As shown in table 15.2, kp for the equilibrium n21g2 + 3 h21g2 δ 2 nh31g2 is 4.51 * 10-5 at 450 °c. for each of the mixtures listed here, indicate whether the mixture is at equilibrium at 450 °c. if it is not at equilibrium, indicate the direction (toward product or toward reactants) in which the mixture must shift to achieve equilibrium. (a) 98 atm nh3, 45 atm n2, 55 atm h2 (b) 57 atm nh3, 143 atm n2, no h2 (c) 13 atm nh3, 27 atm n2, 82 atm h2

Answers

Answer 1
Our reaction balanced equation at equilibrium N2(g) + 3 H2(g) ↔ 2 NH3(g)
and we have the Kp value at equilibrium = 4.51 X 10^-5
A) 98 atm NH3, 45 atm N2, 55 atm H2

when Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
                = 98^2 / (45 * 55^3) = 1.28 x 10^-3
by comparing the Kp by the Kp at equilibrium(the given value) So,
Kp > Kp equ So the mixture is not equilibrium,
 it will shift leftward (to decrease its value) towards the reactants to achieve equilibrium.
B) 57 atm NH3, 143 atm N2, no H2
∴ Kp = [P(NH3)]^2 / [P(N2)]
         = 57^2 / 143 = 22.7
∴Kp> Kp equ (the given value) 
∴it will shift leftward (to decrease its value) towards reactants to achieve equilibrium.

c) 13 atm NH3, 27 atm N2, 82 atm H2
∴Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
       =  13^2 / (27* 82^3) = 1.14 X 10^-5
∴ Kp< Kp equ (the given value)
∴it will shift rightward (to increase its value) towards porducts to achieve equilibrium.


Answer 2

A) The direction in which the mixture must shift to achieve equilibrium is;

Left Direction

B) The direction in which the mixture must shift to achieve equilibrium is;

Left Direction

C) The direction in which the mixture must shift to achieve equilibrium is;

Right Direction

Chemical Equilibrium Equations

We are given the balanced equation reaction at equilibrium as;

N₂ (g) + 3H₂ (g) ⇄ 2NH₃ (g)

We are given;

Kp value at equilibrium = 4.51 × 10⁻⁵

A) Formula to find Kp in an equilibrium equation is;

Kp =  [P(Product)]ⁿ/[P(Reactant 1)]ⁿ * [P(Reactant 2)]ⁿ

Where;

n is the coefficient attached to the respective product or reactant

P is the pressure

At 98 atm of NH₃, 45 atm N₂, 55 atm H₂

Thus;

Kp = [P(NH3)]²/ [P(N₂)] × [P(H2)]³

Kp = 98²/(45 × 55³)

Kp = 1.28 × 10⁻³

This calculated Kp value is greater than the given Kp value at equilibrium and thus the mixture is not equilibrium but it will shift to the left direction towards the reactants to achieve equilibrium.

B) At 57 atm NH₃, 143 atm N₂, No H₂

Thus;

Kp = [P(NH₃)]²/ [P(N₂)]

Kp = 57²/143

Kp = 22.7

This calculated Kp value is greater than the given Kp value at equilibrium and thus the mixture is not equilibrium but it will shift to the left direction towards the reactants to achieve equilibrium.

c) At 13 atm NH₃, 27 atm N2, 82 atm H₂

Thus;

Kp =  [P(NH₃)]²/ [P(N₂)] × [P(H₂)]³

Kp =  13²/(27 × 82³)  

Kp = 1.14 × 10⁻⁵

This calculated Kp value is less than the given Kp value at equilibrium and thus the mixture is not equilibrium but it will shift to the right direction towards the product to achieve equilibrium.

Read more about Chemical Equilibrium Reactions at; https://brainly.com/question/4289021


Related Questions

The activation energy for the gas phase isomerization of cyclopropane is 272 kJ. (CH2)3CH3CH=CH2 The rate constant at 718 K is 2.30×10-5 /s. The rate constant will be /s at 753 K.

Answers

The Arrhenius equation relates activation energy to reaction rates and temperature:
ln (k2 / k1) = (E / R) * (1/T1 - 1/T2), where E is activation energy of 272 kJ, R is the ideal gas constant (we use the units of 0.0083145 kJ/mol-K for consistency, to cancel out the kJ unit), we let T1 = 718 K and k1 = 2.30 x 10^-5, and T2 = 753 K and k2 be the unknown.
ln (k2 / 2.30x10^-5) = (272 kJ / 0.0083145 kJ/mol-K) * (1/718 - 1/753)
k2 = 1.91 x 10^-4 /s

When the metal sample reacts with acid, the gas evolved will be collected over water; the gas is said to be "wet". what is the composition of "wet" gas? how can partial pressure of hydrogen gas be obtained from the total pressure of wet gas? how will you obtain the neccessay data ro determine the pressure of hydrogen gas?

Answers

1) The gas evolved will be collected over water. Since, over water there is water vapor, the gas collected is a mixture of the gas evolved of the reaction and the water vapour. This mixture of the gas with vapour water (or other vapour if the liquid were other substance) receives the name of wet gas because the gas obtained from the reaction is mixed with vapor from the liquid over which it gas collected.

2) The pressure read for the wet gas is the total pressure (p total), which is the sum of partial pressure of the gas evolved (pH2) plus the partial pressure of vapou (pH2O)

p total = pH2 + pH2O

Then, the partial pressure of the hydrogen is: pH2 = ptotal - pH2O.

So, to find the partial pressure of hydrogen, you need to find the partial pressure of water vapor in a table and subtract it from the total pressure.

3) The data necessary fo find the partial pressure of pH2 is, beside the total pressure read by the instruments, the partial water vapor pressure.

To obtain the partial pressure of water vapor you need the temperature of the system because the data of water vapor pressure are recorded in tables whose entrance is the temperature.

How many moles of co2 are produced when 5.20 mol of ethane are burned in an excess of oxygen?

Answers

2C2H6 + 7O2 = 4CO2 + 6H2O

According to the equation of the reaction of ethane combustion, ethane and carbon dioxide have following stoichiometric ratio:

n(C2H6) : n(CO2) = 1 : 2

n(CO2) = 2 x n(C2H6) 

n(CO2) = 2 x 5.2 = 10.4 mole of CO2 is formed


Why do sea and ocean levels recede (more coast land is exposed) when the planet goes through a major ice age?

Answers

This happens because ice is made up of water, and when that water freezes, it never goes back to land, thus there being less water on the coastline. But when the ice starts to melt, the water will even out quickly, and the water will go to the coastline, causing the tide to rise. Mark brainliest, please.

If the molar mass of the compound in problem 1 is 110 grams/mole, what is the molecular formula? With work?

Answers

Final answer:

To find the molecular formula, calculate the empirical formula mass, divide the molar mass by this number to find a multiplier, and apply the multiplier to the subscripts in the empirical formula.

Explanation:

Finding the Molecular Formula

To determine the molecular formula of a compound for which we know the molar mass is 110 grams/mole, and have the empirical formula from problem 1, we follow these steps:

Calculate the empirical formula mass by summing the atomic masses of each element in the empirical formula.Divide the given molar mass (110 g/mol) by the empirical formula mass. This will give us a factor by which we multiply the subscripts in the empirical formula to get the molecular formula.If our factor is close to 1, the empirical formula and the molecular formula are the same. If it's a whole number or a simple fraction, multiply each subscript in the empirical formula to get the molecular formula.

For example, assuming our empirical formula is CH₂ (not given in the question), we would get the empirical formula mass as 12 (for C) + 2×1 (for H) = 14 g/mol. Then, 110 g/mol divided by 14 g/mol gives us approximately 7.86, which we round to 8 since it should be a whole number. Multiplying the subscripts in CH₂ by 8 gives us C₈H₁₆ as the molecular formula.

can someone help me

Answers

we need a question in order to help you :)

A leaf falls into a shallow lake and is rapidly buried in the sediment the sediment change choose to rock over millions of years which type of fossil would most likely be form

Answers

Carbon film is your answer

Xas shown in table 15.2, kp for the equilibrium n21g2 + 3 h21g2 δ 2 nh31g2 is 4.51 * 10-5 at 450 °c. for each of the mixtures listed here, indicate whether the mixture is at equilibrium at 450 °c. if it is not at equilibrium, indicate the direction (toward product or toward reactants) in which the mixture must shift to achieve equilibrium. (a) 98 atm nh3, 45 atm n2, 55 atm h2 (b) 57 atm nh3, 143 atm n2, no h2 (c) 13 atm nh3, 27 atm n2, 82 atm h

Answers

According to the balanced equation of this reaction:
N2(g) + 3H2(g) ↔ 2NH3(g)
and when we have Kp = 4.51 x 10^-5 so, in the Kp equation we will substitute by the value of the P for each gas to compare the value with Kp = 4.51x10^-5

a) when we have 98 atm NH3, 45 atm N2, 55 atm H2 by substitution in Kp equation:
Kp= [p(NH3)]^2 / [p(N2)]*[p(H2)]^3 = [98]^2 / [45]*[55]^3
                                                        = 1.28x10^-3 
So here the value is higher than the value of the given Kp.
so the reaction will go leftwards toward the reactants ( to reduce the value of Kp) to reach the equilibrium. 
b) When 57 atm NH3, 143 atm N2, No H2 so like a) by substitution:
Kp = [57]^2 / [143] = 22.7
So the reaction will go leftwards toward the reactants to reduce the value of Kp to reach equilibrium.
c) when 13 atm NH3, 27 atm N2, 82 H2
Kp = [13]^2 / [27]*[82]^3 = 1.135 x 10^-5 So this value is lower than the Kp which is given.
 so, the reaction will go towards the right toward the products to increase the value of Kp to reach the equilibrium.  

The base-dissociation constant of ethylamine (c2h5nh2) is 6.4 ??? 10???4 at 25.0 ??
c. the [h ] in a 1.2 ??? 10-2 m solution of ethylamine is ________ m.

Answers

Answer is: concentration of hydrogen ions are 4·10⁻¹¹ M.
Chemical reaction: C₂H₅NH₂ + H₂O ⇄ C₂H₅NH₃⁺ + OH⁻.
Kb(C₂H₅NH₂) = 6,4·10⁻⁴.
c(C₂H₅NH₂) = 1,2·10⁻² M = 0,012 M.
[C₂H₅NH₃⁺] = [OH⁻] = x.
[C₂H₅NH₂] = 0,012 M - x.
Kb = [C₂H₅NH₃⁺] · [OH⁻] / [C₂H₅NH₂].
6,4·10⁻⁴ = x² / (0,012 M - x).
Solve quadratic equation: x = [OH⁻] = 0,0025 M.
[OH⁻] · [H⁺] = 10⁻¹⁴.
[H⁺] = 10⁻¹⁴ ÷ 0,0025 M = 4·10⁻¹¹ M.

[H⁺]=3.608.10⁻¹²

Further explanation

Weak acid ionization reaction occurs partially (not ionizing perfectly as in strong acids)

The ionization reaction of a weak acid is an equilibrium reaction

HA (aq) ---> H⁺ (aq) + A⁻ (aq)

The equilibrium constant for acid ionization is called the acid ionization constant, which is symbolized by Ka

The values ​​for the weak acid reactions above:

[tex]\rm Ka=\dfrac{[H][A^-]}{[HA]}[/tex]

The greater the Ka, the stronger the acid, which means the reaction to the right is also greater

Where Kb is the base ionization constant

LOH (aq) ---> L⁺ (aq) + OH⁻ (aq)

[tex]\rm Kb=\dfrac{[L][OH^-]}{[LOH]}[/tex]

Kb of Ethylamine (C₂H₅NH₂) : 6.4.10⁻⁴

The ethylamine ionization reactions occur in water as follows:

C₂H₅NH₂ + H₂O ⇒ C₂H₅NH₃⁺ + OH⁻

with a Kb value:

[tex]\rm Kb=\dfrac{[C_2H_5NH_3^+][OH^-]}{[C_2H_5NH_2]}[/tex]

for example x = number of moles / concentration that reacts

Initial concentration of  Ethylamine (C₂H₅NH₂) : 1.2.10⁻²

Concentration at equilibrium = 1.2.10⁻²  -x

Initial concentration of C₂H₅NH₃ = 0

Concentration at equilibrium = x

Initial concentration OH⁻ = 0

Concentration at equilibrium = x

so the value of Kb =

[tex]\rm Kb=\dfrac{[x][x]}{[1.2.10^{-2}-x]}\\\\assumption\:x=so\:small\:then\\\\6.4.10^{-4}=\dfrac{x^2}{1.2.10^{-2}}\\\\x^2=7.68.10^{-6}\\\\x=2.771.10^{-3}[/tex]

x = [OH⁻] = 2.771.10⁻³

Ka x Kb = [H⁺] [OH-]

a water equilibrium constant value (Kw) of 1.10⁻¹⁴ at 25 °C

Ka x Kb = [H +] [OH-] = 1.10⁻¹⁴

1.10⁻¹⁴ = [H⁺] . 2.771.10⁻³

[H⁺]=3.608.10⁻¹²

Learn more

an equilibrium constant https://brainly.com/question/9173805

https://brainly.com/question/1109930

Calculate the value of the equilibrium constant, Kc

https://brainly.com/question/3612827

Concentration of hi at equilibrium

https://brainly.com/question/8962129

What are ionic compounds typically composed of ?
A. A metal anion and a nonmetal cation
B. Two metal anions
C. A metal cation and non metal anion
D.Two nonmetal cations

Answers

Ionic compounds typically compose of a metal and a non metal. So you can easily cancel out B and D. You are now left with two more choices. 

When it comes to Ionic compounds just remember that
the LESS valence electrons an element has, the higher the tendency to LOSE them;

the MORE valence electrons an element has, the higher the tendency to RECEIVE them.

Metals have less valence electrons, so they tend to lose electrons, when there is a loss of electron, the atom becomes a CATION. Non-Metals on the other hand, have more valence electrons, so they tend to receive electrons, when there is a gain of electrons, the atom becomes an ANION.

So your answer is C. 
Final answer:

Ionic compounds are generally formed from a metal cation (positively charged ion) and a nonmetal anion (negatively charged ion), so the correct answer to your question is option C.

Explanation:

Ionic compounds are typically composed of a metal cation and nonmetal anion. This means the correct answer to your question is option C. A cation is a positively charged ion, and in this context, it is typically formed by an element from the left side of the periodic table, or a metal. An anion, on the other hand, is a negatively charged ion, usually formed by an element from the right side of the periodic table, or a nonmetal. When these ions combine, they create an ionic compound, such as NaCl (sodium chloride), where sodium is the metal cation and chloride is the nonmetal anion.

Learn more about Ionic compounds here:

https://brainly.com/question/33500527

If 4.8 moles of X and 3.4 moles of Y react according to the reaction below, how many moles of the excess reactant will be left over at the end of the reaction?

3X + 2Y “yields”/ X3Y2

1.7 mol Y left over
1.6 mol X left over
0.2 mol Y left over
0.1 mol X left over

Answers

Answer : The correct option is, 0.2 mole Y left over .

Explanation : Given,

Moles of X = 4.8 mole

Moles of Y = 3.4 mole

The balanced chemical reaction is,

[tex]3X+2Y\rightarrow X_3Y_2[/tex]

From the balanced reaction, we conclude that

As, 3 moles of X react with 2 moles of Y

So, 4.8 moles of X react with [tex]\frac{2}{3}\times 4.8=3.2[/tex] moles of Y

From this we conclude that, the reactant Y is an excess reagent and X is a limiting reagent.

The moles of excess reagent left over at the end of the reaction = Given moles of X - Required moles of X

The moles of excess reagent left over at the end of the reaction = 3.4 - 3.2 = 0.2 mole

Therefore, the moles of excess reagent left over at the end of the reaction is, 0.2 mole Y left over.

Answer:

The correct answer is : '0.2 mol Y left over'.

Explanation:

[tex]3X + 2Y \rightarrow  X_3Y_2[/tex]

Moles of X = 4.8 moles

Moles of Y = 3.4  moles

According to reaction, 3 moles of X react with 2 moles of Y .

Then 4.8 moles of X react with :

[tex]\frac{2}{3}\times 4.8=3.2 [/tex]moles of Y

Moles of Y reacted = 3.2 moles

Moles of Y left unreacted = 3.4 moles - 3.2 moles = 0.2 moles

As we can see that X is in limiting amount and y is present in an excessive amount.And the left over amount of Y is 0.2 moles.

If you dilute 13.0 ml of the stock solution to a final volume of 0.260 l , what will be the concentration of the diluted solution?

Answers

The final concentration (C_2) is 20 times less than the initial concentration (C_1), illustrating a dilution factor of 20. For instance, if C_1 were 2 mol/L, C_2 would be 0.1 mol/L.

Calculate the concentration of the diluted solution:

1. Identify the given information:

Initial volume of stock solution (V_1) = 13.0 mL

Final volume of diluted solution (V_2) = 0.260 L = 260 mL

Initial concentration of stock solution (C_1) is unknown (this is what we need to find)

2. Understand the key concept:

When a solution is diluted, the amount of solute (the substance dissolved in the solution) remains constant. Only the volume of the solution changes.

This means that the product of concentration and volume before dilution is equal to the product of concentration and volume after dilution.

3. Apply the dilution formula:

The formula is C_1V_1 = C_2V_2, where:

C_1 = initial concentration

V_1 = initial volume

C_2 = final concentration

V_2 = final volume

4. Solve for the unknown concentration (C_1):

Rearrange the formula to isolate C_1: C_1 = C_2V_2 / V_1

Plug in the known values: C_1 = (unknown) * 260 mL / 13.0 mL

Simplify: C_1 = 20 * C_2

5. Interpret the result:

The final concentration (C_2) will be 20 times less than the initial concentration (C_1). This means the solution has been diluted by a factor of 20.

6. Example:

If the initial concentration (C_1) was 2 mol/L, then the final concentration (C_2) would be 0.1 mol/L (20 times less).

Which acid is the best choice to create a buffer with ph= 7.66?

Answers

The best choice is hypochlorous acid (HClO) because it has the nearest value of pK to the desired pH.

pKa of hypochlorous acid is 7.54 

If we know pKa and pH values,  we can calculate the required ratio of conjugate base (ClO⁻) to acid (HClO) from the following equation:

pH=pKa + log(conc. of base)/( conc. of acid)

7.66=7.54 + log(conc. of base)/( conc. of acid)

7.66 - 7.54 = log(conc. of base)/( conc. of acid)

0.12 = log(conc. of base)/( conc. of acid)

(conc. of base)/(conc. of acid) = 10⁻⁰¹² = 0.76









The activation energy for the gas phase decomposition of 2-bromopropane is 212 kJ.

CH3CHBrCH3CH3CH=CH2 + HBr
The rate constant at 683 K is 6.06×10-4 /s. The rate constant will be 5.06×10-3 /s at

Answers

Final answer:

The activation energy can be determined using the Arrhenius equation. To find the activation energy at a different temperature, rearrange the equation and plug in the given rate constant. The frequency factor is approximately 1.529 * 10^9 /s.

Explanation:

The activation energy can be determined using the Arrhenius equation:

k = Ae^(-Ea/RT)

where k is the rate constant, A is the frequency factor, Ea is the activation energy, R is the gas constant, and T is the temperature in Kelvin.

To find the activation energy at a different temperature, we can rearrange the equation as:

Ea = -ln(k/A) * RT

Using the given rate constant at 683 K and the activation energy of 212 kJ, we can calculate the frequency factor as follows:

A = k * e^(Ea/RT)

Plugging in the values:

A = (6.06×10^(-4) /s) * e^(212000 J / (8.3145 J/mol*K * 683 K))

A = 1.529 * 10^9 /s

Therefore, the frequency factor is approximately 1.529 * 10^9 /s.

Final answer:

The activation energy for a reaction is the minimum amount of energy required for the reaction to occur. To find the activation energy at a different temperature, we can use the Arrhenius equation. The activation energy will be 2.71 kJ/mol at the desired condition.

Explanation:

The activation energy for a reaction is the minimum amount of energy required for the reaction to occur. It represents the energy barrier that the reactants must overcome before they can form products. In the given question, the activation energy for the gas phase decomposition of 2-bromopropane is 212 kJ.

To find the activation energy at a different temperature, we can use the Arrhenius equation:

k = A * e^(-Ea/RT)

where:
- k is the rate constant
- A is the frequency factor
- Ea is the activation energy
- R is the gas constant (8.314 J/(mol·K))
- T is the temperature in Kelvin

By rearranging the equation, we can solve for the activation energy at a different temperature:

Ea2 = -ln(k2/k1) * (R/T2 - R/T1)

Substituting the given values:

Ea2 = -ln(5.06x10^-3 / 6.06x10^-4) * (8.314 J/(mol·K) / 683 K - 8.314 J/(mol·K) / 298 K)

Ea2 = -ln(8.333) * (0.0122 - 0.0278) = -ln(8.333) * (-0.0156) = 0.1739 * 0.0156 = 0.00271 J/mol = 2.71 kJ/mol

Therefore, the activation energy will be 2.71 kJ/mol at the desired condition.

What are isotopes? What are some examples of common stable isotopes?

Answers

Isotopes are when an element has an extra or a lost electron. Elements work to have a full valence shell (having 8 electrons) Noble gases have full valence shells. Elements in group 1 tend to lose an electron to get this. Elements in group 17 tend to gain an electron to get 8.

Draw the products for the proton transfer reaction between sodium hydride and ethanol

Answers

Sodium hydride has the formula NaH where we have a sodium ion, Na⁺ and a hydride ion, H⁻. Hydride is an incredibly powerful base. While it is capable of acting as a nucleophile, if there is an acidic proton in a molecule, the hydride will deprotonate the molecule and grab the most acidic proton.

The pka of H⁻ is 35. The pka of ethanol is 16. The species with the larger pka is the better base and is capable of deprotonating the species with the smaller pka. Therefore, the hydride will deprotonate the acidic -OH proton of the alcohol in the following reaction:

CH₃CH₂OH + NaH → CH₃CH₂O⁻Na⁺ + H₂

The result of the reaction is the hydride deprotonates the proton of the alcohol and forms the alkoxide, which is a sodium salt. This reaction also leads to the formation of H₂ gas which ensures that this reaction is not reversible as the H₂ leaves the reaction mixture upon formation.

Final answer:

Sodium hydride donates a hydride ion to ethanol, resulting in the formation of hydrogen gas and the ethoxide ion in a sodium ethoxide complex.

Explanation:

The proton transfer reaction between sodium hydride (NaH) and ethanol (CH3CH2OH) involves sodium hydride acting as a base, donating a hydride ion (H-) to the proton (H+) of the ethanol. This reaction results in the formation of hydrogen gas (H2) and the ethoxide ion (CH3CH2O-), which remains in the solution complexed with the sodium ion (Na+). The balanced equation for this reaction is NaH + CH3CH2OH → H2 + Na+ + CH3CH2O-. This reaction utilizes the hydride ion from the sodium hydride as a nucleophile that abstracts a proton from the ethanol, leading to the evolution of hydrogen gas.

Look up the boiling points of anisole and d-limonene. which one do you expect to elute first in gas chromotograpjhy

Answers

The primary factor that determines the elution order of compounds during gas chromatography, is the boiling point of the compounds. The lower the boiling point of a substance, the shorter retention time the substance will have. The retention time is the time it takes for the substance to be injected into the GC and reach the detector.

A lower boiling compound will elute faster (shorter retention time) than a higher boiling compound. The reason for this is the mobile phase of GC is a gas while the stationary phase is a liquid. Therefore, the more time a compound spends in the mobile phase, the faster it will elute. 

The boiling point of anisole and d-limonene are 153.8 °C and 176 °C, respectively. Therefore, anisole will have a shorter retention time since it has the lower boiling point.

Final answer:

In gas chromatography, compounds elute based on their boiling points, with those having lower boiling points eluting first. Since anisole has a lower boiling point than d-limonene, anisole is expected to elute first.

Explanation:

The question asks which compound, anisole or d-limonene, would elute first in gas chromatography (GC) based on their boiling points. In gas chromatography, compounds generally elute in order of increasing boiling points because compounds with lower boiling points have lower retention times on the GC column. Also, the elution order correlates with the strength of intermolecular forces (IMFs) affecting the compounds; compounds with stronger IMFs tend to have higher boiling points and adhere more to the stationary phase, thus eluting later. Although the specific boiling points of anisole and d-limonene are not provided in this answer, it is known that anisole has a boiling point of about 154°C, and d-limonene has a boiling point around 176°C. Therefore, one would expect anisole to elute first in gas chromatography due to its lower boiling point compared to d-limonene.

A Student performing this experiment mistakenly used 6.0 ml of 16 M hno3 to dissolve 0.18g of solid copper , instead of the 4.0 ml described in lab manual. What volume of 6 M naoh are required to neutralized the excess acid

Answers

Hello!

The reaction for the dissolving of solid copper with HNO₃ is the following:

Cu (s) + 4HNO₃ (aq) → Cu(NO₃)₂ (aq) + 2NO₂ (g) + 2H₂O (l)

The required mL to neutralize 0,18 g of solid copper are calculated using the following conversion factor:

[tex]0,18g Cu* \frac{1 mol Cu}{63,55 g Cu}* \frac{4 mol HNO3}{1 mol Cu}* \frac{1 L}{16 mol HNO3} * \frac{1000 mL}{1 L}= 0,71 mL[/tex]

Now we subtract this value to the volume of HNO3 added by the student:

[tex]Excess HNO3= VHNO3_{std} -VHNO3_{req}=6 mL-0,71 mL \\ =5,29mL[/tex]

To finish, we calculate the volume of NaOH 6M required to neutralize this amount of 16M acid in excess. The reaction is the following:

HNO₃ + NaOH → NaNO₃ + H₂O

To calculate this value, we use the following conversion factor:

[tex]V NaOH req=5,29mL_{HNO3}* \frac{1L}{1000mL} * \frac{16 mol HNO3}{1 L HNO3}* \frac{1 mol NaOH}{1 mol HNO3} \\ * \frac{1 L NaOH}{6 mol NaOH}* \frac{1000 mL}{1L}=14,11 mL NaOH [/tex]

So, you'll need 14,11 mL of 6M NaOH to neutralize the excess acid

Final answer:

To neutralize the excess 16 M HNO₃, 5.33 mL of 6 M NaOH is required.

Explanation:

The task is to calculate the volume of 6 M NaOH needed to neutralize excess HNO₃ used in dissolving copper. The student used 6.0 mL of 16 M HNO₃, which is 2.0 mL more than the required amount.

First, we need to find the amount of excess HNO₃ in moles, as only 4.0 mL was required. The excess volume is 6.0 mL - 4.0 mL = 2.0 mL. The moles of excess HNO₃ is calculated as 2.0 mL × 16 M / 1000 mL/L = 0.032 moles.

To neutralize the acid, we need the same number of moles of OH-. Since the NaOH is 6 M, the volume V in liters needed is calculated using the molarity equation: moles = Molarity × Volume. Thus, 0.032 moles = 6 M × V, which gives V = 0.032 moles / 6 M. So, the volume of NaOH required is 0.00533 L, or 5.33 mL.

mass of 0.432 moles of C8H9O4?

Answers

Find one mole
8 C = 8 * 12 = 96
9 H = 1 * 9 = 9
4 O = 4 *16 = 64
Total = 169 

1 mol = 169 grams.
0.432 mol = x

1/0.432 = 169/x
x = 0.432 * 169
x = 73.0 grams

Explanation:

It is known that number of moles present in a substance is equal to the mass divided by molar mass.

Mathematically,      No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]

As it is given that number of moles are 0.432 moles and molar mass of [tex]C_{8}H_{9}O_{4}[/tex] is 169.15 g/mol.

Hence, calculate the mass of [tex]C_{8}H_{9}O_{4}[/tex] is as follows.

                 No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]

                     0.432 mol = [tex]\frac{mass}{169.15 g/mol}[/tex]

                         mass = 73.072 g

Thus, we can conclude that the mass of 0.432 moles of [tex]C_{8}H_{9}O_{4}[/tex] is 73.072 g.

molecular or formula mass P4

Answers

Molar mass (formula, molecular mass) is the mass of one mole of a chemical element or a chemical compound. Molar mass is suitable and often used in chemistry because it allows for a light conversion between stoichiometric (molar) relationships represented by a chemical equation and mass relations, which are more significant in practice.
The molar mass of a compound is obtained by the sum of the atomic weights of the atoms which form a compound.

So, formula mass of P4 is:

M(P4) = 4 x Ar(P) = 4 x 31 = 124 g/mole

The balanced equation for a hypothetical reaction is A + 5B + 6C → 3D + 3E. What is the rate law for this reaction?

Answers

D. The rate law cannot be determined from the overall equation without experimental data.

Answer: [tex]Rate=k[A]^1[B]^5[C]^6[/tex]

Explanation: Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.

Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.

[tex]A+5B+6C\rightarrow 3D+3E[/tex]

[tex]Rate=k[A]^1[B]^5[C]^6[/tex]

k= rate constant

1 = order with respect to A

5 = order with respect to B

6 = order with respect to C

Thus rate law is [tex]Rate=k[A]^1[B]^5[C]^6[/tex]

Consider the reaction caso4(s)⇌ca2+(aq)+so2−4(aq) at 25 ∘c the equilibrium constant is kc=2.4×10−5 for this reaction.if excess caso4(s) is mixed with water at 25 ∘c to produce a saturated solution of caso4, what is the equilibrium concentration of ca2+?

Answers

According to the balanced equation of the reaction:
CaSO4(s) ↔ Ca2+(aq) + SO2-4(aq)
So Kc = [Ca2+] [SO2]  and we have [Ca2+] & [SO2] are the same so we can assume it both by X
So KC = X^2
X^2 = 2.4 x 10^-5
X = √2.4X10^-5 = 0.004899 = 4.9 X 10^-3 m

How many moles (of molecules or formula units) are in each sample? part a 71.66 g cf2cl2?

Answers

Answer is: there is 0,592 moles of CF₂Cl₂.
m(CF₂Cl₂) = 71,66 g.
n(CF₂Cl₂) = m(CF₂Cl₂) ÷ M(CF₂Cl₂).
n(CF₂Cl₂) = 71,66 g ÷ 120,91 g/mol.
n(CF₂Cl₂) = 0,592 mol.
M - molar mass substance.
m - mass of substance.
n - amount of substance.

Rubbing alcohol evaporates from your hand quickly, leaving a cooling sensation. Because evaporation is an example of a physical property, how do the molecules of gas compare to the molecules as a liquid? 1. The gas particles have a stronger attraction between them and move slower than the liquid. 2. The gas and liquid particles have the same structure and identity but different motion and kinetic energy. 3. The bonds inside the molecule are broken, and atoms move closer together as evaporation occurs. 4. The bonds are broken, and atoms spread apart as it changes from liquid to gas.

Answers

Final answer:

Rubbing alcohol molecules as a gas have the same structure as in the liquid but with more kinetic energy and less intermolecular attraction, which upon evaporation causes a cooling effect through evaporative cooling.

Explanation:

When rubbing alcohol evaporates from your hand, it leaves a cooling sensation because the molecules in the liquid state require a certain threshold of kinetic energy to overcome intermolecular forces and escape into a gas state. The correct statement regarding how the molecules of gas compare to the molecules as a liquid is:

The gas and liquid particles have the same structure and identity but different motion and kinetic energy.

In the gaseous state, particles move faster and are further apart compared to when they are in the liquid state, where particles are closer together and have stronger intermolecular attractions. This process of evaporation involves evaporative cooling, where the molecules with higher kinetic energy escape, leaving behind those with lower kinetic energy, which results in a decrease in temperature.

The amount of water that evaporates from earth is

Answers

Evaporation from the oceans is the primary mechanism supporting the surface-to-atmosphere portion of the water cycle

Answer:

The amount of water that evaporates from the earth is approximately equal to the amount that falls as precipitation.

Explanation:

Water evaporation is critical to climate because it is directly related to precipitation formation. Water that evaporates from rivers, lakes, oceans and even our bodies helps to form rain. This occurs when the temperature cools. Under these climatic conditions, water vapor returns to its liquid form (condensation) and falls through rainfall. The amount of water evaporated is basically equal to the amount of water that comes back to land in precipitation.

The data in the table below were obtained for the reaction: 2clo2 (aq) + 2 oh- (aq) --> clo3- (aq) + clo2- (aq) + h2o (l) experiment [clo2] (m) [oh-] (m) initial rate (m/s) 1 0.060 0.030 0.0248 2 0.020 0.030 0.00276 3 0.020 0.090 0.00828 what is the order of the reaction with respect to clo2?

Answers

lets organise the data given in the question
                [ClO₂] (m)       [OH⁻] (m)        initial rate (m/s)
                  0.060              0.030               0.0248
                  0.020              0.030               0.00276
                  0.020              0.090                0.00828
rate equation as follows 
rate = k [ClO₂]ᵃ [OH⁻]ᵇ
where k - rate constant 
we need to find order with respect to ClO₂ therefore lets take the 2 equations where OH⁻ is constant.
1) 0.00276 = k [0.020]ᵃ[0.030]ᵇ
2) 0.0248 = k [0.060]ᵃ[0.030]ᵇ
divide first equation from the second
0.0248/0.00276 = [0.060/0.020]ᵇ
8.99 = 3ᵇ
8.99 rounded off to 9
9 = 3ᵇ
b = 2
order with respect to ClO₂ is 2
Final answer:

The order of the reaction with respect to clo2 is 1.

Explanation:

The order of the reaction with respect to clo2 can be determined by comparing the initial rates of different experiments and analyzing the effect of changing the concentration of clo2 on the reaction rate. By comparing the rates of Experiment 1 and Experiment 2, we can see that when the concentration of clo2 is halved, the rate of the reaction is also halved. This indicates that the reaction rate is directly proportional to the concentration of clo2. Therefore, the order of the reaction with respect to clo2 is 1.

For each bond, show the direction of polarity by selecting the correct partial charges. si-p si-s s-p the most polar bond is

Answers

To determine the direction of polarity of each bond, we must know the electronegativities of each atom involved in the bonds.

Si = 1.90
P = 2.19
S = 2.58

As we move right across a row in the periodic table, the atoms become more electronegative. The direction of polarity in a bond will have the partial positive charge on the less electronegative atom and the partial negative charge on the more electronegative atom. Therefore, the direction of polarity of each bond is as follows:

(δ⁺)Si - P(δ⁻)
(δ⁺)Si - S(δ⁻)
(δ⁻)S - P(δ⁺)

Since silicon is the least electronegative, it will have the partial positive charge in each bond. And since sulfur is the most electronegative, it will have a partial negative charge when bonded to either silicon or phosphorus.

The biggest elctronegative difference is between silicon and sulfur. So  Si-S will be most polar bond.

The polarity between the two atoms is determined by their relative difference in electronegativity.

The Electronegativity of ,

Silicon= 1.9

Phosphorus= 2.19

Sulfur= 2.58

The direction of polarity,

[tex]\rm \bold{ \delta^+Si\rightarrow \delta^-P}\\\rm \bold{ \delta^+Si\rightarrow \delta^-S}\\\rm \bold{ \delta^+P\rightarrow \delta^-S}[/tex]

Since, the biggest elctronegative difference is between silicon and sulfur (Si-S).

Hence we can say that Si-S will be most polar bond.

To know more about  electronegativity, refer to the link:

https://brainly.com/question/23197475?referrer=searchResults

Calculate the vapor pressure at 50°c of a coolant solution that is 54.0:46.0 ethylene glycol-to-water by volume. at 50.0°c, the density of water is 0.9880 g/ml, and its vapor pressure is 92 torr. the vapor pressure of ethylene glycol is less than 1 torr at 50.0°c.

Answers

Missing question: The liquid used in automobile cooling systems is prepared by dissolving ethylene glycol (HOCH2CH2OH) in water. Ethylene glycol has a molar mass of 62.07 g/mol and a density of 1.115 g/mL at 50.0°C.
If we use 100 mL of solution:
V(ethylene glycol - C₂H₆O₂) = 0,54 · 100 mL = 54 mL.
V(water) = 0,46 · 100 mL = 46 mL.
m(C₂H₆O₂) = 54 mL · 1,115 g/mL = 60,21 g.
n(C₂H₆O₂) = 60,21 g ÷ 62,07 g/mol = 0,97 mol.
m(H₂O) = 46 mL · 0,988 g/mL = 45,45 g.
n(H₂O)  = 45,45 g ÷ 18 g/mol = 2,525 mol.
mole fraction of solvent: 2,525 mol / (2,525 mol + 0,97 mol) =0,722.
Raoult's Law: p(solution) = mole fraction of solvent · p(solvent).
p(solution) = 0,722 · 92 torr = 66,42 tor.

A particular first-order reaction has a rate constant of 1.35 × 102 s-1 at 25.0°c. what is the magnitude of k at 75.0°c if ea = 85.6 kj/mol?

Answers

Final answer:

This question involves the application of the Arrhenius equation in chemistry, particularly in calculating the temperature dependence of reaction rates. Given the rate constant and the activation energy at a certain temperature, one can find the rate constant at a different temperature

Explanation:

The question pertains to the use of the Arrhenius equation, which calculates the temperature dependence of reaction rates. The equation is k = A * e^(-Ea/RT), where k is the rate constant, A is the frequency factor, Ea is the activation energy, R is the gas constant, and T is the temperature in Kelvin.

The given reaction has a rate constant (k) of 1.35 x 10² s-1 at 25.0°C (or 298.15K). The activation energy (Ea) is given as 85.6 kJ/mol. To find the rate constant at another temperature, rearrange the Arrhenius equation to solve for A, substitute the given values for Ea, k, R and T to find A. Then, plug the calculated A, given Ea, the new temperature in Kelvin (75.0°C or 348.15K), and R into the Arrhenius equation to solve for the new rate constant, k.

Learn more about Arrhenius equation here:

https://brainly.com/question/30514582

#SPJ12

for the complete combustion of 5.6dm3 of a gaseuos hydrocarbon CxHy. 28.0dm3 of oxygen gas were used, 16.8dm3 of CO2 gas and 18.0gof liquid water were produced all gases measurement were made at stp. Determine the chemical formula of the hydrocarbon

Answers

Answer is: the chemical formula of the hydrocarbon is C₃H₈.
Chemical reaction: CxHy + O₂ → xCO₂ + y/2H₂O.
V(CxHy) = 5,6 dm³.
V(O₂) = 28 dm³.
V(CO₂) = 16,8 dm³.
m(H₂O) = 18 g.
Vm = 22,4 dm³/mol; molar volume.
n(CxHy) = V(CxHy) ÷ Vm.
n(CxHy) = 5,6 dm³ ÷ 22,4 dm³/mol = 0,25 mol.
n(O₂) = 28 dm³ ÷ 22,4 dm³/mol = 1,25 mol.
n(CO₂) = 16,8 dm³ ÷ 22,4 dm = 0,75 mol.
n(H₂O) = 18 g ÷ 18 g/mol = 1 mol.
n(CxHy) : n(O₂) : n(CO₂) : n(H₂O) = 0,25 mol : 1,25 mol : 0,75 mol : 1 mol. 
n(CxHy) : n(O₂) : n(CO₂) : n(H₂O) = 1 : 5 : 3 : 4.
Reaction is than: C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
Other Questions
Which geographical resource does Russia lack? A. literature and art B. forests C. ocean access D. natural minerals 250 divided by 10 to the 2 nd power A cruise ship travels 1900 miles per trip. There are a total of 4 stops the ship makes, and the distance to the first stop is 460 miles. If the variable d stands for the distance left to travel after the first stop, which of the following units could apply to this variable? A. ships B. days C. stops D. miles What did japan hope would result from the attack on pearl harbor? Thomas is saving pennies in a jar. The first day he saves 3 pennies, the second day 12 pennies, the third day 48 pennies, and so on. How many pennies does Thomas have on the eighth day? Moving a figure around a fixed point in the plane is called making a ___. Which statement BEST describes a difference between a presidential system of democracy and a parliamentary system of democracy? A. The president acts as head of state in a presidential system ONLY. B. The prime minister is elected directly by popular vote in a parliamentary state ONLY. C. The prime minister act as head of the national government in a parliamentary state ONLY. D. The president is chosen by members of the Legislative Branch in a presidential system ONLY. what is the approximate distance across a camel's snout. Echoes of Greek architecture can be seen in List four ways you can avoid injury while using HCl and three steps you would take in case of an accidental exposure to HCl need the answer asap Columbus mistakenly thought that present-day Cuba was China because Suppose you want to check for earthquake danger before buying a new home. How can you check the regional geology for earthquake danger? The actual building site? The home itself? A child working for his father's corporation is not exempt from coverage under fica. a. True b. False The future value of $200 received today and deposited at 8 percent compounded semiannually for three years is ________. $380 $158 $253 $252 How did the peace corps put the biblical admonition, (luke 12:48) "to whom much is given, much is expected," into action? Which definition best describes the term succession A series of changes that cause a population to increase or decrease. An instant change caused by a disturbance. Changes that only happen when species die. Series of gradual changes that occur after a disturbance. what fraction of 60 is 45? Given f(x)=5x^22x and g(x)=3x ^2+x4 . What is the physical state of dna after being denatured by heat? The home that you are interested in purchasing is listed at $135,000. In order to get financing, you have to place a 15% down payment. From the given information, determine the amount of the down payment. a. $2,025 c. $114,750 b. $135,000 d. $20,250