A writer’s last four articles and fees paid have been recorded below. What is the rate of change in the writer’s fee from writing a 700-word article to an 800-word article

Answers

Answer 1

Answer:

i don't think anyone an answer this without the picture below.

Step-by-step explanation:


Related Questions

what is the mean absolute deviation, round if needed.

78,93,84,97,100,77,94,96,93,92,90,89

Answers

Answer:

5.54

Step-by-step explanation:

5.54 is the (MAD)

State the independent variable and the dependent variable in the linear relationship. Then find the rate of change for the situation. The cost of admission admission is ​$4848 for forfour pets pets and ​$9696 for eighteight pets pets. Determine the independent variable.

Answers

We have been given that the cost of admission is ​$48 for four pets and ​$96 for eight pets. We are asked to determine the independent variable and the dependent variable in the given linear relationship.

We can see that as the number of pets is increasing cost of admission is also increasing. This means that cost depends on number of pets.

Therefore, cost of admission is dependent variable and number of pets is independent variable.

To find rate of change, we will use slope formula.

We have been given two points on line that are (4,48) and (8,96).

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Upon substituting the coordinates of our given points in slope formula, we will get:

[tex]m=\frac{96-48}{8-4}[/tex]

[tex]m=\frac{48}{4}[/tex]

[tex]m=12[/tex]

Therefore, the rate of change is $12 per pet.

Paul observes that AB=AC and concludes that AB abd AC must be tangent to the circle. What is wrong with pauls reasoning?

Answers

Answer:

C

Step-by-step explanation:

Answer:

The answer should be C

Step-by-step explanation:

we know that

the triangle AOB is congruent with triangle AOC

because

AB=AC

OB=OC-----> the radius of the circle

The OB side is common

but

there is no additional information that allows me to calculate the OBA angle to determine if it is a right angle

therefore

the answer is the option

C.There is no indication that AB and AC are perpendicular to the radii at the points of intersection with the circle.

Thanks (4)

Two less than the product of 3 and x

Answers

Answer:

3x-2

Step-by-step explanation:

Answer:

3x-2

Step-by-step explanation:

"Less than" makes the whole expression changed.

If the less than was not there, it would have been 2-3x.

"Product" is multiplication. So it would be 3x.

The "Less than" also has less in it which is subtraction.

What is the value of x when x + 10 = 42

Answers

Answer: 32

Step-by-step explanation:

Use a fact family. 42 - 10 = 32.

You will get 32 as an answer.

So x = 32.

Answer:

32

Step-by-step explanation:

If x+10=42 then x=42-10 which makes x=32

Each blue cube represents one cubic unit of volume. What is the volume of the large box? A) 20 cubic units B) 48 cubic units C) 288 cubic units D) 384 cubic units

Answers

Answer:

The volume of the large box is 384 cubic units

Step-by-step explanation:

Here, we have;

The number of cubes along the base of the front of the large box (width) = 8 cubes

The number of cubes along the base of the side of the large box (length) = 8 cubes

The number of cubes along the right  side of the front of the large box (the box height)  = 6 cubes

The volume of the large box = Length × Width × Height

∴ The volume of the large box = 8 cubes × 8 cubes × 6 cubes = 384 cubic units.

The volume of the large box = 384 cubic units.

A kangaroo hooped 3,520 yards to the lake with her baby in her pouch. She hopped the remaining 5,280 yard without her baby in her pouch. How many miles did the Kangaroo hop to the lake?

Answers

Answer:

5 miles

Step-by-step explanation:

since she hopped in yards you must mulitiply both numbers 3520 and 5280 by 3 since there are three feet in a yard. then add together then divide the sum by 5280 since a mile is 5280 feet.

3520 X 3 = 10560

5280 X 3 = 15840

10560 + 15840 = 26400

26400/ 5280 = 5

Haley bought a 3-pound bag of cat food. She feeds her cat 6 ounces of cat food each day. Will the bag of cat food be enough to feed her cat for 7 days? Use the drop-down menus to explain.

Answers

Answer:

a -pound bag of cat food can enough to feed her cat for 7 days

Step-by-step explanation:

Given:

3-pound bag of cat food6 ounces of cat used per day

Number of cat food used in 7 days (in ounces): 7*6 = 42 ounces

As we know,1 pound (lb) is equal to 16 Ounces (oz)

<=> 42 ounces = 42 /16 = 2.625 pounds < 3-pound bag

So a -pound bag of cat food can enough to feed her cat for 7 days

Hope it will find you well.

Answer:

Yes it will

Step-by-step explanation:

Let's first work with a single unit so that our work will be a lot easier.

We are going to convert pounds to ounces and since 1 pound = 16 ounces, 3 pounds = 16 × 3 = 48 ounces of cat food.

And she feeds her cat 6 ounces of food each day,that means that in 7 days the cat will only be able to consume just 7 × 6 = 42 ounces,but remember that the amount of cat food bought is equal to 48 pounds.

This here means that the cat food will be enough to feed the cat for 7 days

The first three terms of a geometric sequence are as follows.
-3, 6, -12
Find the next two terms of this sequence.
Give exact values (not decimal approximations).

Answers

Answer:

24, -48

Step-by-step explanation:

In this geometric sequence, the previous number is being multiplyed by -2 each time

This said the next number is 24.

-12*-2=24

and the next one is -48.

24*-2=-48

Final answer:

The next two terms of the geometric sequence -3, 6, -12 are 24 and -48, found by repeatedly multiplying with the common ratio of -2.

Explanation:

The first three terms of the given geometric sequence are -3, 6, and -12. To find the next two terms in this sequence, we need to determine the common ratio between the terms. The common ratio (r) is the factor by which we multiply one term to get the next term. In this case, 6 divided by -3 equals -2, and similarly, -12 divided by 6 also equals -2. This confirms that our common ratio is -2.

Now, to find the fourth term of the sequence, we multiply the third term (-12) by the common ratio (-2):

-12 × -2 = 24

To find the fifth term, we multiply the fourth term (24) by the common ratio (-2):

24 × -2 = -48

Therefore, the fourth and fifth terms of the geometric sequence are 24 and -48, respectively.

You are wrapping a gift with the dimensions shown below. What is the least amount of wrapping paper you need?

Answers

Answer:2 identical side rectangle

2 identical end triangle

1 bottom rectangle

area of trialge=1/2bh

aera of rectangle=legnth tiems width

2 side rectangles are 5 by 10=50

times 2 since 2 of them 50*2=100

end triangles

1/2 times 8 times 3=12

2 of them

12 times 2=24

bottom

8 by 10

80

add everybody

100+24+80=204 in^2 i think this is how

Step-by-step explanation:

Answer:

2 identical side rectangle

2 identical end triangle

1 bottom rectangle

area of trialge=1/2bh

aera of rectangle=legnth tiems width

2 side rectangles are 5 by 10=50

times 2 since 2 of them 50*2=100

end triangles

1/2 times 8 times 3=12

2 of them

12 times 2=24

bottom

8 by 10

80

add everybody

100+24+80=204 in^2 i think this is how

Step-by-step explanation:

Solve for a and d

6x^2+14x+4=(ax+b)(cx+d)

b=1 and c=2

Answers

Answer:

a = 3

d = 4

Step-by-step explanation:

6x^2+14x+4 = (ax+1)(2x+d)

6x^2+2x+12x+4

2x(3x+1)+4(3x+1)

(3x+1)(2x+4)

3 = a

4 = d

Answer:

Step-by-step explanation:

a=3, d=4

The two cones are congruent
Determine the unknown measures of the cones.
A= units
B = units
C = units
Du units
5.2/B
6.2
V.42 units
Va
units

Answers

Answer:

3.1

4.2

5.2

42

Step-by-step explanation: They’re congruent so just copy what the other triangle has all you had to do was find the radius.

(4 × 6) ÷ (2 + 4) ÷ (8 ÷ 4) =

Answers

74.839 is the answer

Answer:

2

Step-by-step explanation:

24÷ 6÷ 2=2

Find the area of the region enclosed by f(x) and the x axis for the given function over the specified u reevaluate f(x)=x^2+3x+4 x<3 f(x)=4x+10 x greater than or equal to 3 on -3,4

Answers

Answer:

A = 68 unit^2

Step-by-step explanation:

Given:-

The piece-wise function f(x) is defined over an interval as follows:

                       f(x) =  { x^2+3x+4    , x < 3

                       f(x) =  { x^2+3x+4     , x≥3

                        Domain : [ -3 , 4 ]

Find:-

Find the area of the region enclosed by f(x) and the x axis

Solution:-

- The best way to tackle problems relating to piece-wise functions is to solve for each part individually and then combine the results.

- The first portion of function is valid over the interval [ -3 , 3 ]:      

                       [tex]f(x) = x^2+3x+4[/tex]

- The area "A1" bounded by f(x) is given as:

                      [tex]A1 = \int\limits^a_b {f(x)} \, dx[/tex]

Where,  The interval of the function { -3 , 3 ] = [ a , b ]:

                     [tex]A1 = \int\limits^a_b {x^2+3x+4} \, dx\\\\A1 = \frac{x^3}{3} + \frac{3x^2}{2} + 4x |\limits_-_3^3 \\\\A1 = \frac{3^3}{3} + \frac{3*3^2}{2} + 4*3 - \frac{-3^3}{3} - \frac{3(-3)^2}{2} - 4(-3)\\\\A1 = 9 + 13.5 +12 + 9-13.5+12\\\\A1 =42 unit^2[/tex]

- Similarly for the other portion of piece-wise function covering the interval [3 , 4] :

                     [tex]f(x) = 4x+10[/tex]

- The area "A2" bounded by f(x) is given as:

                      [tex]A2 = \int\limits^a_b {f(x)} \, dx[/tex]

Where,  The interval of the function { 3 , 4 ] = [ a , b ]:

                     [tex]A2 = \int\limits^a_b {4x+10} \, dx\\\\A2 = 2x^2 + 10x |\limits_3^4 \\\\A2 = 2*(4)^2 + 10*4 - 2*(3)^2 - 10*3\\\\A2 = 32 + 40 - 18-30\\\\A2 =26 unit^2[/tex]

- The total area "A" bounded by the piece-wise function over the entire domain [ -3 , 4 ] is given:

                     A = A1 + A2

                     A = 42 + 26

                     A = 68 unit^2

Final answer:

To find the area enclosed by f(x) and the x-axis from x = -3 to x = 4 for the given piecewise function, calculate the integral of each piece separately and then sum the areas. The area is divided into two parts due to the function having different expressions before and after x = 3.

Explanation:

The student is asking to find the area under the curve of a given piecewise function f(x) on the interval from x = -3 to x = 4. Since the function is defined differently for x < 3 and x ≥ 3, the area calculation involves two parts:

Calculating the area under [tex]f(x) = x^2 + 3x + 4[/tex] from x = -3 to x = 3.Calculating the area under [tex]f(x) = 4x + 10[/tex] from x = 3 to x = 4.

The first part can be calculated using the integral of [tex]f(x) = x^2 + 3x + 4[/tex]from x = -3 to x = 3. The second part is the integral of [tex]f(x) = 4x + 10[/tex] from x = 3 to x = 4. The total area is the sum of these two areas. For this function, the areas are bounded above by the function and below by the x-axis, so all areas are considered positive.

Learn more about Area Under a Curve here:

https://brainly.com/question/31849536

#SPJ3

What is the value of x when solving the equation Negative 2 x + (negative 8) = 2 x + 8 using algebra tiles?
x = negative 4
x = negative 2
x = 2
x = 4

Answers

Answer:

the first option ...-4

Step-by-step explanation:

The solution is Option A.

The value of the equation is x = -4

What is an Equation?

Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.

It demonstrates the equality of the relationship between the expressions printed on the left and right sides.

Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.

Given data ,

Let the equation be represented as A

Now , the value of A is

A = Negative 2 x + (negative 8) = 2 x + 8

Substituting the values in the equation , we get

( -2x ) + ( -8 ) = 2x + 8   be equation (1)

On simplifying the equation , we get

-2x - 8 = 2x + 8

Adding 8 on both sides of the equation , we get

2x + 16 = -2x

Adding 2x on both sides of the equation , we get

4x + 16 = 0

Subtracting 16 on both sides of the equation , we get

4x = -16

Divide by 4 on both sides of the equation , we get

x = -4

Therefore , the value of x is -4

Hence , the value of the equation is x = -4

To learn more about equations click :

https://brainly.com/question/19297665

#SPJ2

Jacob wants to enlarge a triangle with sides 7, 12, and 12 inches to create a similar triangle. If the shortest side of the enlarged triangle is 24.5 inches, how long will each of the other two sides be?

Answers

Answer:

42

Step-by-step explanation:

If the shortest side is 7 and it is enlarged to be 24.5.

It is enlarged by a scale of 3.5.

so if you scale 12 by 3.5

then you get 42

An inverted pyramid is being filled with water at a constant rate of 25 cubic centimeters per second. The pyramid, at the top, has the shape of a square with sides of length 4 cm, and the height is 12 cm. Find the rate at which the water level is rising when the water level is 4 cm.

Answers

Answer:

[tex]\frac{225}{16} cm/s[/tex]

Step-by-step explanation:

We are given that

[tex]\frac{dV}{dt}=25cm^3/s[/tex]

Side of base=4 cm

l=w=4 cm

Height,h=12 cm

We have to find the rate at which the water level rising when the water level is 4 cm.

Volume of pyramid=[tex]\frac{1}{3}lwh=\frac{1}{3}l^2h[/tex]

[tex]\frac{l}{h}=\frac{4}{12}=\frac{1}{3}[/tex]

[tex]l=\frac{1}{3}h[/tex]

Substitute the value

[tex]V=\frac{1}{27}h^3[/tex]

Differentiate w.r.t t

[tex]\frac{dV}{dt}=\frac{3}{27}h^2\frac{dh}{dt}[/tex]

Substitute the values

[tex]25=\frac{1}{9}(4^2)\frac{dh}{dt}[/tex]

[tex]\frac{dh}{dt}=\frac{25\times 9}{16}=\frac{225}{16} cm/s[/tex]

Final answer:

Using the volume of a pyramid and the concept of similar triangles, we set up a proportion to find the changing base area at a specific water level. Then, applying the product rule for differentiation, we relate the rate of volume change to the rate of height change, which allows us to solve for the water level rising rate when it is 4 cm.

Explanation:

To find the rate at which the water level is rising when the water level is 4 cm in an inverted pyramid being filled at a constant rate of 25 cubic centimeters per second, we can use the concept of similar triangles and the volume of a pyramid.

The volume V of a pyramid is given by V = (1/3)Bh, where B is the base area and h is the height. As the pyramid fills, the water forms a smaller, similar pyramid whose volume increases at a rate of 25 cm3/s.

Since the sides of the smaller pyramid are proportional to the height, we can set up a proportion using the side length s of the water level: s/4 = 4/12. Solving for s gives us s = 4 * (4/12) = 4/3 cm. The base area B of the water at this level is B = s2 = (4/3)2 cm2.

To find the rate of the rise of water dh/dt, we use the relation dV/dt = (1/3) * d(Bh)/dt. Since B is also changing with h, we have to use the product rule for differentiation: dV/dt = (1/3)(B(dh/dt) + h(dB/dt)). However, because B is a function of h2, dB/dt can be expressed as a function of dh/dt. This allows us to solve for dh/dt.

temperatures in f can be converted in c using the formula c=5(f-32)/9
Make F the subject of the formula.
give your answer in the form aC+b/c where a, b and c are all positive intergers.

Answers

Final answer:

To make F the subject of the formula in the Celsius to Fahrenheit conversion, multiply by 9, divide by 5, and then add 32, resulting in F = (9/5)C + 32.

Explanation:

To make F the subject of the formula when given the Celsius to Fahrenheit conversion formula c = 5(f - 32)/9, we start by isolating Fahrenheit on one side of the equation. Here's a step-by-step process:

Multiply both sides of the equation by 9: 9c = 5(f - 32).Divide both sides by 5: (9/5)c = f - 32.Add 32 to both sides to isolate f: f = (9/5)c + 32.

Now the formula for F in terms of C is in the form aC + b with a = 9/5, b = 32, and there's no c as in the denominator since the conversion is direct.

[tex]\( F = \frac{9c + 160}{5} \).[/tex] In form [tex]\( aC + \frac{b}{c} \), \( a = 9 \), \( b = 160 \),[/tex] and [tex]\( c = 5 \).[/tex]

Let's break down the process of rearranging the formula step by step.

Given formula: [tex]\( c = \frac{5(F - 32)}{9} \)[/tex]

We want to isolate [tex]\( F \)[/tex] on one side of the equation.

1. Multiply both sides by [tex]\( \frac{9}{5} \):[/tex]

[tex]\[ \frac{9}{5} \cdot c = \frac{9}{5} \cdot \frac{5(F - 32)}{9} \][/tex]

  This cancels out the fraction on the right side.

  [tex]\[ \frac{9}{5} \cdot c = F - 32 \][/tex]

2. Add 32 to both sides to isolate [tex]\( F \):[/tex]

[tex]\[ \frac{9}{5} \cdot c + 32 = F \][/tex]

Now, [tex]\( F \)[/tex] is isolated on the right side of the equation.

3. Rewrite [tex]\( F \)[/tex] in the required form [tex]\( aC + \frac{b}{c} \):[/tex]

 [tex]\[ F = \frac{9}{5}c + 32 \][/tex]

  To express [tex]\( F \)[/tex] in the required form, we can rewrite [tex]\( \frac{9}{5}c \) as \( \frac{9c}{5} \),[/tex]so the form becomes [tex]\( aC + \frac{b}{c} \).[/tex]

  So, [tex]\( a = 9 \), \( b = 32 \), and \( c = 5 \).[/tex]

4. Final Form:

 [tex]\[ F = \frac{9c + 160}{5} \][/tex]

  So, in the form [tex]\( aC + \frac{b}{c} \),[/tex] we have [tex]\( a = 9 \), \( b = 160 \), and \( c = 5 \).[/tex]

students in art class make square tiles that are 5 inches long. They plan to make a row of tiles that is 4 feet 2 inches long. How many tiles will the students need to make?

Answers

10 tiles, because if you convert the row to all inches it would be 50 inches, then divide that my how long the tiles are (5) you would get 10.

The required students will need to make 10 tiles to create a row that is 4 feet 2 inches long.

What is simplification?

Simplification involves applying rules of arithmetic and algebra to remove unnecessary terms, factors, or operations from an expression. The goal is to obtain an expression that is easier to work with, manipulate, or solve.

Here,

To solve this problem, we first need to convert the length of the row from feet and inches to inches.

4 feet 2 inches is equal to (4 x 12) + 2 = 50 inches.

Next, we can divide the length of the row by the length of each tile to find the number of tiles needed:

Number of tiles = Length of row / Length of each tile

Number of tiles = 50 inches / 5 inches

Number of tiles = 10 tiles

Therefore, the students will need to make 10 tiles to create a row that is 4 feet 2 inches long.

Learn more about simplification here:

https://brainly.com/question/12501526

#SPJ7

Determine the zeroes of 10x2−5=35

Answers

Answer:

x = +2, x = -2

Step-by-step explanation:

The equation to solve in this problem is

[tex]10x^2-5=35[/tex]

The first step we do is to subtract 35 on both sides of the equation, so we get:

[tex]10x^2-5-35=0\\10x^2-40=0[/tex]

Now we simplify the equation by dividing both terms by 10:

[tex]\frac{10x^2-40}{10}=0\\x^2-4=0[/tex]

Now we observe that the term on the left is the difference between two squares, so it can be rewritten using the property:

[tex]a^2-b^2=(a+b)(a-b)[/tex]

Where here,

a = x

b = 2

So we can rewrite the equation as:

[tex]x^2-4=0\\(x+2)(x-2)=0[/tex]

And this equation is zero when either one of the two factors is zero, so the two solutions are:

[tex]x+2=0\rightarrow x=-2\\x-2=0 \rightarrow x=+2[/tex]

2.6-,2.061,2.601,2.34,2.7 order the following from least to greatest

Answers

Answer:

2.061, 2.34, 2.6, 2.601, 2.7

Step-by-step explanation:

Hello!

This is a bit hard to explain! If you want me to try, just comment.

I have arranged the sequence in ascending order below:

[tex]2.061,\:2.34,\:2.6,\:2.601,\:2.7[/tex].

Hope this helps!

Answer:

2.061, 2.34, 2.6, 2.601, 2.7

Step-by-step explanation:

Because the numbers all have a 2 in the ones place, you need to evaluate the numbers in the tenths place and the numbers with the lowest go first and so on :)

Power +, Inc. produces AA batteries used in remote-controlled toy cars. The mean life of these batteries follows the normal probability distribution with a mean of 38 hours and a standard deviation of 5.8 hours. As a part of its quality assurance program, Power +, Inc. tests samples of 9 batteries.a. What can you say about the shape of the distribution of the sample mean?
b. What is the standard error of the distribution of the sample mean? (Round your anser to 4 decimals places.)
c. What proportion of the samples will have a mean useful life of more than 39.5 hours? (Round z value to 2 decimal places and final answer to 4 decimal places)
d. What proportion of the sample will have a mean useful life greater than 37.5? (Round z value to 2 decimal places and final answer to 4 decimal places.)

Answers

Answer:

a) For this case we select a sample size of n=9. And we know that the distribution of X is normal so then the distribution for the sample mean is given by:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]

b) [tex] SE = \frac{\sigma}{\sqrt{n}} =\frac{5.8}{\sqrt{9}} =1.9333[/tex]

c) [tex] P\bar X >39.5)[/tex]

And we can use the z score given by:

[tex] z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we find the z score for 39.5 we got:

[tex] z = \frac{39.5-38}{\frac{5.8}{\sqrt{9}}}= 0.78[/tex]

And using the complement rule we got:

[tex] P(z >0.78) =1-P(Z<0.78) = 1-0.7823= 0.2177[/tex]

d) [tex] P\bar X >37.5)[/tex]

And we can use the z score given by:

[tex] z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we find the z score for 37.5 we got:

[tex] z = \frac{37.5-38}{\frac{5.8}{\sqrt{9}}}= -0.26[/tex]

And using the complement rule we got:

[tex] P(z >-0.26) =1-P(Z<-0.26) = 1-0.3974= 0.6026[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the life of batteries of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(38,5.8)[/tex]  

Where [tex]\mu=38[/tex] and [tex]\sigma=5.8[/tex]

Part a

For this case we select a sample size of n=9. And we know that the distribution of X is normal so then the distribution for the sample mean is given by:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]

Part b

The standard error is given by:

[tex] SE = \frac{\sigma}{\sqrt{n}} =\frac{5.8}{\sqrt{9}} =1.9333[/tex]

Part c

We want this probability:

[tex] P\bar X >39.5)[/tex]

And we can use the z score given by:

[tex] z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we find the z score for 39.5 we got:

[tex] z = \frac{39.5-38}{\frac{5.8}{\sqrt{9}}}= 0.78[/tex]

And using the complement rule we got:

[tex] P(z >0.78) =1-P(Z<0.78) = 1-0.7823= 0.2177[/tex]

Part d

We want this probability:

[tex] P\bar X >37.5)[/tex]

And we can use the z score given by:

[tex] z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

And if we find the z score for 37.5 we got:

[tex] z = \frac{37.5-38}{\frac{5.8}{\sqrt{9}}}= -0.26[/tex]

And using the complement rule we got:

[tex] P(z >-0.26) =1-P(Z<-0.26) = 1-0.3974= 0.6026[/tex]

Final answer:

The distribution of the mean life of Batteries produced by Power+, Inc. follows Normal distribution. The standard error is calculated to be 1.9333. Using Z scores, it's discovered that approximately 21.77% of samples will have a mean life more than 39.5 hours while around 60.26% samples will have a mean useful life more than 37.5 hours.

Explanation:

Understanding the Distribution of the Mean Life of Batteries

a. The distribution of the sample mean should approximate a normal distribution because we know the distribution of the population (life of the batteries) is normal. The expectation is that the sample mean should also follow normal distribution, based on the Central Limit Theorem.

b. The standard error of the distribution of the sample mean, is calculated as the standard deviation divided by the square root of the number of samples. Therefore, the standard error is 5.8 / sqrt(9), that is approximately 1.9333.

c. To find the proportion of samples with a mean useful life of more than 39.5 hours, we first find the Z score for 39.5. The Z score is calculated by (sample mean - population mean) / standard error. Therefore, Z = (39.5 - 38) / 1.9333 = approximately 0.78 (rounded to 2 decimal places). Looking this up on a Z table gives us 0.7823. However, because we want the proportion where it is more than 39.5 hours, we need to subtract this from 1. So, 1-0.7823 = 0.2177 (i.e., 21.77% samples will have a mean useful life more than 39.5 hours).

d. Following the same procedure, the Z score for a sample mean of 37.5 is approx negative -0.26 (rounded to 2 decimal places) using the same calculation as above. Looking this up on a Z table gives us 0.3974. But, because we want the proportion greater than 37.5 hours, we need to subtract this from 1. So, 1-0.3974 = 0.6026 (i.e., 60.26% samples will have a mean useful life more than 37.5 hours).

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ3

Solve negative 7 over 3, the whole multiplied by x minus 3 equals negative 52.

Answers

Answer:

x= [tex]\frac{135}{7}[/tex]

Step-by-step explanation:

1. [tex]-\frac{7}{3} (x-3)=-52[/tex]

2. combine -7/3(x - 3)

  =    [tex]-\frac{7}{3}x-7 = -52[/tex]

3. Do combine like terms on both sides

   =   -52 + -7 = -45

4. left with, [tex]-\frac{7}{3}x = -45[/tex]

5. divide -45 by -7/3

6. left with, [tex]x = \frac{135}{7}[/tex]

Answer:

21

Step-by-step explanation:]

plz mark me the Brainliest

The equation of a line is y=8x+2 and the point (3,q) lies on this line. What is the value of q?

Answers

Answer:

q = 26

Step-by-step explanation:

Given that (3, q ) lies on the line, then the coordinates of the point make the equation true.

Substitute x = 3, y = q into the equation

q = 8(3) + 2 = 24 + 2 = 26

Final answer:

To determine the value of q for the point (3, q) on the line y=8x+2, substitute x with 3 to get y=26. Hence, q is 26, and the point is (3, 26).

Explanation:

To find the value of q for the point (3, q) that lies on the line with the equation y=8x+2, we substitute the x-coordinate of the point, which is 3, into the equation and solve for y. This gives us:

y = 8(3) + 2

y = 24 + 2

y = 26

Therefore, the value of q is 26, and the point is (3, 26). This demonstrates how to use a line's equation to find a specific point on the line. The question illustrates the algebraic relationship between the coordinates of a point on a line and the equation of the line itself.

what are the two sides of a ray called??​

Answers

It’s called the vertex and the two rays are called the sides of the angle.
It’s called a vortex

The travel time it takes elevator A to reach height in meters is 0.8h+16 seconds. The travel time it takes elevator B to reach height in meters is -0.8h+12 seconds. How long would it take each elevator to reach ground level?

Answers

Answer:

Time taken by A = 16 seconds

Time taken by B = 12 seconds

Step-by-step explanation:

Given:

Two elevator and their respective time to reach certain height.

Here time is function of height.

Time taken by elevator A = 0.8(h)+16

Time taken by elevator B = -0.8(h)+12

We have to find the time taken by the elevator to reach ground level.

Accordingly:

We know that ground level the height will be zero meaning that (h=0).

Plugging the h values in the equation we can find the time taken by both the elevators to reach zero height that is the ground level.

⇒ [tex]t_A=0.8h+16[/tex]                      ⇒ [tex]t_B=-0.8h+12[/tex]

⇒ [tex]t_A=0.8(0)+16[/tex]                   ⇒ [tex]t_B=-0.8(0)+12[/tex]

⇒ [tex]t_A=16[/tex] sec                          ⇒ [tex]t_B=12[/tex] sec

So,

Time taken by elevator A and elevator B to reach the ground is 16 seconds and 12 seconds respectively.

What is the measure of

Answers

Answer:

C: 107

Step-by-step explanation:

135-28 = 107

Answer:

it would have to be 107 bro

Step-by-step explanation:

select all of the ratios that are equivalent to 4 to 7.
5/8
12/10
8.14
5 to 10
16/28
9 to 16​

Answers

Answer:

[tex]\frac{16}{28}[/tex]

Step-by-step explanation:

Question asked:

Select all of the ratios that are equivalent to 4 to 7.

1) 5/8

2) 12/10

3) 8.14

4) 5 to 10

5) 16/28

6) 9 to 16​

Solution:

To know the ratios are equivalent to [tex]\frac{4}{7}[/tex] or not, we have to check each by cross multiplication:-

1) [tex]\frac{5}{8}[/tex]

[tex]\frac{4}{7} =\frac{5}{8} \\ \\[/tex]

By cross multiplication:

[tex]4\times8=5\times7\\ \\ 32=35[/tex]

Not equivalent.

2) [tex]\frac{12}{10}[/tex]

[tex]\frac{4}{7} =\frac{12}{10} \\ \\[/tex]

By cross multiplication:

[tex]4\times10=12\times7\\ \\ 40=84[/tex]

Not equivalent.

3) 8.14 = [tex]\frac{814}{100} \ eliminating\ decimal[/tex]

[tex]\frac{4}{7} =\frac{814}{100} \\ \\[/tex]

By cross multiplication:

[tex]4\times100=814\times7\\ \\ 400=5698[/tex]

Not equivalent.

4) [tex]\frac{5}{10}[/tex]

[tex]\frac{4}{7} =\frac{5}{10} \\ \\[/tex]

By cross multiplication:

[tex]4\times10=5\times7\\ \\ 40=35[/tex]

Not equivalent.

5)[tex]\frac{16}{28}[/tex]

[tex]\frac{4}{7} =\frac{16}{28} \\ \\[/tex]

By cross multiplication:

[tex]4\times28=16\times7\\ \\ 112=112[/tex]

Yes, this is equivalent.

6) [tex]\frac{9}{16}[/tex]

[tex]\frac{4}{7} =\frac{9}{16} \\ \\[/tex]

By cross multiplication:

[tex]4\times16=9\times7\\ \\ 64=63[/tex]

Not equivalent.

Thus, only [tex]\frac{16}{28}[/tex] is equivalent.

An IQ test is designed so that the mean is 100 and the standard deviation is 1414 for the population of normal adults. Find the sample size necessary to estimate the mean IQ score of statistics students such that it can be said with 9090​% confidence that the sample mean is within 66 IQ points of the true mean. Assume that sigmaσequals=1414 and determine the required sample size using technology. Then determine if this is a reasonable sample size for a real world calculation.

Answers

Answer:

37

Step-by-step explanation:

The first thing is to calculate critical z factor

the alpha and the critical z score for a confidence level of 90% is calculated as follows:

two sided alpha = (100% - 90%) / 200 = 0.05

critical z factor for two sided alpha of .05 is calculated as follows:

critical z factor = z factor for (1 - .05) = z factor for (.95) which through the attached graph becomes:

critical z factor = 2.58

Now we have the following formula:

ME = z * (sd / sqrt (N) ^ (1/2))

where ME is the margin of error and is equal to 6, sd is the standard deviation which is 14 and the value of z is 2.58

N the sample size and we want to know it, replacing:

6 = 2.58 * (14 / (N) ^ (1/2))

solving for N we have:

N = (2.58 * 14/6) ^ 2

N = 36.24

Which means that the sample size was 37.

MaryJo is considering investing in 2 different mutual funds. Option A has an annual interest rate of 7% and requires a principal of $10,000 with monthly deposits of $200 for 10 years. Option B has an annual interest rate of 9% and requires a principal of $10,000 with monthly deposits of $200 for 5 years.

Answers

The option A mutual funds will be more effective.

Step-by-step explanation:

Option A:

Principal amount = $10000

Monthly deposit = $200

Time = 10 years

Rate of interest = 7%

Total deposit = (200 x 12 x 10) + 10000

= 24000 + 10000

= $34000

Interest = (34000 x 7 ) /100

= 340 x 7

= $2380

Total amount = 34000 + 2380

= $36380

Option B:

Principal amount = $10000

Monthly deposit = $200

Time = 5 years

Rate of interest = 9%

Total deposit = (200 x 12 x 5) + 10000

= 12000 + 10000

= $22000

Interest = (22000 x 9 ) /100

= $1980

Total amount = 22000+1980

= $23980

The option A mutual funds will be more effective.

Answer:

What is the difference in the final balances of the two mutual funds?

Step-by-step explanation:

The difference is $12,400.

Other Questions
Since she married duncan, candy does not feel that she gets enough time to herself. when duncan proposes they go out together, candy suggests he go by himself. duncan gets jealous and says she does not want to be seen with him. what is the underlying source of tension? Which European country controlled most of India by the mid-1800s? * What blocked the Us from trading with Germany ? Part AIf you spin the spinner 11 times, what is the prediction for the number of times it will land on red? Each section is equal in size.(it's talking about the spiner)Answer: Part BWhat is the probability of green? A: 3/11 B:4/11 C:1/11 D:7/11 fill in the blanks auer aus bei/beim mit nach seit von/vom zu/zum/zur Question 1 with 1 blankSabine bekommt ihren Eltern einen Rucksack zum Geburtstag. Question 2 with 1 blankIch wohne einem Jahr in Dresden und habe dort einen tollen Job. Question 3 with 1 blankEr geht seiner Freundin oft in die Berge. Question 4 with 1 blankWir fliegen im Winter Florida. Question 5 with 1 blankMeine Mitstudentin Olga kommt Russland. Question 6 with 1 blank wann darf man in dieser Strae parken? Question 7 with 1 blankIch gehe heute Morgen Bckerei und kaufe Brtchen. Question 8 with 1 blankSabine joggt gern See zum Wald und zurck. Find X: 5x=45 A) 9B) 2C) 12D) 0 Which event marked the beginning of the Civil War?the election of Abraham Lincoln in 1860the secession of South Carolina in 1860the Battle of Fort Sumter in 1861the election of Jefferson Davis in 1861 Peanuts cost $12.00 for 2.5 pounds.How much for 1 pound I keep getting these definitions mixed up and I need help on this ASAP. I want an answer fast please. he electronics supply company where you work has two different resistors, R1 and R2, in its inventory, and you must measure the values of their resistances. Unfortunately, stock is low, and all you have are R1 and R2 in parallel and in series - and you can't separate these two resistor combinations. You separately connect each resistor network to a battery with emf 57.0 V and negligible internal resistance and measure the power P supplied by the battery in both cases. For the series combination, P = 48.0 W; for the parallel combination, P = 256 W. You are told that R1>R2. Calculate R1. Rewrite the radical expression as an expression with a rational exponent.The answer choices are in the picture! As a military leader, George Mclellan was known for Creating te Anaconda Plan Fighting in the War of 1812Training soldiers how to fight Acting quickly at Fort Sumter For every $100 in assets, a bank has $40 in interest-rate sensitive assets, and the other $60 in non-interest-rate sensitive assets. The same bank has $50 for every $100 in liabilities in interest-rate sensitive liabilities, the other $50 are in liabilities that are not interest-rate sensitive. If the interest rate on assets increases from 5 to 6 percent, and the interest rate on liabilities increases from 3 to 4 percent, the impact on the bank's profits per $100 of assets will be: Find the perimeter of the shape5cm6cm17cm8cmPerimeter = [perimeter] cm find the value of x and tan x in the given trigonometric equation:sin 2x= cos(3x+10) Sarah offers to pay Allison $150 if Allison will paint her apartment while she is out of town on vacation for two weeks. Allison makes no promise but tells Sarah that she will think about it. While Sarah is out of town, Allison paints the apartment. This is best described as___ Jen rode her bike 1/5 of a mile to her friend's house. It took her 5 minutes to get there. What was Jen's speed?Simplify your answer and write it as a proper fraction, mixed number, or whole number. A university dean is interested in determining the proportion of students who receive some sort of financial aid. Rather than examine the records for all students, the dean randomly selects 200 students and finds that 118 of them are receiving financial aid. The 9898% confidence interval for p is 59 plus or minus 0.08 .590.08. Interpret this interval. A. We are 9898% confident that between 5151% and 6767% of the sampled students receive some sort of financial aid. B. We are 9898% confident that the true proportion of all students receiving financial aid is between 0. 51.51 and 0. 67..67. C. 9898% of the students receive between 5151% and 6767% of their tuition in financial aid. D. We are 9898% confident that 59% of the students are on some sort of financial aid. The value-added method involves taking the cost of intermediate outputs (i.e., outputs that will, in turn, be used in the production of another good) and subtracting that cost from the value of the good being produced. In this way, only the value that is added at each step (the sale value minus the value of the intermediate goods that went into producing it) is summed up. This method gives us the same result as the standard method of only counting the value of final goods and services because: the system of accounting requires that they be the same. the only difference is that the value-added method adds up production in the economy as it is produced, and the standard method of counting only uses the completed value at the end of the production chain. the only difference is that the standard method of counting adds up production in the economy as it is produced, and the value-added method totals the value at the end of the production chain. both methods are used by the same agency, so the totals have to be equal. According to the annual Summer Vacation Survey conducted by Myvesta, a nonprofit consumer education organization, the average summer vacation costs $2252. If $1650 of this amount is charged on a credit card, what percent of the vacation cost is charged?