part A;

The equation for molarity, M, is

M=n/V

where V is volume and n is the number of moles of solute.

A certain solution has a molarity of M = 2.73 mol/L and has a volume of V = 0.650 L . What is the value of n?

Express your answer numerically in moles.

part B;

The equation for photon energy, E, is

E=hcλ

where h = 6.626×10−34 J⋅s (Planck's constant) and c = 2.99×108 m/s (the speed of light).

What is the wavelength, λ, of a photon that has an energy of E = 3.98×10−19 J ?

Express your answer numerically in meters.

part C;

The ideal gas equation is

PV=nRT

where P is pressure, V is volume, n is the number of moles, R is a constant, and T is temperature.

You are told that a sample of gas has a pressure of P = 899 torr , a volume of V = 3280 mL, and a temperature of T = 307 K . If you use R = 8.206×10−2 L⋅atm/(K⋅mol) , which of the following conversions would be necessary before you could find the number of moles of gas, n, in this sample?

Check all that apply.

View Available Hint(s)

Check all that apply.

Convert the pressure to atmospheres (atm).
Convert the pressure to pascals (Pa).
Convert the volume to cubic meters (m3).
Convert the volume to liters (L).
Convert the temperature to degrees Celsius (∘C).
Convert the temperature to degrees Fahrenheit (∘F).

Answers

Answer 1

Answer:

Part A : n = 1.77 moles

Part B : λ = [tex]2.01*10^{6} m^{-1}[/tex]

Part C : n = 0.154 moles

Explanation:

Part A

The problem gives you the equation for molarity M:

[tex]M=\frac{n}{V}[/tex]

n is the number of moles of solute and V is the volume

Then the problem gives you the molarity of a substance [tex]M=2.73\frac{mol}{L}[/tex] and the volume V = 0.650L, so you need to solve the equation for n:

[tex]M=\frac{n}{V}[/tex]

as the V is dividing it passes to multiply the M:

n = M*V

and you should replace the values:

[tex]n = 2.73\frac{mol}{L}*0.650L[/tex]

n = 1.77 moles

Part B

This time you have to solve the equation E = hcλ for λ that is the unknown information, so you have:

E = hcλ

h and c are multiplying so they pass to divide the E:

λ = [tex]\frac{E}{hc}[/tex]

and replacing the values:

λ = [tex]\frac{3.98*10^{-19}J}{(6.626*10^{-34}J.s)(2.99*10^{8}\frac{m}{s})}[/tex]

λ = [tex]2.01*10^{6} m^{-1}[/tex]

PartC

In this part the problem gives you the equation PV=nRT and the first thing you should do is to verify that all the quantities are in consistent units so:

[tex]R=8.206*10^{-2} \frac{L.atm}{K.mol}[/tex] so you need to convert the pressure to atmospheres and convert the volume to liters.

- Convert the pressure to atmospheres:

[tex]P=899torr*\frac{0.00131579atm}{1torr}[/tex]

P = 1.18 atm

- Convert the volume to liters:

[tex]V=3280mL*\frac{1L}{1000mL}[/tex]

V = 3.28L

To find the number of moles n, you should solve the equation for n:

Pv = nRT

As R and T are multiplying the n, they pass to divide to the other side of the equation:

[tex]n=\frac{PV}{RT}[/tex]

And finally you should replace the values:

[tex]n=\frac{(1.18atm)(3.28L)}{(8.206*10^{-2}\frac{L.atm}{K.mol})(307K)}[/tex]

n = 0.154 moles


Related Questions

Match with the correct definition.

A.

Each electron state can hold no more than two electrons, which must have opposite spins.

B.

Electron sharing between two adjacent atoms such that each atom assumes a stable electron configuration.

C.

Electrostatic attraction between oppositely charged ions.

D.

The positively charged ion cores are shielded from one another, and also "glued" together by the sea of valence electrons.

Ionic bonding: A, B, C, or D?

Covalent Bonding: A,B,C or, D?

Metallic bonding: A, B, C, or D?

Pauli exclusion principle: A, B C, or D?

Answers

Answer:

Ionic bonding: C

Covalent bonding: B

Metallic bonding: D

Pauli exclusion principle: A

Explanation:

All the electrons in 1 atom are characterized by a series of 4 numbers, known as quantum numbers. These numbers (n, l, ml, ms) describe the state of each electron (in which level, sublevel, orbital it is and its spin). For 2 electrons to coexist in the same atom they must differ in at least of these numbers. If they occupy the same level, sublevel and orbital, then they must have different (and opposite) spins. This is known as Pauli exclusion principle.

Also, to gain stability atoms can gain, lose or share electrons. In doing so they form bonds. There are 3 kinds of bonds:

Ionic bonding: these are formed between metals and nonmetals. Metals tend to lose electrons and form cations (positive ions) and nonmetals tend to gain electrons and form anions (negative ions). Cations and anions attract each other due to electrostatic forces between oppositely charged ions.Covalent bonding: these are formed between nonmetals, which share pairs of electrons so as to reach the electron configuration of the closest noble gas (the most stable electron configuration).Metallic bonding: valence electrons are loose in metals, so they move together as a "sea of electrons", acting as "glue" of the remaining positive cores (electrons that are negative charges serve to attract the positive charges of the cores).

Consider the following reaction: A+B C +D a) What is the correct expression for the equilibrium constant (k)? b) The k value for this reaction is 45000. What does this tell you about the reaction? c) If the Ris 45000 are the reactants more stable than the products?

Answers

Answer:

a) k = [tex]\frac{[C][D]}{[A][B]}[/tex]

b) A value of 45000 means that tendency of your reaction is to have more products in a ratio of 45000:1

c) No, the products are more stable than reactants.

Explanation:

a) For a reaction:

A + B → C + D

The equlibrium constant (k) is:

k = [tex]\frac{[C][D]}{[A][B]}[/tex]

Where [x] is the molar concentration of x. Always the expression of equilibrium constant is molar concentration of products over molar concentration of reagents.

b) Having in mind the expression of equilibrium constant when k>1 the concentration of products is higher than concentration of reagents. Thus, when k<1 concentration of reagents is higher than concentration of products.

A value of 45000 means that tendency of your reaction is to have more products in a ratio of 45000:1

c) Again, a value of 45000 means that tendency of your reactants is react to produce products. Thus, the products are more stable than reactants.

I hope it helps!

What is inaccurate about describing a solution as containing or using free hydrogen atoms?

Answers

Answer: An aqueous solution will contains both hydrogen ion and hydroxide ion.An here we are talking about free hydrogen ions, which means the description will be related to the pH. If the ratio of ion are equal then the pH will be 7 i.e. neutral. But if there are free hydrogen atoms in the solution we have, the pH of solution will be less than 7 and the solution will be described ad acidic. So the inaccurate description for a solution containing free hydrogen ion is that it is basic in nature.

Solve for x: LaTeX: \frac{1}{x}=\:66.54. Report your answer to 4 significant figures.

Answers

Answer:

x = 0.01503 = 1.503 × 10⁻² , four significant figures

Explanation:

Significant figures refer to the digits of a number that have meaning and contribute to the precision of the given number.

Since the given equation is:

[tex]\frac{1}{x}=\:66.54[/tex]

Cross-multiplying to solve for the value of x:

[tex]x \times 66.54 = 1[/tex]

⇒ [tex]x = \frac{1}{66.54}[/tex]

⇒ x = 0.01503 = 1.503 × 10⁻² , has four significant figures.

At 1.00 atmosphere pressure, a certain mass of a gas has a temperature of 100oC. What will be the temperature at 1.13 atmosphere pressure if the volume remains constant?

Answers

Answer:  Final temperature of the gas will be 330 K.

Explanation:

Gay-Lussac's Law: This law states that pressure is directly proportional to the temperature of the gas at constant volume and number of moles.

[tex]P\propto T[/tex]     (At constant volume and number of moles)

[tex]{P_1\times T_1}={P_2\times T_2}[/tex]

where,

[tex]P_1[/tex] = initial pressure of gas   = 1.00 atm

[tex]P_2[/tex] = final pressure of gas  = 1.13 atm

[tex]T_1[/tex] = initial temperature of gas  = [tex]100^0C=(100+273)K=373K[/tex] K

[tex]T_2[/tex] = final temperature of gas  = ?

[tex]{1.00\times 373}={1.13\times T_2}[/tex]

[tex]T_2=330K[/tex]

Therefore, the final temperature of the gas will be 330 K.

Just as the depletion of stratospheric ozone threatens life on Earth today, its accumulation was one of the crucial processes that allowed life to develop in prehistoric times: 3O2(g) → 2O3(g) At a given instant, the reaction rate in terms of [O2] is 2.17 × 10−5 mol/L·s. What is it in terms of [O3]? Enter your answer in scientific notation.

Answers

Answer:

Rate in terms of formation of [tex]O_{3}[/tex] is [tex]1.45\times 10^{-5}mol/L.s[/tex]

Explanation:

According to law of mass action for this reaction: Rate = [tex]-\frac{1}{3}\frac{\Delta [O_{2}]}{\Delta t}=\frac{1}{2}\frac{\Delta [O_{3}]}{\Delta t}[/tex][tex]-\frac{\Delta [O_{2}]}{\Delta t}[/tex] represents rate of disappearance of [tex]O_{2}[/tex] and [tex]\frac{\Delta [O_{3}]}{\Delta t}[/tex] represents rate of formation of [tex]O_{3}[/tex]Here, [tex]-\frac{\Delta [O_{2}]}{\Delta t}=2.17\times 10^{-5}mol/L.s[/tex]So, [tex]\frac{\Delta [O_{3}]}{\Delta t}=\frac{2}{3}\times -\frac{\Delta [O_{2}]}{\Delta t}=\frac{2}{3}\times (2.17\times 10^{-5}mol/L.s)=1.45\times 10^{-5}mol/L.s[/tex]Hence rate in terms of formation of [tex]O_{3}[/tex] is [tex]1.45\times 10^{-5}mol/L.s[/tex]

The rate of formation is the time taken by the reaction to yield the product by the chemical change in the reactants. The rate of the formation of the ozone is [tex]1.45 \times 10^{-5} \;\rm mol/Ls[/tex].

What is the law of mass action?

The law of mass action states that the rate of the reaction is proportional to the product of the reactant masses.

Rate according to the law of mass action:

[tex]\rm -\dfrac{1}{3}\dfrac {\Delta[O_{2}]}{\Delta t} = \rm \dfrac{1}{2}\dfrac{\Delta [O_{3}]}{\Delta t}[/tex]

Here,

Rate of disappearance of oxygen [tex](\rm -\dfrac {\Delta[O_{2}]}{\Delta t} ) = 2.17 \times 10^{-5} \;\rm mol/Ls[/tex]  Rate of formation of ozone =[tex]\rm \dfrac{\Delta [O_{3}]}{\Delta t}[/tex]

Substituting values in the above equation:

[tex]\begin{aligned}\rm \dfrac{\Delta [O_{3}]}{\Delta t} &= \dfrac{2}{3}\times - \rm \dfrac{\Delta [O_{2}]}{\Delta t}\\\\&= \dfrac{2}{3} \times (2.17 \times 10^{-5})\\\\&= 1.45 \times 10^{-5}\;\rm mol/Ls\end{aligned}[/tex]

Therefore, the rate of formation in the terms of ozone is [tex]1.45 \times 10^{-5} \;\rm mol/Ls.[/tex]

Learn more about the rate of formation here:

https://brainly.com/question/12171650

In a laboratory experiment, a fermenting aqueous solution of glucose and yeast produces carbon dioxide gas and ethanol. The solution was heated by burning natural gas in a Bunsen burner to distill the ethanol that formed in the flask. During the distillation, the ethanol evaporated and then condensed in the receiving flask. The flame of the burner was kept too close to the bottom of the flask and some of the glucose decomposed into a black carbon deposit on the inside of the flask. During this experiment the following changes occurred. Which of these changes involved a physical change and not a chemical change? Check all that apply. Check all that apply.

1-condensation of ethanol

2-evaporation of ethanol

3- formation of carbon dioxide gas from glucose burning of natural gas

4-formation of ethanol from glucose by yeast

5-formation of a carbon deposit inside the flask

Answers

Answer:

1-condensation of ethanol

2-evaporation of ethanol

Explanation:

According to the question ,

As the compound condenses , it is a basic process of the change in the state , and hence , it is only a physical change .   Then , the ethanol is changing its state, hence , again a  physical change is observed . The carbon dioxide gas is formed from the glucose would be a chemical change since a new product is formed i.e carbon dioxide , from the  reaction between the glucose and yeast .   The formation of a carbon deposit was due to the heat which altered the chemical make - up of the substance and is therefore a chemical change .

What masses of monobasic and dibasic sodium phosphate will you use to make 250 mL of 0.1 M sodium phosphate buffer, pH = 7?

Answers

Answer:

Mass of monobasic sodium phosphate = 1.857 g Mass of dibasic sodium phosphate = 1.352 g

Explanation:

The equilibrium that takes place is:

H₂PO₄⁻ ↔ HPO₄⁻² + H⁺    pka= 7.21 (we know this from literature)

To solve this problem we use the Henderson–Hasselbalch (H-H) equation:

pH = pka + [tex]log\frac{[A^{-} ]}{[HA]}[/tex]

In this case [A⁻] is [HPO₄⁻²], [HA] is [H₂PO₄⁻], pH=7.0, and pka = 7.21

If we use put data in the H-H equation, and solve for [HPO₄⁻²], we're left with:

[tex]7.0=7.21+log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\ -0.21=log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\\\10^{-0.21} =\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\0.616 * [H2PO4^{-}] = [HPO4^{-2}][/tex]

From the problem, we know that [HPO₄⁻²] + [H₂PO₄⁻] = 0.1 M

We replace the value of [HPO₄⁻²] in this equation:

0.616 * [H₂PO₄⁻] + [H₂PO₄⁻] = 0.1 M

1.616 * [H₂PO₄⁻] = 0.1 M

[H₂PO₄⁻] = 0.0619 M

With the value of [H₂PO₄⁻]  we can calculate [HPO₄⁻²]:

[HPO₄⁻²] + 0.0619 M = 0.1 M

[HPO₄⁻²] = 0.0381 M

With the concentrations, the volume and the molecular weights, we can calculate the masses:

Molecular weight of monobasic sodium phosphate (NaH₂PO₄)= 120 g/mol.Molecular weight of dibasic sodium phosphate (Na₂HPO₄)= 142 g/mol.

mass of NaH₂PO₄ = 0.0619 M * 0.250 L * 120 g/mol = 1.857 gmass of Na₂HPO₄ = 0.0381 M * 0.250 L * 142 g/mol = 1.352 g

Tell why you may be able to survive a bitter cold day in snow-cave."

Answers

Answer:

First you need to know that the warm air is less dense than the colder air and thus it tends to rise; so snow-caves are constructed in some way that the tunnel entrance is below the main space, and so the warm air can be retained into the cave. In a typical snow-cave, you can reach temperatures over 0°C even when the temperature outside are under zero degrees celsius.

A plastic rectangle has dimensions of 1.0 cm, 2.0 cm and 3.0 cm respectively. It masses 5.5 g when placed on an electronic mass balance. What is its density? Would it float in water? Density of water is 1.0 g/mL.

Answers

Answer:

0.917g/cm^3

Explanation:

Density = Mass/ Volume.

Given,

Mass = 5.5g

Volume of the plastic = L*W*H

        = 1.0 x 2.0 x 3.0 = 6.0cm^3

Density = Mass/volume

            = 5.5g/6.0cm^3

            = 0.9166666666

             = 0.917g/cm^3

Since the density of water is greater than that of the plastic, it means that the plastic will float in water.

       

Answer:

Sinking of the block in water will not happen.

Explanation:

An object’s (block in this case) density can be found out by dividing the mass of that object from its volume. In the given question the mass of rectangular block is given as 5.5 gram and the sides of the rectangular block is [tex]1, 2 and 3 cm[/tex] so volume will be [tex]6 cm^3[/tex]

[tex]Density = Mass/ Volume[/tex]

Now to calculate the density [tex]5.5/ 6= 0.91g/ml[/tex]

This block will float on water since the block’s density is less than water.

Reynolds number E. What is the mean velocity u. (ft/s) and the Reynolds number Re = pu., D/ for 35 gpm (gallons per minute) of water flowing in a 1.05- in. ID. pipe if its density is p = 62.3 lb/ft and its viscosity is = 1.2 cP? What are the units of the Reynolds number?

Answers

Answer:

The mean velocity is 13 ft/s.

The Reynolds number is 88,583 and it is dimensionless.

Explanation:

We have water flowing in a pipe of 1.05 in diameter.

The density is ρ=62.3 lb/ft and the viscosity is 1.2 cP.

The mean velocity can be calculated as

[tex]u=\frac{Q}{A}=\frac{Q}{\pi*D^2/4}=\frac{35gpm }{3.14*(1.05in)^2/4}\\\\  u=\frac{35}{0.865}*\frac{gal}{min}\frac{1}{in^2}*\frac{231in^3}{1gal}*\frac{1}{60s} \\\\    u=156\,in/s=13\,ft/s[/tex]

The Reynolds number now can be calculated for this flow as

[tex]Re=\frac{\rho*u*D}{\mu}[/tex]

being ρ: density, u: mean velocity of the fluid, D: internal diameter of the pipe and μ the dynamic viscosity.

To simplify the calculation, we can first make all the variables have coherent units.

Viscosity

[tex]\mu=1.2cP=\frac{1.2}{100}\frac{g}{cm*s}*\frac{1lb}{453.6g}*\frac{30.48cm}{1ft}= 0.0008\frac{lb}{ft*s}[/tex]

Diameter

[tex]D=1.05in*(\frac{1ft}{12in} )=0.0875ft[/tex]

Then the Reynolds number is

[tex]Re=\frac{\rho*u*D}{\mu}\\\\Re=62.3\frac{lb}{ft^3}*13\frac{ft}{s} *0.0875ft*\frac{1}{0.0008}*\frac{ft*s}{lb}\\\\Re=88,583[/tex]

Final answer:

The Reynolds number (Re) and mean velocity (u) for water flowing through a pipe can be calculated using the flow rate, pipe dimensions, fluid density, and viscosity. The Reynolds number is a dimensionless quantity that helps predict the flow pattern in the pipe.

Explanation:

The question relates to the calculation of the Reynolds number and the mean velocity (u) for a given flow rate of water through a pipe. First, to find the mean velocity u, the flow rate needs to be converted to cubic feet per second (ft³/s) and then divided by the cross-sectional area of the pipe. The Reynolds number Re is a dimensionless number used to predict flow patterns in different fluid flow situations. It is calculated using the formula Re = ρuD/μ, where ρ is the fluid density, u is the mean velocity, D is the pipe diameter, and μ is the dynamic viscosity of the fluid.

To proceed with the calculation, the given flow rate of 35 gallons per minute (gpm) is converted to cubic feet per second, the pipe's internal diameter is converted to feet, the density of water (62.3 lb/ft³) is used, and the viscosity (1.2 cP) is converted to lb/(ft·s). The mean velocity u is then calculated, and subsequently, the Reynolds number Re is determined.

The units of the Reynolds number are indeed unitless, as demonstrated by the cancellation of units in its definition, ensuring it is a dimensionless quantity.

A medium-sized carrot weighs 64 g and contains 7.0 g of carbohydrate.

What percent, by mass, of the carrot is carbohydrate? Express your answer using two significant figures.

Answers

Answer:

10,93% of a carrot is carbohydrate.

Explanation:

In order to solve this you just have to create a rule of three where 64g is the 100% and you want to calculate how much is 7g in percentage:

[tex]\frac{64}{100}= \frac{7}{x}\\ x=\frac{7*100}{64}\\ x=10,9375[/tex]

So there are 10.9375 % carbohydrates in a piece of carrot.

Final answer:

The percent, by mass, of carbohydrate in a medium-sized carrot is approximately 10.9%.

Explanation:

To find the percent, by mass, of carbohydrate in a medium-sized carrot, we can use the following formula:

Percent mass of carbohydrate = (mass of carbohydrate / total mass) × 100

In this case, the mass of carbohydrate is given as 7.0 g and the total mass of the carrot is 64 g. Plugging these values into the formula:

Percent mass of carbohydrate = (7.0 g / 64 g) × 100 = 10.9%

Therefore, approximately 10.9% of the carrot's mass is carbohydrate.

Convert 59.9 m^2 to square centimeters. cm^2

Answers

Answer:

59.9 m² = 599000 cm²

Explanation:

According to the International System of Units, square metre (m²) is the SI unit of area. 1 m² is defined as the area of the square having sides 1 m long.  

Some other units of area are square millimetres (mm²), square kilometres (km²), square centimetres (cm²).

Now, converting square metre (m²) to square centimetres (cm²)

Since, 1 m² = 10⁴ cm²

Therefore, 59.9 m² = 59.9 × 10⁴ cm² = 599000 cm².

Therefore, 59.9 m² = 599000 cm²

A well-insulated tank contains concentrated HCl solution in water. If more water is added to this tank the temperature of the system will __________.

Select one:

a. increase

b. decrease

c. no change

d. cannot tell

Answers

Answer: Option (a) is the correct answer.

Explanation:

As the given situation shows that water is being added to water. This will liberate heat into the surround as the reaction will be exothermic in nature.

It is known that chemical reactions in which heat is released are known as exothermic reactions.

Hence, when more water is added to this tank the temperature of the system will increase due to release of heat.

Thus, we can conclude that if more water is added to this tank the temperature of the system will increase.

Sketch and label a covalent bond and an ionic bond (you do not need to draw the metallic bond or intermolecular force). Describe the role of electrons in covalent, ionic, and metallic bonds (you do not need to describe the intermolecular force), and describe the strength of these bonds. Also explain (no sketch) how differences in bonds cause diamond and graphite to have very different properties (2.11A).

Answers

Answer:

See attached image

Explanation:

An ionic bond is a type of chemical bond in which occurs an electrons transfer, where one of the atoms act as a donor and the other act as the acceptor. Compound with ionic bonds are very stables and strong because of the attraction of the opposite charges. These attractions help ions stay together forming solid nets.

A covalent bond is a type of chemical bond in which the electrons are shared. Unlike the ionic bond, the atoms act at the same time as donors and acceptors sharing their electrons. The covalent bond keeps the atoms together because an electrostatic force, thus this bond is weaker than the ionic bond.

A metallic bond is a force which keeps together metallic atoms. In this type of bond, there is no transfer or sharing of electrons. The atoms are kept together because of an electrostatic force. Since there is no electron exchange involved a metallic bond is weaker than the other two.

In diamond, every carbon atom shared four electrons with other carbon atoms between a covalent bond. These form a regular tetrahedron. On the other side, graphite has a layer structure, in which every layer hold carbon atoms wich shared electrons with other tree atoms. All the layers stay together because of the Van der Waals force. These difference in bonds cause to have different properties, diamond is one of the hardest materials and graphite it is not.

A 36.5 lb child has a Streptococcus infection. Amoxicillin is prescribed at a dosage of 25 mg per kg of body.How many hours should pass between each administration?number of hours:Amoxicillin should be stored between 0 °C and 20 °C. Should the amoxicillin be stored in the freezer or the refrigerator?

Answers

Answer:

36.5 lbs weight of child able to take 413.91 mg/ day dose

Amoxicillin should be stored in temperature 0°C to 20°C, therefore it must be stores  in refrigerator as it provided temperature only between 0°C to 5°C.

Explanation:

Given data:

Dosage of Amoxicillin as prescribed is  25 mg/kg-day

Weight of the Child weight  = 36.5 lbs

As We know  1 lbs = 0.4536 kg

therefore, the weight of Child is  36.5\times 0.4536 kg = 16.5564 kg

From the information about  dosage,

1 kg of body takes = 25 mg/day

so, for 16.556 kg body [tex]16.5564\  kg \ body\  takes = 25\times 16.5564 = 413.91 mg/day[/tex]

Therefore 36.5 lbs weight of child able to take 413.91 mg/ day dose

Amoxicillin should be stored in temperature 0°C to 20°C, therefore it must be stored  in refrigerator as it provided temperature only between 0°C to 5°C.

Final answer:

To calculate the amoxicillin dosage for a child, convert the child's weight to kilograms, multiply by the prescribed mg/kg dosage, then divide by the tablet strength. Amoxicillin should be stored in a refrigerator, not a freezer.

Explanation:

The question relates to the prescription and administration of amoxicillin dosage based on a patient's weight. To determine the number of tablets to administer, you will need to convert the child's weight from pounds to kilograms (1 pound = 0.453592 kg), multiply the child's weight in kilograms by the prescribed dosage per kilogram and then divide the total dosage by the amount of medicine per tablet.

Using the information provided, if a doctor prescribes amoxicillin at 30mg/kg to a child weighing 73.5 lbs, first convert the weight: 73.5 lbs × 0.453592 = 33.3 kg approximately. Next, calculate the total dosage: 33.3 kg × 30 mg/kg = 999 mg. Since amoxicillin is available in 500 mg tablets, divide the total dosage by the tablet strength: 999 mg / 500 mg/tablet = about 2 tablets (always round to the nearest whole number when it involves whole tablets).

Amoxicillin should be stored between 0 °C and 20 °C, which is typically within the temperature range of a refrigerator, not a freezer. Therefore, amoxicillin should be stored in the refrigerator to maintain its efficacy.

Of the two type of bonds (pi and sigma), which is capable of rotation around that bond and which is not? Why?

Answers

Answer:

The sigma bonds are capable of rotating, the pi bonds not.

Explanation:

Sigma bonds are the strongest type of bonds, there are related to the overlapping in the atomic orbitals, and they can rotate. In the pi bound (that is a double bond), there are electrons moving on the molecule and it is not permitted the rotation on this type of bonds. Of the sigma bonds are capable of rotating while the pi bonds not.

Part B Compute 1240.64/64. Round the answer appropriately Express your answer numerically using the proper number of significant figures. View Available Hint(s) Submit

Answers

Answer:

19

Explanation:

1240.64/64

This is a simple division that can easily be evaluated using any form of calculator.

Here, the main challenge is in expressing the answer in the proper number of significant figure.

The approach here is to express the answer to the which is least precise. This is usually the number with the lower significant values.

Here, 64 has two significant figures and it is of a lower rank. Our answer should be expressed this way:

      [tex]\frac{1240.64}{64}[/tex] = 19.385 = 19

A candidate material for a turbine blade application oxidizes by diffusion of metal atoms through the oxide to the metal surface, where metal and oxygen react to form the oxide. After 10 hours at 550°C, an oxide layer 8 um has formed. What will the thickness be after 100 hours. (hint: turbine blade can be considered as a cylinder)

Answers

Answer:

The thickness of the oxide layer will 80  μm after 100 hours.

Explanation:

Thickness of oxide layer in 10 hours= 8 μm

Thickness of oxide layer in 1 hour = [tex]\frac{8 \mu m}{10 hour}[/tex]

Thickness of oxide layer in 100 hour :

[tex]\frac{8 \mu m}{10 hour}\times 100=80 \mu m[/tex]

The thickness of the oxide layer will 80 μm after 100 hours.

If light moves at a speed of about 3.00 x 108 m/s, how long will it take light to travel the distance of a marathon (about 42.2 km)? Express your answer in microseconds using the correct number of significant figures. Do not enter your answer using scientific notation.

Answers

Light travels a distance of 3.69 meters within the given time frame of 12.3 nanoseconds.

Speed is the measure of how quickly an object changes its position concerning a specified frame of reference. It's a scalar quantity, indicating both magnitude and direction.

Common units for speed include meters per second (m/s) or kilometers per hour (km/h). This fundamental concept plays a pivotal role in various domains like travel, sports, and transportation.

If light travels at a constant speed of [tex]3.0 * 10^8 m/s[/tex] and continues for 12.3 nanoseconds, the distance covered can be calculated:

Distance = Speed × Time

Distance = [tex]3.0 * 10^8 m/s* 12.3 * 10^{-9} s[/tex]

Distance = 3.69 meters

In this instance, light travels a distance of 3.69 meters within the given time frame of 12.3 nanoseconds.

Learn more about speed, here:

https://brainly.com/question/30301272

#SPJ12

Name the following ternary acids. a. H2 SO4 e. HMnO4 i. HNO2 m. HClO4 b. H2 SO3 f. H2 CrO4 j. H2 CO3 n. HClO3 c. H2 S2 O3 g. H3 BO3 k. H2 C2 O4 o. HClO2 d. H3 PO4 h. HNO3 l. CH3 COOH p. HClO

Answers

Answer:

H2 SO4 (Sulfuric acid) - HMnO4 (Permanganic acid) - HNO2 (Nitrous acid) HClO4 (Perchloric acid) - H2 SO3 (Sulphurous acid) - H2CrO4 (Chromic acid)  H2CO3 (Carbonic acid) - HClO3 (Chloric acid) - H3BO3 (boric acid) - HClO2 (Chlorous acid) H3PO4 (Phosphoric acid)  HNO3 (Nitric acid) - HClO (Hypochlorous acid) - CH3 COOH (acetic acid) - H2S2O3 (Thiosulfuric acid)- H2C2O4 (oxalic acid)

Explanation:

To name the ternary acid, they have to obbey the following formula

Hx - Non metal - Oy

where the oxidation state in H and O are +1 y -2 respectively.

When the oxidation state of the central Non metal is odd, the atomicity of H is 1 and in the O is deduced in such a way that the sum of oxidation states is 0.

When the oxidation state of the central No metal is even, the atomicity of H is 2 and in the O is deduced in such a way that the sum of oxidation states is 0.

IV V VI VII  

- - 1 Hypo ……. Ous  

- 3 4 3 … ous  

4 5 6 5 … ic  

  7 Per …… Ous  

The  oxalic acid is an organic compound of two carboxyl groups, so it is also called ethanedioc acid; It is actually known as oxalic by some plants of the genus oxalis. (prefix et (2 carbons))

The acetic acid that comprises a carboxylic group and a methyl group is also an organic compound. It is popularly known as acetic acid but it is actually called methylcarboxylic acid or having two carbons, ethanoic acid.

how long would it take to administer exactly 500 mL of fluid through an IV with a drop factor of 30 gtt/mL if the drip rate is 60 gtt/min?

Answers

Answer : The time taken will be 25 min.

Explanation :

First we have to determine the amount of fluid.

As, 1 mL contains 30 gtt

So, 500 mL contains [tex]\frac{500mL}{1mL}\times 30gtt=1500gtt[/tex]

Now we have to determine the time taken.

As, 60 gtt takes time = 1 min

So, 1500 gtt takes time = [tex]\frac{1500gtt}{60gtt}\times 1min=25min[/tex]

Therefore, the time taken will be 25 min.

Final answer:

To administer 500 mL of fluid with a drop factor of 30 gtt/mL at a drip rate of 60 gtt/min, the calculation reveals it will take 250 minutes.

Explanation:

To calculate the time required to administer exactly 500 mL of fluid through an IV with a drop factor of 30 gtt/mL at a drip rate of 60 gtt/min, we must first understand the given terms. The drop factor (gtt/mL) is a measure indicating the number of drops (gtt) that make up 1 mL of fluid. The drip rate (gtt/min) specifies how many drops of fluid are administered per minute.

First, we calculate the total number of drops in 500 mL of fluid, using the drop factor:

Total drops = Volume (mL) × Drop factor (gtt/mL)= 500 mL × 30 gtt/mL= 15000 gtt

Next, to find out how long it will take to administer these 15000 drops at a rate of 60 drops per minute, we divide the total number of drops by the drip rate:

Time (min) = Total drops ÷ Drip rate (gtt/min)= 15000 gtt ÷ 60 gtt/min= 250 minutes

Therefore, it will take 250 minutes to administer exactly 500 mL of fluid through the IV at the specified conditions.

Your patient gets a prescription for 62.5 mcg (micrograms, mg) of digoxin in liquid form. The label reads 0.0250 mg/mL. How many milliliters of digoxin should you give?

Answers

Answer:

2.5 militers (mL) of digoxin solution

Explanation:

if         1 microgram = 0.001 miligram

then   62.5 micrograms = X miligrams

X = (62.5 × 0.001) / 1 = 0.0625 miligrams

the we calculate the number of militers of digoxin needed by the patient:

if we have           0.0250 miligrams of digoxin in 1 mililiter of solution

then we have     0.0625 miligrams of digoxin in X mililiters of solution

X = (0.0625 × 1) / 0.0250 = 2.5 militers (mL) of digoxin solution

Final answer:

To calculate the amount of digoxin in milliliters, divide the amount of digoxin in milligrams by the concentration of the liquid form in milligrams per milliliter. In this case, the prescription is for 62.5 mcg of digoxin, and the concentration of the liquid form is 0.0250 mg/mL. The calculated volume of digoxin to be given is 2.5 mL.

Explanation:

To calculate the amount of digoxin in milliliters that should be given, we need to use the given information and convert units. The prescription is for 62.5 mcg (micrograms) of digoxin, and the concentration of the liquid form is 0.0250 mg/mL. To convert micrograms to milligrams, we divide by 1000. Then, we can use the formula: Volume (in mL) = Amount (in mg) / Concentration (in mg/mL).



Amount of digoxin in mg = 62.5 mcg / 1000 = 0.0625 mg



Volume of digoxin in mL = 0.0625 mg / 0.0250 mg/mL = 2.5 mL

Consider four small molecules, A–D, which have the following binding affinities for a specific enzyme (these numbers are the equilibrium constants Kd for the dissociation of the enzyme/molecule complex). Which binds most tightly to the enzyme? Which binds least tightly?

A) 4.5 μM

B) 13 nM

C) 8.2 pM

D) 6.9 mM

Answers

Answer:

Binding affinity measures the strength of the interaction between a molecule to its ligand; it is expressed in terms of the equilibrium dissociation constant; and the higher value of this constant, the more weaker the binding between the molecule and the ligand is. On the other hand, small constans means that the interaction is tight. So "C" binds most tightly to the enzyme and "D" binds least tightly.

An object with a mass of 100 kg is dropped from a height of 20 m. If the velocity of the object before hitting the ground is 15 m/s, is there a loss of energy in the form of heat? If so, how much? Assume, g= 9.8 m/s^2

Answers

Answer:

Yes, there is a loss of 8350 J of energy in the form of heat

Explanation:

The principle of energy conservation is described mathematically

as the energy conservation equation as follows:

                            ΔK+ΔU=Q+W        

where:

ΔK: changes in kinetics energy [J]ΔU: changes in potential energy [J]Q: gain or loss of heat[J]W: work done by the system or in the system[J]

Analyzing each term of the equation:

   [tex]ΔK=\frac{1}{2}mv_{f} ^{2}  - \x]frac{1}{2}mv_{i} ^{2}=\frac{1}{2}*100*15^{2} - \frac{1}{2}*100*0^{2}=11250 J[/tex]

ΔU=[tex]mgh_{f}-mgh_{i}=100*9,8*0-100*9,8*20=-19600[J][/tex]

Q=?

W=0 [J]

Replacing in the main equation:

11250-19600=Q+0

Q= -8350 [J]

So, the answer is YES, there is a loss of 8350 J of  energy in the form of heat.

You are performing a chemical reaction in a test tube. The test tube gets colder as the reaction takes place. This chemical reaction is... O a.a double replacement reaction. O b.endothermic Oc.a single replacement reaction. O d.a decomposition reaction. e. exothermic

Answers

Answer: Option (b) is the correct answer.

Explanation:

A chemical reaction in which heat energy is absorbed by the reactant molecules is known as an endothermic reaction.

Therefore, upon completion of this reaction the container in which reaction is carried out becomes colder.

A chemical reaction in which heat energy is released by the reactant molecules is known as an exothermic reaction.

Therefore, upon completion or during this type of reaction the container in which reaction is carried out becomes hot.

Thus, we can conclude that when the test tube gets colder as the reaction takes place then it means this chemical reaction is endothermic reaction.

Carlos Santana is a popular Latin-rock and jazz musician. O True ○ False

Answers

Answer:

True

Explanation:

Carlos Santana

Carlos Santana is a famous american - mexico musician and even a guitarist  with some unique music categories like , jazz , Latin , salsa . He started off in late late 1960's with the brand name Santana , which consists of a fusion of rock and roll and even Latin American jazz . And then after his career grows and he became famous .

Hence , the statement is correct .

Air at 293 K and 750 mm Hg pressure has a relative humidity of 80%. What is its percent humidity? The vapour pressure of water at 293 K is 17.5 mm Hg. (a) 80.38 (b) 80 (c) 79.62 (d) 78.51

Answers

Answer : The correct option is, (c) 79.62

Explanation :

The formula used for percent humidity is:

[tex]\text{Percent humidity}=\text{Relative humidity}\times \frac{p-p^o_v}{p-p_v}\times 100[/tex]   ..........(1)

The formula used for relative humidity is:

[tex]\text{Relative humidity}=\frac{p_v}{p^o_v}[/tex]       ...........(2)

where,

[tex]p_v[/tex] = partial pressure of water vapor

[tex]p^o_v[/tex] = vapor pressure of water

p = total pressure

First we have to calculate the partial pressure of water vapor by using equation 2.

Given:

[tex]p=750mmHg[/tex]

[tex]p^o_v=17.5mmHg[/tex]

Relative humidity = 80 % = 0.80

Now put all the given values in equation 2, we get:

[tex]0.80=\frac{p_v}{17.5mmHg}[/tex]

[tex]p_v=14mmHg[/tex]

Now we have to calculate the percent humidity by using equation 1.

[tex]\text{Percent humidity}=0.80\times \frac{750-17.5}{750-14}\times 100[/tex]

[tex]\text{Percent humidity}=79.62\%[/tex]

Therefore, the percent humidity is 79.62 %

How to dispose chemical waste? If unsure what should you do?

Answers

Method One of Three:
Identifying the Proper Waste Disposal Method


Read the material safety data sheet.
chemical products come with disposal instructions right on the label and following those instructions should be enough. Even for products without disposal instructions, you should still read the labels so you can be aware of the warnings and cautions concerning said products.
Items such as batteries and light bulbs have to be recycled at special recycling centers.
Never mix cleaning products together. If you only have a small amount of cleaning product left in each bottle, it may be tempting to mix them into one bottle for disposal. Different chemicals can react with each other to form very hazardous fumes and noxious gases.

Search the list of hazardous waste


In addition to the product label, you want to read the MSDS for industrial chemicals. The MSDS gives you important information about the chemical: its toxicity, reactivity, and disposal considerations.
Every chemical product you buy should come with an MSDS sheet. However, you can also use the online MSDS database to look up the MSDS for the specific formulation of the chemical you wish to dispose.[1]


Search the list of hazardous wastes

——————
Sorry that’s all I know :)

The questions are: Find the equations for the reaction of
HCLwith MgO and HCL and Mg. How the reactions different?

Answers

Answer:

[tex]Mg(s) + HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)[/tex]

[tex]MgO(s) + HCl(aq) \rightarrow MgCl_2(aq) + H_2O(l)[/tex]

Explanation:

When Mg reacts with HCl, magnesium chloride and hydrogen is formed. Mg is an active element and displaces hydrogen from HCl. So, this is a type of single displacement reaction.

[tex]Mg(s) + HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)[/tex]

When magnesium oxide (MgO) reacts with HCl, magnesium chloride and water is formed. This reaction is a type of neutralization reaction. MgO is a water insoluble base and HCl is acid. So. in this reaction, acid reacts with base to form salt [tex]MgCl_2[/tex]

[tex]MgO(s) + HCl(aq) \rightarrow MgCl_2(aq) + H_2O(l)[/tex]

Final answer:

The equation for the reaction between HCl and MgO is 2HCl(aq) + MgO(s) → MgCl2(aq) + H2O(l). The equation for the reaction between HCl and Mg is 2HCl(aq) + Mg(s) → MgCl2(aq) + H2(g). The reactions differ in terms of the reactants involved.

Explanation:

The equation for the reaction between HCl and MgO is:

2HCl(aq) + MgO(s) → MgCl2(aq) + H2O(l)

The equation for the reaction between HCl and Mg is:

2HCl(aq) + Mg(s) → MgCl2(aq) + H2(g)

The reactions differ in terms of the reactants involved. In the reaction with MgO, the reactant is an oxide compound (MgO) while in the reaction with Mg, the reactant is a pure metal (Mg).

Other Questions
a. dar un paseo las montaas, necesitas botas. b. Muchas personas viajan al Amazonas barco. c. El autobs es un medio de transporte muchas personas. d. lo general, la gente de las zonas rurales de Colombia viaja en chivas . e. Viaja de noche si quieres llegar a Buenos Aires la maana. f. Tienes que pasar la aduana si viajas a otro pas. A large water jet with a discharge of 2m^3 /s rises 90m above the ground. The exit nozzle diameter to achieve this must be. (a) 0.246m (b) 0.318m (c) 1.3m (d) 0.052m (e) None of the above What effect does Twains disclaimer have on you as you begin reading his novel? Check any of the boxes that apply.It makes me a little bit afraid to read the novel.It makes me think this novel is probably going to have a moral or message.It makes me think that this novel is probably going to contain some humor. Jack wanted an new iPad, but he did not want to spend the money he was saving for his ski trip. He then considered stealing one from a local bookstore where security was lax. Jack deliberated between the pros - new iPad and ski trip and the cons - getting caught for stealing the iPad. Given the slipshod security at the bookstore, Jack decides to steal an iPad. Of the following theories of crime and delinquency, which one best explains Jack's behavior? When Marcia goes into the bedroom to check on the child she is babysitting, she observes that his eyes are rapidly moving back and forth under his eyelids. The child is also lying very still. It is likely that he is: Prisha is hoping to conduct a survey at her school to find out the student body's opinion of the new cafeteria food. If she is utilizing a social science approach, what may be one of the limitations she faces by using this approach with her survey? In typical Texas summer fashion, the sun was luminous in the skyWhich of these words has the most similar connotation to luminous?A evidentB. brilliantC. obviousD.obscure Simplify four square root 2+7 square root 2-3 square root two find deri(10 points) A survey gives the value of the following variables for a sample of households in the UK: x1= number of people in the household x2= total household income x3= total household expenditure on food x4= total household expenditure on clothing x5= total household expenditure on alcohol and tobacco x6= total household expenditure on other goods write the functions which give: (a) total household income (b) total household saving (c) income per person (d) expenditure on clothing per person Multiply 9x^2(2x^2+8x) During 2020, Bramble Company changed from FIFO to weighted-average inventory pricing. Pretax income in 2019 and 2018 (Brambles first year of operations) under FIFO was $175,550 and $183,900, respectively. Pretax income using weighted-average pricing in the prior years would have been $147,000 in 2019 and $175,200 in 2018. In 2020, Bramble reported pretax income (using weighted-average pricing) of $201,100. Show comparative income statements for Bramble, beginning with "Income before income tax," as presented on the 2020 income statement. (The tax rate in all years is 30%.) Question 1 2 pts The answer to combat climate change is: Generate electricity from renewables All of the options given here Shift all our energy use to electricity Conservation and sustainability mindset The closest relatives of fungi are thought to be thea.animals c.mossesb.vascular plants d.slime molds Find the work done "by" the electric field on a negatively charged point particle with a charge of 7.7 x 10^-6 C as it is moved from a potential of 15.0 V to one of 5.0 V. (Include the sign of the value in your answer.) Labor market forces affecting organizations right now include the growing need for computer-literate knowledge workers and the necessity for continuous investment in human resources through recruitment, education, and training. True or false? A brokerage firm which provides analyst reports, investment advice, and information as well as online brokerage services is called a(n): a)premium discount broker. b)full-service broker. c)basic discount broker.d)electronic broker. Which artwork is a good example of American religious art?A. Michelangelos fresco The Last JudgmentB. Frederic Edwin Churchs Heart of the AndesC. Pietro Peruginos Crucifixion with SaintsD. Xia Guis Twelve Views from a Thatched Hut The Longo Corporation issued $60 million maturity value in notes, carrying a coupon rate of six percent, with interest paid semiannually. At the time of the note issue, equivalent risk-rated debt instruments carried yield rates of eight percent. The notes matured in five years.Calculate the proceeds that Longo Corporation will receive from the sale of the notes. How will the notes be disclosed on Longos balance sheet immediately following the sale? Calculate the interest expense for Longo Corporation for the first year that the notes are outstanding. Calculate the balance sheet value of the notes at the end of the first year The Richards Company manufactures a single product. All raw materials used are traceable to specific units of product. Current information for the Richards Company follows: Beginning raw materials inventory $ 15,000 Ending raw materials inventory 17,000 Raw material purchases 95,000 Beginning work in process inventory 45,000 Ending work in process inventory 30,000 Direct labor 135,000 Total factory overhead 65,000 Beginning finished goods inventory 60,000 Ending finished goods inventory 50,000 The company's cost of raw materials used, cost of goods manufactured and cost of goods sold is: What is the most widely used industrial separation operation?