m-radius 75.0-kg grindstone (a solid disk). (a)What torque is exerted? (b) What is the angular acceleration assuming negligible opposing friction? (c *THIS IS AN EASY ONE PLEASE HELP**Convert to Rectangular: r*tan/sec=2y=2y=x=2x= 1.2, 3, 7.5, 18.75, ... Which formula can be used to describe the sequence? a.F(x) = 1.2(2.5)^x 1 b.F(x) = 2.5(1.2)^x 1 c.F(x) = 1.2(2.5)^x d.F(x) = 1.2(2.5)^x Current information for the Healey Company follows: Beginning raw materials inventory $15,200 Raw material purchases 60,000 Ending raw materials inventory 16,600 Beginning work in process inventory 22,400 Ending work in process inventory 28,000 Direct labor 42,800 Total factory overhead 30,000 All raw materials used were traceable to specific units of product. Healey Company's Cost of Goods Manufactured for the year is: $139,000. $137,000. $128,600. $131,400. $125,800. If someone were to describe "The Rosetta Stone to a friend, he or she would most likely compare it to What was the most significant thing about napoleons new constitution? Suppose a study finds that the wing lengths of houseflies are normally distributed with a mean of 4.55mm and a standard deviation of about 0.392mm. What is the probability that a randomly selected housefly has a wing length between 4mm and 5mm? 10 points can someone help me please Which engine component must be able to withstand the extreme heat produced by the burning air-and-fuel mixture as well as the physical forces produced during the power stage? in 1896, the Brittish sent an expedition into Kumasi, The British army seized the capital of the Asante Empire and sent the ruler of the Asante into exile. what was the name of the Asante king? helpppp! The population of a town is 20,000 people in the year 2000. How many people with live in the town in 2016 if the population increases at a rate of 6% every 2 years? Round your answer to the nearest whole number. A 8.40-L vessel contains 3.80 moles of ideal gas at a pressure of 1.60 106 Pa. (a) Find the temperature of the gas. K (b) Find the average kinetic energy of a gas molecule in the vessel. J (c) What additional information would you need if you were asked to find the average speed of a gas molecule? What is a traffic controller?what are its functions? Which state has the longest official name? Ballman Corporation uses the allowance method to account for uncollectible receivables. At the beginning of the year, Allowance for Bad Debts had a credit balance of $2,000. During the year, Ballman wrote off uncollectible receivables of $4,200. Ballman also recorded an adjusting entry for $4,000 of bad debt for the current year. What is Ballmans year-end balance in Allowance for Bad Debts? What net ionic equation describes the reaction between Pb(NO3)2(aq) and Na2CO3(aq)?