Define the end point of a titration. Select one: a. It is a synonym for equivalence point. b. It is when a change that indicates equivalence is observed in the analyte solution. c. It is the point at which the pH no longer changes. Next

Answers

Answer 1

Answer:

b. It is when a change that indicates equivalence is observed in the analyte solution.

Explanation:

The end point of a titration is the point at which the indicator undergoes the change noticeable by our senses. Ideally, the equivalence point and end point coincide; but this does not usually happen in practice, because the indicator does not always change perceptibly at the same moment in which the equivalence point is reached and also for the change of the indicator, some of the reagent used in the evaluation is usually necessary .

The difference between the end point and the equivalence point of a valuation is called the valuation error or end point error.

At this point the pH changes the color of the indicator. nvhdurn

Answer 2

Final answer:

The end point of a titration is the moment observed (option b) when a change, due to an indicator or sensor, suggests that stoichiometric equivalence has been reached. It is an experimental determination and serves as the best estimate of the theoretical equivalence point.

Explanation:

The end point of a titration is not a synonym for the equivalence point. Rather, it represents the moment during a titration when a change indicating equivalence is observed in the analyte solution (option b). This point is typically detected through a change in color due to an indicator or through a change detected by a sensor. It is important to note that the end point is an experimental value, our best estimate of the equivalence point, and that any difference between the end point and the theoretical equivalence point is a source of determinate error.

In an acid-base titration, the end point is often observed when a pH indicator changes color, signifying that a stoichiometric amount of titrant has been added to the analyte. In redox and complexation titrations, it can be detected by changes in the solution conditions that are measurable by indicators and sensors.


Related Questions

How do ice and water on the ground affect incoming solar radiation?

Answers

Answer:

Ice and water on the ground affect incoming solar radiation by reflecting 4 percent of solar radiation that reaches the surface.

Explanation:

Answer:

ice and water on the ground affect incoming solar radiation by reflecting 4 percent of solar radiation that reaches the surface. the state of water and the sun angle are vital in determining the amount of reflection that take place. at low sun angle and at times when the surface is ice, more reflection occurs.

Explanation:

None

onsider two aqueous solutions of nitrous acid (HNO2). Solution A has a concentration of [HNO2]= 0.55 M and solution B has a concentration of [HNO2]= 1.55 M . You may want to reference (Page 743) Section 16.6 while completing this problem. Part A Which statement about the two solutions is true? Which statement about the two solutions is true? Solution A has the higher percent ionization and solution B has the higher pH. Solution B has the higher percent ionization and the higher pH. Solution B has the higher percent ionization and solution A has the higher pH. Solution A has the higher percent ionization and the higher pH.

Answers

Answer:

Solution A has the higher percent ionization and the higher pH.

Explanation:

Percent ionization depends on the concentration of acid in a solution. If the solution having more concentration of acid so the percent ionization will be lower while if the solution have low amount of acid i. e. dilute solution so the percent ionization will be higher. In solution A, the concentration of HNO2 is lower which is an acid so the percent ionization is higher and the pH of the solution is also higher as compared to solution B.

Answer:

Solution A has the higher percent ionization and the higher pH

Explanation:

Enter your answer in the provided box.A mixture of helium and neon gases is collected over water at 28°C and 791 mmHg. If the partial pressure of helium is 381 mmHg, what is the partial pressure of neon? (Vapor pressure of water at 28°C is 28.3 mmHg.)

Answers

Answer:

Explanation:

Using Dalton's law of partial pressure

P total pressure = Pressure of helium + Pressure of neon + Vapor pressure of water

P = 28.3 mmHg, Pressure of helium = 381 mmHg, Vapor pressure of water at 28°C

791 mmHg - 381 mmHg - 28.3 mmHg = Pressure of neon

Pressure of neon = 381.7 mmHg

16. Metals are good conductors of electricity because they
a. form crystal lattices.
b. contain positive ions.
c. contain mobile valence electrons.
d. form ionic bonds.

Answers

Metals are excellent conductors because the atoms in a metal form a matrix through which their outer electrons can move freely. Instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions. I think the answer is B. but you might wanna double check, i’m not 100% sure if it’s right. :)
Final answer:

Metals are good conductors of electricity due to the mobile valence electrons which can move freely within the metallic crystal lattice, facilitating electric charge transfer.

Explanation:

Metals are good conductors of electricity because they contain mobile valence electrons. In metallic bonds, these valence electrons are not associated with a particular atom or pair of atoms, but move freely within the crystal lattice of positively charged metal ions. They form what is often referred to as an 'electron sea'. These free moving electrons can carry charge from one place to another when a voltage (electric potential difference) is applied, making metals good conductors of electricity.

Learn more about Electric Conduction in Metals here:

https://brainly.com/question/32879067

#SPJ3

The standard free energy ( Δ G ∘ ′ ) (ΔG∘′) of the creatine kinase reaction is − 12.6 kJ ⋅ mol − 1 . −12.6 kJ⋅mol−1. The Δ G ΔG value of an in vitro creatine kinase reaction is − 0.1 kJ ⋅ mol − 1 . −0.1 kJ⋅mol−1. At the start of the reaction, the concentration of ATP is 5 mM, 5 mM, the concentration of creatine is 17 mM, 17 mM, and the concentration of creatine phosphate is 25 mM. 25 mM. Using the values given, calculate the starting concentration of ADP in micromolar.

Answers

Final answer:

To calculate the starting concentration of ADP in micromolar, use the equilibrium constant and the concentrations of ATP, creatine, and creatine phosphate at the start.

Explanation:

To calculate the starting concentration of ADP in micromolar, we need to use the equilibrium constant and the concentrations of ATP, creatine, and creatine phosphate at the start. The equation for the creatine kinase reaction is:

ATP + Creatine → ADP + Creatine Phosphate

Given that the standard free energy change (ΔG°) is -12.6 kJ/mol and the ΔG is -0.1 kJ/mol, we can calculate the equilibrium constant (K) using the equation: ΔG = -RT ln K.

Using the given values, we can substitute them into the equation to solve for K and then use the concentrations of ATP, creatine, and creatine phosphate to calculate the starting concentration of ADP in micromolar.

Learn more about Starting Concentration of ADP in Micromolar here:

https://brainly.com/question/28590870

#SPJ2

Using the values given the ADP concentration came as approximately 527.12 μM.

To find the starting concentration of ADP in micromolar, we can use the Gibbs free energy equation:

ΔG = ΔG° + RT ln(Q)

where ΔG is the Gibbs free energy change under cellular conditions, ΔG° is the standard Gibbs free energy change, R is the universal gas constant (8.314 J/mol·K), T is the temperature in Kelvin, and Q is the reaction quotient.

The creatine kinase reaction is:

Creatine + ATP <=> Creatine phosphate + ADP

Given:

ΔG°' = -12.6 kJ/mol = -12600 J/molΔG = -0.1 kJ/mol = -100 J/mol[ATP] = 5 mM = 5 × 10⁻³ M[Creatine] = 17 mM = 1.7 × 10⁻² M[Creatine phosphate] = 25 mM = 2.5 × 10⁻² M

We need to find [ADP]. First, rearrange the Gibbs free energy equation to solve for Q:

ΔG - ΔG°' = RT ln(Q)

Q = e^{(ΔG - ΔG°') / RT}

Substitute the known values (assuming T = 298 K):

Q = e^{(-100 - (-12600)) / (8.314 × 298)}

Q = e^{12500 / 2479.87}

Q = e^{5.04} ≈ 155.50

Substitute Q into the reaction quotient expression:

Q = [Creatine phosphate] [ADP] / [Creatine][ATP]

155.50 = (2.5 × 10⁻²) [ADP] / ((1.7 × 10⁻²) (5 × 10⁻³))

155.50 = (2.5 × 10⁻²) [ADP] / (8.5 × 10⁻⁵)

155.50 = (2.5 / 8.5) × 10³ [ADP]

155.50 = 0.295 [ADP] × 10³

ADP ≈ 155.50 / 0.295 ≈ 527.12 μM

The starting concentration of ADP is approximately 527.12 μM.

Let A be the last two digits of your 8-digit student ID. Example: for 20245347, A = 47 Radio waves, from your favorite radio station has a frequency of (A + 88.3) MHz (megahertz). What is the corresponding wavelength for this frequency in meters?

Answers

Answer:

2.22 m

Explanation:

Step 1:

Data obtained from the question:

Frequency = (A + 88.3) MHz

We assume that the student ID is 20245347 as given in the question.

Therefore, A = 47 (last two digit of the 8-digit student ID)

Frequency = (47 + 88.3) MHz

Frequency = 135.3 MHz = 135.3x10^6 Hz

Wavelength =?

Recall:

Velocity of electromagnetic wave is 3x10^8 m/s2

Step 2:

Determination of the wavelength of the radio wave. This is illustrated below:

Velocity = wavelength x frequency

Wavelength = Velocity /frequency

Wavelength = 3x10^8 / 135.3x10^6

Wavelength = 2.22 m

Liquid nitrogen trichloride is heated in a 2.50−L closed reaction vessel until it decomposes completely to gaseous elements. The resulting mixture exerts a pressure of 818 mmHg at 95°C. What is the partial pressure of each gas in the container?

Answers

Answer:

1. Partial pressure of N2 is 204.5 mmHg

2. Partial pressure of Cl2 is 613.5 mmHg

Explanation:

Step 1:

The equation for the reaction. This is given below:

NCl3 —> N2 (g) + Cl2 (g)

Step 2:

Balancing the equation.

NCl3 (l) —> N2 (g) + Cl2 (g)

The above equation is balanced as follow:

There are 2 atoms of N on the right side and 1 atom on the left side. It can be balance by putting 2 in front of NCl3 as shown below:

2NCl3 (l) —> N2 (g) + Cl2 (g)

There are 6 atoms of Cl on the left side and 2 atoms on the right side. It can be balance by putting 3 in front of Cl2 as shown below:

2NCl3 (l) —> N2 (g) + 3Cl2 (g)

Now the equation is balanced.

Step 2:

Determination of the mole fraction of each gas.

From the balanced equation above, the resulting mixture of the gas contains:

Mole of N2 = 1

Mole of Cl2 = 3

Total mole = 4

Therefore, the mole fraction for each gas is:

Mole fraction of N2 = mole of N2/total mole

Mole fraction of N2 = 1/4

Mole fraction of Cl2 = mole of Cl2/total mole

Mole fraction of Cl2 = 3/4

Step 3:

Determination of the partial pressure of N2.

Partial pressure = mole fraction x total pressure

Total pressure = 818 mmHg

Mole fraction of N2 = 1/4

Partial pressure of N2 = 1/4 x 818

Partial pressure of N2 = 204.5 mmHg

Step 4:

Determination of the partial pressure of Cl2.

Partial pressure = mole fraction x total pressure

Total pressure = 818 mmHg

Mole fraction of Cl2 = 3/4

Partial pressure of Cl2 = 3/4 x 818

Partial pressure of Cl2 = 613.5 mmHg

Answer:

[tex]p_{N_2}=204.5mmHg\\p_{Cl_2}=613.5mmHg[/tex]

Explanation:

Hello,

In this case, the undergoing chemical reaction is:

[tex]2NCl_3(g)\rightarrow N_2(g)+3Cl_2(g)[/tex]

Thus, by knowing that the nitrogen trichloride is completely decomposed, one assumes there is one mole of nitrogen and three moles of chlorine (stoichiometric coefficients) as a basis to compute the partial pressures since they have the mole ratio from the nitrogen trichloride. Hence, the mole fractions result:

[tex]x_{N_2}=\frac{1}{1+3}=0.25\\ x_{Cl_2}=1-0.25=0.75[/tex]

In such a way, for the final pressure 818 mmHg, the partial pressures become:

[tex]p_{N_2}=x_{N_2}p_T=0.25*818mmHg=204.5mmHg\\p_{Cl_2}=x_{Cl_2}p_T=0.75*818mmHg=613.5mmHg[/tex]

Best regards.

A sample of NaOH (sodium hydroxide) contains a small amount of Na2CO3 (sodium carbonate). For titration to the phenolphthalein endpoint, 0.200 g of this sample requires 23.98 mL of 0.100 M HCl. An additional 0.700 mL of 0.100 M HCl is required to reach the methyl orange endpoint. What is the percentage of Na2CO3 by mass in the sample?

Answers

Answer:

3.71%

Explanation:

The phenolphthalein endpoint refers to the reactions:

OH⁻ + H⁺ → H₂O

CO₃⁻² + H⁺ → HCO₃⁻

While the methyl orange endpoint to:

HCO₃⁻ + H⁺ → H₂CO₃

So the additional volume required for the second endpoint tells us the amount of HCO₃⁻ species, which in turn is the total amount of Na₂CO₃ in the sample:

0.700 mL * 0.100 M * [tex]\frac{1mmolHCO_{3}^{-}}{1mmolHCl}[/tex] = 0.07 mmol HCO₃⁻

Now we calculate the mass of Na₂CO₃, using its molecular weight:

0.07 mmol HCO₃⁻ = 0.07 mmol Na₂CO₃

0.07 mmol Na₂CO₃ * 106 mg/mmol = 7.42 mg Na₂CO₃

No calculations using the volume of the first equivalence point are required because the problem already tells us the mass of the sample is 0.200 g.

0.200 g ⇒ 0.200 * 1000 = 200 mg

%Na₂CO₃ = 7.42 mg/200 mg * 100 = 3.71%

A 40.0-mL sample of 0.100 M HNO2 (Ka = 4.6 x 10-4 .) is titrated with 0.200 M KOH. Calculate: a. the pH when no base is added b. the volume of KOH required to reach the equivalence point. c. the pH after adding 5.00 mL of KOH d .the pH at one-half the equivalence point e. the pH at the equivalence point f. the pH after 30 mL of the base is added

Answers

The initial pH of 0.100 M HNO2 is approximately 2.17. It takes 20.0 mL of 0.200 M KOH to reach the equivalence point. The subsequent pH values at various points in the titration reflect the changing concentrations of HNO2 and OH-.

A 40.0-mL sample of 0.100 M HNO2 (Ka = 4.6 x 10-4) is titrated with 0.200 M KOH.

a. The pH when no base is added

To find the initial pH, we first need to calculate the concentration of H3O+ using the equilibrium expression for the weak acid:

HNO2 ⇌ H+ + NO2-

Using Ka, we get:

Ka = [H+][NO2-] / [HNO2]

4.6 x 10-4 = x2 / 0.100

Solving for x, we get:

x = √(4.6 x 10-4 * 0.100) = 0.00678 M

pH = -log(0.00678) ≈ 2.17

b. The volume of KOH required to reach the equivalence point

The moles of HNO2 are:

0.040 L * 0.100 M = 0.004 mol

Since KOH and HNO2 react in a 1:1 molar ratio, the volume of 0.200 M KOH required is:

0.004 mol / 0.200 M = 0.020 L = 20.0 mL

c. The pH after adding 5.00 mL of KOH

Moles of KOH added:

0.005 L * 0.200 M = 0.001 mol

Moles of HNO2 remaining:

0.004 mol - 0.001 mol = 0.003 mol

Concentration of HNO2 remaining = 0.003 mol/0.045 L = 0.0667 M

Concentration of NO2- formed = 0.001 mol/0.045 L = 0.0222 M

Using the Henderson-Hasselbalch equation:

pH = pKa + log([A-]/[HA])

pH = -log(4.6 x 10-4) + log(0.0222/0.0667) ≈ 3.35

d. The pH at one-half the equivalence point

At one-half the equivalence point, the concentration of [A-] = [HA], so:

pH = pKa = -log(4.6 x 10-4) ≈ 3.34

e. The pH at the equivalence point

At the equivalence point, all HNO2 has been converted to NO2-:

NO2- will hydrolyze to produce OH-:

NO2- + H2O ⇌ HNO2 + OH-

Using Kb for NO2-:

Kb = Kw/Ka = 1.0 x 10-14 / 4.6 x 10-4 = 2.17 x 10-11

Setting up the equation:

Kb = [OH-][HNO2] / [NO2-]

2.17 x 10-11 = x2 / 0.100

Solving for x:

x = √(2.17 x 10-11 * 0.100) = 1.47 x 10-6

pOH = -log(1.47 x 10-6) ≈ 5.83

pH = 14 - 5.83 = 8.17

f. The pH after 30 mL of the base is added

Moles of KOH added:

0.030 L * 0.200 M = 0.006 mol

Excess moles of OH-:

0.006 mol - 0.004 mol = 0.002 mol

Concentration of OH- in the total volume:

0.002 mol / 0.070 L = 0.02857 M

pOH = -log(0.02857) ≈ 1.54

pH = 14 - 1.54 = 12.46

The correct answers are: (a). [H⁺] = 2.17; (b). [tex]\text{Volume} = 20.0\ mL[/tex]; (c). [tex][NO_2^-] = \text{0.0222 M}[/tex]; (d). pH = 3.34; (e). [tex]\text{pH} = 8.02[/tex]; (f). pH = 12.46.

Let's solve the different parts of the titration problem step-by-step:

a. pH when no base is added:

First, we need to find the pH of a 0.100 M HNO₂ solution. HNO₂ is a weak acid and it partially ionizes in water:

HNO₂ ⇌ H⁺ + NO₂⁻

The expression for the acid dissociation constant Ka is:

[tex]K_a = 4.6 \times 10^{-4} = \frac{[H^+][NO_2^-]}{[HNO_2]}[/tex]

Assuming that the initial concentration of HNO₂ is C0 = 0.100 M and the change in concentration is x:

[tex]4.6 \times 10^{-4} = \frac{(x \times x)}{(0.100 - x)}[/tex]

Assuming x is small relative to 0.100 M:

[tex]4.6 \times 10^{-4} \approx \frac{x^2} {0.100}[/tex]x² = 4.6 x 10⁻⁵x = 6.78 x 10⁻³ M[H⁺] = 6.78 x 10⁻³ M, pH = -log[H⁺] = -log(6.78 x 10⁻³) = 2.17

b. Volume of KOH required to reach the equivalence point:

At the equivalence point, moles of HNO₂ = moles of KOH.Moles of HNO₂ = 0.100 M × 0.040 L = 0.00400 molFor KOH: 0.00400 mol = volume × 0.200 M[tex]\text{Volume} = \frac{\text{0.00400 mol}} {\text{0.200 M}} = 0.0200\ L = 20.0\ mL[/tex]

c. pH after adding 5.00 mL of KOH:

Moles of KOH added = 0.200 M × 0.00500 L = 0.00100 molRemaining moles of HNO₂ = 0.00400 mol - 0.00100 mol = 0.00300 molTotal volume = 40.0 mL + 5.0 mL = 45.0 mL = 0.0450 L[tex][HNO_2] = \frac{\text{0.00300 mol}} {\text{0.0450 L}} = \text{0.0667 M}[/tex][tex][NO_2^-] = \frac{\text{0.00100 mol}} {\text{0.0450 L}} = \text{0.0222 M}[/tex]

Using the Henderson-Hasselbalch equation:

[tex]pH = pKa + \log(\frac{[\text{NO}_2^-]}{[\text{HNO}_2]}) \\[/tex][tex]pK_a = -\log(4.6 \times 10^{-4}) = 3.34 \\[/tex][tex]pH = 3.34 + \log(\frac{0.0222}{0.0667}) = 3.34 - 0.477 = 2.86[/tex]

d. pH at one-half the equivalence point:

At one-half the equivalence point, [HNO₂] = [NO₂⁻], so pH = pKa.

pH = pKa = 3.34

e. pH at the equivalence point:

At the equivalence point, all HNO₂ has reacted to form NO₂⁻. The solution contains NO₂⁻ ions, which hydrolyze:

NO₂⁻ + H₂O ⇌ HNO₂ + OH⁻[tex]Kb = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{4.6 \times 10^{-4}} = 2.17 \times 10^{-11}[/tex]

Let x be the concentration of OH⁻:

[tex]K_b = \frac{x^2}{0.0500\text{ M}} \\[/tex][tex]2.17 \times 10^{-11} = \frac{x^2}{0.0500} \\[/tex][tex]x^2 = 1.085 \times 10^{-12} \quad \Rightarrow \quad x = \sqrt{1.085 \times 10^{-12}} = 1.04 \times 10^{-6}\text{ M} \\[/tex][tex][\text{OH}^-] = 1.04 \times 10^{-6}\text{ M} \\[/tex][tex]\text{pOH} = -\log[\text{OH}^-] = -\log(1.04 \times 10^{-6}) = 5.98 \\[/tex][tex]\text{pH} = 14 - \text{pOH} = 14 - 5.98 = 8.02[/tex]

f. pH after 30 mL of the base is added:

Moles of KOH added = 0.200 M × 0.030 L = 0.00600 molExcess moles of KOH = 0.00600 mol - 0.00400 mol = 0.00200 molTotal volume = 40 mL + 30 mL = 70 mL = 0.070 L[tex][OH^-] = \frac{\text{0.00200 mol}}{\text{0.070 L}} = \text{0.0286 M}[/tex]pOH = -log(0.0286) = 1.54pH = 14 - pOH = 14 - 1.54 = 12.46

An accident happens in the lab of Professor Utonium, and a radioactive element X is released in the form of a gas at around 4:00 am. Element X has a short half-life (25 min), and the lab would be considered safe when the concentration of X drops by a factor of 10. Considering the decomposition of element X is of first-order, what is the earliest time Professor Utonium can come back to do experiments in the lab

Answers

Answer:

5:22 am

Explanation:

The gas X decays following a first-order reaction.

The half-life ([tex]t_{1/2}[/tex]) is 25 min. We can find the rate constant (k) using the following expression.

[tex]k = \frac{ln2}{t_{1/2}} =\frac{ln2}{25min} = 0.028 min^{-1}[/tex]

We can find the concentration of X at a certain time ([tex][X][/tex]) using the following expression.

[tex][X] = [X]_0 \times e^{-k \times t}[/tex]

where,

[tex][X]_0[/tex]: initial concentration of X

t: time elapsed

[tex]\frac{[X]}{[X]_0}= e^{-k \times t}\\\frac{1/10[X]_0}{[X]_0}= e^{-0.028min^{-1} \times t}\\t=82min[/tex]

The earliest time Professor Utonium can come back to do experiments in the lab is:

4:00 + 82 = 5:22 am

Final answer:

The earliest Professor Utonium can return to the lab after a radioactive release is approximately 5:15 am, based on the half-life of 25 minutes and the requirement for the concentration of the gas to drop by a factor of 10, corresponding to just over 3 half-lives.

Explanation:

The question asks for the earliest time Professor Utonium can return to the lab after a release of a radioactive gas, X, which has a half-life of 25 minutes, and the lab is considered safe when its concentration drops by a factor of 10. Understanding that the decay of the radioactive element follows first-order kinetics, we can calculate the time required for the concentration to drop by this factor.

First-order decay implies that the time it takes for a substance to decay to half its initial amount is constant, known as the half-life. To reduce the concentration of a substance by a factor of 10, we need to go through a certain number of half-lives. The formula for calculating the amount of substance remaining after a given time is N = N0,[tex](1/2)^{(t/t1/2)}[/tex] where N is the remaining amount, N0 is the initial amount, t is time, and t1/2 is the half-life.

To reduce the concentration by a factor of 10, we effectively need the substance to go through just over 3 half-lives (since (1/2)³ = 1/8, which is just a bit more than one-tenth). Therefore, the calculation is 3 * 25 = 75 minutes after the initial release. Since the accident happened at around 4:00 am, adding 75 minutes means the earliest Professor Utonium can return to the lab is approximately 5:15 am.

An aqueous solution of Na2CrO4 at 25oC is slowly added to an aqueous solution containing 0.001 M Pb(NO3)2and 0.100 M Ba(NO3)2. Which solid will precipitate first? The Ksp of BaCrO4 is 1.17 × 10−10, and Ksp of PbCrO4 is 2.80 × 10−13.

Answers

Answer:

The one that will begin to precipitate first will be the lead chromate (PbCrO₄)

Explanation:

First of all, let's determine the equations involved:

Pb(NO₃)₂ →   Pb²⁺  +   2NO₃⁻

0.001          0.001       0.002

Ba(NO₃)₂  →  Ba²⁺  +  2NO₃⁻

0.100          0.100      0.200  

Sodium chromate as a soluble salt, can be also dissociated in:

Na₂CrO₄ →  2Na⁺ +  CrO₄²⁻

As the chromate can react to both cations of the aqueous solution, there will be formed 2 precipitates. When the saturation point is reached, which is determined by the Kps, everything that cannot be dissolved will precipitate.

The first to saturate the solution will precipitate first.

CrO₄²⁻ + Pb²⁺  ⇄  PbCrO₄

  s            s             s²  = Kps

 Kps = s² ⇒ [CrO₄²⁻] . [Pb²⁺] =  2.80×10⁻¹³

[CrO₄²⁻] . 0.001 = 2.80×10⁻¹³

[CrO₄²⁻] = 2.80×10⁻¹³ / 0.001 = 2.80×10⁻¹⁰

This is the concentration for the chromate when the lead chromate starts to precpitate.

CrO₄²⁻ + Ba²⁺  ⇄  BaCrO₄

  s            s             s²  = Kps  

Kps = [CrO₄²⁻] . [Ba²⁺]

1.17×10⁻¹⁰ = [CrO₄²⁻] . 0.100

[CrO₄²⁻] = 1.17×10⁻¹⁰ / 0.100 =  1.17×10⁻⁹

The first one that precipitates needs less chromate ion to start precipitating, in conclusion the one that will begin to precipitate first will be lead chromate.

The solid that will precipitate first is PbCrO₄.

To determine which solid will precipitate first, we need to compare the solubility product constants [tex](\( K_{\text{sp}} \))[/tex] for each possible precipitate. The compound with the lower [tex]\( K_{\text{sp}} \)[/tex] will precipitate first because it has lower solubility in water.

The solubility products given are:

- [tex]\( K_{\text{sp}} \) of BaCrO\(_4\) = \( 1.17 \times 10^{-10} \)[/tex]

- [tex]\( K_{\text{sp}} \) of PbCrO\(_4\) = \( 2.80 \times 10^{-13} \)[/tex]

We need to find the concentration of [tex]\(\text{CrO}_4^{2-}\) (\([ \text{CrO}_4^{2-} ]\))[/tex] at which each compound will begin to precipitate.

Calculation for BaCrO₄:

The reaction for the precipitation of BaCrO₄ is:

[tex]\[ \text{Ba}^{2+} (aq) + \text{CrO}_4^{2-} (aq) \rightarrow \text{BaCrO}_4 (s) \][/tex]

The [tex]\( K_{\text{sp}} \)[/tex] expression is:

[tex]\[ K_{\text{sp}} = [\text{Ba}^{2+}] [\text{CrO}_4^{2-}] \][/tex]

Given:

[tex]\[ K_{\text{sp}} (\text{BaCrO}_4) = 1.17 \times 10^{-10} \][/tex]

[tex]\[ [\text{Ba}^{2+}] = 0.100 \, \text{M} \][/tex]

We can solve for [tex]\([ \text{CrO}_4^{2-} ]\)[/tex]:

[tex]\[ 1.17 \times 10^{-10} = (0.100) [\text{CrO}_4^{2-}] \][/tex]

[tex]\[ [\text{CrO}_4^{2-}] = \frac{1.17 \times 10^{-10}}{0.100} \][/tex]

[tex]\[ [\text{CrO}_4^{2-}] = 1.17 \times 10^{-9} \, \text{M} \][/tex]

Calculation for PbCrO₄:

The reaction for the precipitation of PbCrO₄ is:

[tex]\[ \text{Pb}^{2+} (aq) + \text{CrO}_4^{2-} (aq) \rightarrow \text{PbCrO}_4 (s) \][/tex]

The [tex]\( K_{\text{sp}} \)[/tex] expression is:

[tex]\[ K_{\text{sp}} = [\text{Pb}^{2+}] [\text{CrO}_4^{2-}] \][/tex]

Given:

[tex]\[ K_{\text{sp}} (\text{PbCrO}_4) = 2.80 \times 10^{-13} \][/tex]

[tex]\[ [\text{Pb}^{2+}] = 0.001 \, \text{M} \][/tex]

We can solve for [tex]\([ \text{CrO}_4^{2-} ]\)[/tex]:

[tex]\[ 2.80 \times 10^{-13} = (0.001) [\text{CrO}_4^{2-}] \][/tex]

[tex]\[ [\text{CrO}_4^{2-}] = \frac{2.80 \times 10^{-13}}{0.001} \][/tex]

[tex]\[ [\text{CrO}_4^{2-}] = 2.80 \times 10^{-10} \, \text{M} \][/tex]

Comparison:

- The concentration of [tex]\(\text{CrO}_4^{2-}\)[/tex] needed to precipitate BaCrO₄ is [tex]\( 1.17 \times 10^{-9} \, \text{M} \)[/tex].

- The concentration of [tex]\(\text{CrO}_4^{2-}\)[/tex] needed to precipitate PbCrO₄ is [tex]\( 2.80 \times 10^{-10} \, \text{M} \)[/tex].

Since [tex]\( 2.80 \times 10^{-10} \, \text{M} \)[/tex] is smaller than[tex]\( 1.17 \times 10^{-9} \, \text{M} \), PbCrO\(_4\)[/tex] will precipitate first.


What is the pH of a 0.0538 M solution of Sr(OH)2?

Answers

Answer:

pH= 13.03

Explanation:

Since dissociation of Sr(OH)2= Sr2+ + 2[OH-]

[OH-]=2×0.0538 = 0.1076M

pOH= -log[0.1076]= 0.97

pH= 14-pOH = 14-0.97= 13.03

A certain substance X has a normal freezing point of 5.6 °C and a molal freezing point depression constant Kf-7.78 °C-kg·mol-1. A solution is prepared by dissolving some urea ((NH2)2CO) in 550. g of Χ. This solution freezes at-0.9 °C. Calculate the mass of urea that was dissolved. Be sure your answer has the correct number of significant digits.

Answers

Answer:

27.60 g urea

Explanation:

The freezing-point depression is expressed by the formula:

ΔT= Kf * m

In this case,

ΔT = 5.6 - (-0.9) = 6.5 °CKf = 7.78 °C kg·mol⁻¹

m is the molality of the urea solution in X (mol urea/kg of X)

First we calculate the molality:

6.5 °C = 7.78 °C kg·mol⁻¹ * mm = 0.84 m

Now we calculate the moles of urea that were dissolved:

550 g X ⇒ 550 / 1000 = 0.550 kg X

0.84 m = mol Urea / 0.550 kg Xmol Urea = 0.46 mol

Finally we calculate the mass of urea, using its molecular weight:

0.46 mol * 60.06 g/mol = 27.60 g urea

Why does pressure change in this way? Select all
that apply.

Answers

Answer:

A. Kinetic energies of molecules increase.

B. Speeds of molecules increase.

C. Number of collisions per second increase.

Final answer:

Pressure changes according to Le Chatelier's principle and can be influenced by mechanical and thermal mechanisms, as well as by the kinetic activity of gas molecules.

Explanation:

Pressure changes can be understood in terms of Le Chatelier's principle, which states that when a change is imposed on a system at equilibrium, the system adjusts to counteract that change.

In the case of gases, increasing the pressure (by decreasing volume) leads to a shift in the equilibrium to reduce the number of gas particles, if possible, thereby reducing the pressure. Conversely, decreasing the pressure (by increasing volume) would have the opposite effect.

Pressure also varies due to thermal and mechanical mechanisms. Heating air causes it to rise and reduce surface air pressure, while cooling air causes it to descend, increasing pressure.

Mechanical changes occur when airflow is blocked, causing a build-up of air and increased pressure. Additionally, the kinetic theory of gases suggests that gases exert pressure because of the continuous motion of their particles, colliding with container walls and exerting force.

Furthermore, variations in pressure at different points of a fluid are important for driving the phenomena of buoyancy, as well as affecting divers and airplane passengers through changes in ambient pressure.

What is hydroponics

Answers

Answer:

Explanation:

Hydroponics is the process of growing crops using only water and liquid fertilizer. This process is great when your in the big city.

Final answer:

Hydroponics is a method of growing plants in a nutrient-rich water solution rather than soil, which allows precise control of nutrients and is used in research and commercial greenhouses for robust crop production.

Explanation:

Hydroponics is a highly efficient farming technique where plants are grown in a water-nutrient solution, rather than in soil. This method allows for precise control over the nutritional environment of the plants, which is why it is favored in scientific research for studying plant nutrient deficiencies and for producing robust, healthy crops.

In hydroponic systems, the need for soil is eliminated, and plants are given the exact nutrients they require directly. Because of this, hydroponics is used not only in laboratories but also in commercial greenhouse environments to cultivate flowers, vegetables, and other crops.

These crops are often resilient to pests and harsh conditions, contributing to sustainable food production and agricultural development.

Greenhouse management and hydroponics go hand in hand, as many plants grown hydroponically are also cultivated under controlled climates within greenhouses. The elimination of soil in hydroponics also helps mitigate the ecological, economic, and health concerns associated with excessive pesticide use in traditional agriculture.

At a certain temperature, 0.660 mol SO 3 is placed in a 4.00 L container. 2 SO 3 ( g ) − ⇀ ↽ − 2 SO 2 ( g ) + O 2 ( g ) At equilibrium, 0.110 mol O 2 is present. Calculate K c .

Answers

Answer:

[tex]Kc=6.875x10^{-3}[/tex]

Explanation:

Hello,

In this case, for the given chemical reaction at equilibrium:

[tex]2 SO_3 ( g ) \rightleftharpoons 2 SO_ 2 ( g ) + O_ 2 ( g )[/tex]

The initial concentration of sulfur trioxide is:

[tex][SO_3]_0=\frac{0.660mol}{4.00L}=0.165M[/tex]

Hence, the law of mass action to compute Kc results:

[tex]Kc=\frac{[SO_2]^2[O_2]}{[SO_3]^2}[/tex]

In such a way, in terms of the change [tex]x[/tex] due to the reaction extent, by using the ICE method, it is modified as:

[tex]Kc=\frac{(2x)^2*x}{(0.165-2x)^2}[/tex]

In that case, as at equilibrium 0.11 moles of oxygen are present, [tex]x[/tex] equals:

[tex]x=[O_2]=\frac{0.110mol}{4.00L}=0.0275M[/tex]

Therefore, the equilibrium constant finally turns out:

[tex]Kc=\frac{(2*0.0275)^2*0.0275}{(0.165-2*0.0275)^2} \\\\Kc=6.875x10^{-3}[/tex]

Best regards.

affects of cholera toxin on adenylyl cyclase the gram negative bacterium vibrio cholerae produces a protein cholera toxin that is respondible for th e characteristic symptoms of cholera. if body fluids and Na are not replaced, severe dehydration results. what is the effect of cholera toxin on cAMP in the intestinal cells

Answers

Answer: the effects of cholera toxin on cAMP in the intestinal cells is that it INCREASES cAMP production.

Explanation:

Vibrio cholerae is a gram negative bacterium which produces a protein cholera toxin that is responsible for the characteristic symptoms of cholera such as

watery diarrhea, vomiting, rapid heart rate, loss of skin elasticity, low blood pressure, thirst, and muscle cramps. There is need for body fluids and Na replacement to avoid severe dehydration results which may lead to death.

Cyclic adenosine monophosphate( cAMP) is a derivative used for intracellular signal transduction in organisms. The cholera toxin produced by the bacteria INCREASES the production of cAMP through its polypeptides( which consist of active protomer and binding protomer). The cholera toxin first binds to cell surface receptors, the protomer then enters the cell and bind with and activate the adenylate cyclase. Increasing adenylate cyclase activity will INCREASE cellular levels of cAMP, increasing the activity of ion pumps that remove ions from the cell. Due to osmotic pressure changes, water also must flow with the ions into the lumen of the intestinal mucosa, dehydrating the tissue. I hope this helps, thanks.

Compound A has a solubility of 0.2 g/mL in toluene at toluene's boiling point and a solubility of 0.05 g/mL at 0 ºC. How much toluene would be necessary to recrystallize 3.2 g of A. What would be the maximum amount of A that could be recovered if the saturated solution was allowed to cool to 0 ºC. How much A would be recovered, if you accidentally used twice as much toluene as was necessary?

Answers

Answer:

1) 16 mL of toluene is necessary to recrystallize 3.2 g of compound A

2) 2.4 g of A is the maximum amount that could be recovered.

3) 1.6 g of compound A  can be recovered if you accidentally use twice as much  toluene as was necessary

Explanation:

1)

The volume of the solvent ( toluene) = [tex]\frac{starting \ amount }{solubility \ at \boiling \ point }[/tex]

= [tex]\frac{3.2 \ g}{0.2 \ g/mL}[/tex]

= 16 mL

∴  16 mL of toluene is necessary to recrystallize 3.2 g of compound A

2)

The maximum amount    A that could be recovered if the saturated solution was allowed to cool to 0 ºC is determined by the difference of the starting amount and amount left in the solution at 0 ºC

i.e

maximum amount of A = 3.2 - ( 16 mL × 0.05 g/mL)

= 3.2 g - 0.8 g

= 2.4 g

∴  2.4 g of A is the maximum amount that could be recovered.

3)

Amount of A that would be  recovered, if you accidentally used twice as much toluene as was necessary is calculated as follows;

amount of A = 3.2g - (32 mL × 0.05 g/mL)

= 3.2 g - 1.6 g

= 1.6 g

Thus; 1.6 g of compound A  can be recovered if you accidentally use twice as much  toluene as was necessary

Treating (CH3)3C-Cl with a mixture of H2O and CH3OH at room temperature would yield: A) CH2=C(CH3)2 B) (CH3)3COH C) (CH3)3COCH3 D) All of these choices. E) None of these choices.

Answers

Answer:

All of the choices.

Explanation:

As the reaction is involving with a mixture of H₂O and CH₃OH, these two reagents can work as nucleophyle of the reaction. Both of them, are polar and promoves a Sn1/E1 reaction. When it reacts with water it will produce product B); it will form product C) when it reacts with methanol, and product A) will be formed when the reaction undergoes an E1 reaction.

In this case, the only way to show you this, it's doing the mechanism of reaction for each product. Picture attached show the mechanism for the formation of all these products.

Final answer:

Treating (CH3)3C-Cl with H2O and CH3OH usually results in the formation of tert-butyl alcohol, (CH3)3COH, through a nucleophilic substitution reaction, making option B the correct answer.

Explanation:

Treating (CH3)3C-Cl with a mixture of H2O and CH3OH at room temperature typically involves a nucleophilic substitution reaction where the chloride ion (Cl-) is replaced by the nucleophile. In this case, the nucleophiles are water (H2O) and methanol (CH3OH). The product of this reaction would be (CH3)3COH, also known as tert-butyl alcohol, as both water and methanol could act as nucleophiles to perform the substitution, but water is generally a better nucleophile than methanol. Hence, option B is the correct answer.

if you have 3.0 moles of argon gas at STP, how much volume will the argon take up?

Answers

if you have 3.0 moles of argon gas at STP u would take up 2.5 volume

Tarnish on tin is the compound SnO. A tarnished tin plate is placed in an aluminum pan of boiling water. When enough salt is added so that the solution conducts electricity, the tarnish disappears. Imagine that the two halves of this redox reaction were separated and connected with a wire and a salt bridge. Part A Calculate the standard cell potential given the following standard reduction potentials: Al3++3e−→Al;E∘=−1.66 V Sn2++2e−→An;E∘=−0.140 V

Answers

Answer:

1.52V

Explanation:

Oxidation half equation:

2Al(s)−→2Al^3+(aq) + 6e

Reduction half equation

3Sn2^+(aq) + 6e−→3Sn(s)

E°cell= E°cathode - E°anode

E°cathode= −0.140 V

E°anode= −1.66 V

E°cell=-0.140-(-1.66)

E°cell= 1.52V

Final answer:

The overall cell potential for the redox reaction between tin and aluminum in a galvanic cell is calculated as +1.52 V, indicating a spontaneous reaction with tin being oxidized at the anode and aluminum reduced at the cathode.

Explanation:

To calculate the standard cell potential for a redox reaction involving tin (Sn) and aluminum (Al), we apply the reduction potentials of their respective half-reactions. The half-reaction for tin is as follows: Sn(s) ightarrow Sn2+(aq) + 2 e - , with an associated standard reduction potential (E & Ocirc ;) of - 0.140 V, however, its oxidation potential is actually +0.140 V.

For aluminum, the half-reaction is: Al3+(aq) + 3 e - ightarrow Al(s), with an E & Ocirc ; of - 1.66 V. In a galvanic cell, the aluminum will oxidize, and since it’s a reduction potential, for oxidation, we take the negative of this value, which would make it +1.66 V.

To find the overall cell potential, we use the equation Ecell = Ecathode - Eanode. In this reaction, Sn(s) is our anode, and Al(s) is our cathode. However, since aluminum's E & Ocirc ; is already negative (signifying oxidation), we reverse its sign for use in the cell potential equation.

Ecell = Ecathode - Eanode = (+1.66 V) - (+0.14 V) = +1.66 V - 0.14 V = +1.52 V

The standard cell potential is positive, indicating that the redox reaction is spontaneous. Tin is oxidized at the anode, and aluminum is reduced at the cathode, forming the basis for electric current flow in the cell.

What is the solubility in moles/liter for magnesium hydroxide at 25 oC given a Ksp value of 1.1 x 10-11. Write using scientific notation and use 1 or 2 decimal places (even though this is strictly incorrect!)

Answers

Answer:

S = 0.00014 moles /L = 1.4 * 10^-4 moles/L

Explanation:

Step 1: Data given

Temperature = 25.0 °C

Ksp = 1.1 * 10^-11

Step 2: The balanced equation

Mg(OH)2(s) ⇆ Mg^2+(aq) + 2OH-(aq)

Step 3: Define Ksp

[Mg(OH)2 = 1.11 * 10^-11 = S

[Mg^2+] = S

[OH-] = 2S

Ksp = [Mg^2+]*[OH-]²

Ksp = S * (2S)²

1.1 * 10^-11 = 4S³

S³ = 2.75 * 10^-12

S = 0.00014 moles /L

A hydrogen atom can be in the 1S state, whose energy we'll call 0, the 2S state, or any of 3 2P states. The 2S and 2P states have energies of 10.2 eV. There are other states with higher energy but we'll ignore them for simplicity. The 2P states have distinctive optical properties, so we're interested in how many are present even when it's a small fraction of the total?

Answers

Answer:

-- 5.8×10⁻⁹ of the H is in 2P states at T=5900 K, a typical Sun surface temperature.

-- 3.3×10⁻¹² of the H is in 2P states at T=4300 K, a typical Sunspot temperature.

Explanation:

Answer:

Explanation:

your question seems to be  uncompleted , but however i have a solution to a similar question, check the attachment and follow the format to evaluate your question.

check the attachement

A chemist must prepare 900.0mL of sodium hydroxide solution with a pH of 13.90 at 25°C. She will do this in three steps: Fill a 900.0mL volumetric flask about halfway with distilled water. Weigh out a small amount of solid sodium hydroxide and add it to the flask. Fill the flask to the mark with distilled water.

Answers

Answer:

28.58 g of NaOH

Explanation:

The question is incomplete. The missing part is:

"Calculate the mass of sodium hydroxide that the chemist must weigh out in the second step"

To do this, we need to know how much of the base we have to weight to prepare this solution.

First we know that is a sodium hydroxide aqueous solution so, this will dissociate in the ions:

NaOH -------> Na⁺ + OH⁻

As NaOH is a strong base, it will dissociate completely in solution, so, starting with the pH we need to calculate the concentration of OH⁻.

This can be done with the following expression:

14 = pH + pOH

and pOH = -log[OH⁻]

So all we have to do is solve for pOH and then, [OH⁻]. To get the pOH:

pOH = 14 - 13.9 = 0.10

[OH⁻] = 10⁽⁻⁰°¹⁰⁾

[OH⁻] = 0.794 M

Now that we have the concentration, let's calculate the moles that needs to be in the 900 mL:

n = M * V

n = 0.794 * 0.9

n = 0.7146 moles

Finally, to get the mass that need to be weighted, we need to molecular mass of NaOH which is 39.997 g/mol so the mass:

m = 39.997 * 0.7146

m = 28.58 g

Which of the following statements is TRUE? Question 1 options: There is a "heat tax" for every energy transaction. A spontaneous reaction is always a fast reaction. The entropy of a system always decreases for a spontaneous process. Perpetual motion machines are a possibility in the near future. None of these are true.

Answers

Question:

Which of the following statements is TRUE?

A. Perpetual motion machines are a possibility in the near future.

B. The entropy of a system always decreases for a spontaneous process.

C. A spontaneous reaction is always a fast reaction.

D. There is a "heat tax" for every energy transaction.

E. None of the above are true.

Answer:

The correct answer is D)

There is a "heat tax" for every energy transaction.

Explanation:

Heat and work are two different ways in which energy is moved from one device to another. In the field of thermodynamics the distinction between Heat and Work is significant. The transfer of thermal energy between systems is heat. This is what is referred to as "heat tax".

No other statement in the question above is correct.

Cheers!

Nuclear power plants produce energy using fission. One common fuel, uranium-235, produces energy through the fission reaction 235 92U+10n→fission fragments+neutrons+3.20×10−11 J/atom 92235U+01n→fission fragments+neutrons+3.20×10−11 J/atom What mass of uranium-235 is needed to produce the same amount of energy as the fusion reaction in Part A? Express your answer to three significant figures and include the appropriate units.

Answers

Answer:

mass of U-235  = 15.9 g (3 sig. figures)

Explanation:

1 atom can produce -------------------------> 3.20 x 10^-11 J energy

x atoms can produce ----------------------> 1.30 x 10^12 J energy

x = 1.30 x 10^12 / 3.20 x 10^-11

x = 4.06 x 10^22 atoms

1 mol ----------------------> 6.023 x 10^23 atoms

y mol ----------------------> 4.06 x 10^22 atoms

y = 0.0675 moles

mass of U-235 = 0.0675 x 235 = 15.8625

mass of U-235  = 15.9 g (3 sig. figures)

his mechanism has been proposed for the reaction between chloroform and chlorine. Step 1: Cl2(g) 2Cl(g) fast Step 2: CHCl3(g) Cl(g) CCl3(g) HCl(g) slow Step 3: CCl3(g) Cl(g) CCl4(g) fast a. Write the stoichiometric equation for the overall reaction. b. Identify any reaction intermediates in this mechanism. c. Write the rate equation for the rate determining step. d. Show how the rate equation in c. can be used to obtain the rate law for the overall reaction. e. If the concentrations of the reactants are doubled, by what ratio does the reaction rate change

Answers

Answer:

a) Balanced Overall Stoichiometric Equation

CHCl₃(g) + Cl₂(g) → CCl₄(g) + HCl(g)

b) The reaction intermediates include Cl(g) and CCl₃(g)

c) The rate of reaction of the rate determining step is:

Rate = k [CHCl₃] [Cl]

d) The rate of overall reaction is given as

Rate = K [CHCl₃] √[Cl₂]

e) The reaction rate increases by a multiple of 2√2 when the reactants' concentrations are doubled.

Explanation:

Step 1: Cl₂(g) → 2Cl(g) fast

Step 2: CHCl₃(g) + Cl(g) → CCl₃(g) + HCl(g) slow

Step 3: CCl₃(g) + Cl(g) → CCl₄(g) fast

a) The overall reaction is a reaction between Chloroform (CHCl₃) and Chlorine (Cl₂). It can be obtained by summing all the elementary equations and eliminating the reaction intermediates (the species that appear on both sides upon summing up all the elementary equations).

Cl₂(g) + CHCl₃(g) + Cl(g) + CCl₃(g) + Cl(g) → 2Cl(g) + CCl₃(g) + HCl(g) + CCl₄(g)

Now, eliminating the reaction intermediates (the species that appear on both sides upon summing up all the elementary equations), we are left with

Cl₂(g) + CHCl₃(g) → HCl(g) + CCl₄(g)

CHCl₃(g) + Cl₂(g) → CCl₄(g) + HCl(g)

b) Like I mentioned in (a), the reaction intermediates are the species that appear on both sides upon summing up all the elementary equations. They include:

Cl(g) and CCl₃(g)

c) The rate determining step is usually the slowest step among the elementary equations.

The rate of reaction expression is usually written from the slowest step.

The slowest step is step 2.

CHCl₃(g) + Cl(g) → CCl₃(g) + HCl(g) slow

The rate of reaction is then given as

Rate = k [CHCl₃] [Cl]

d) The rate of reaction for the overall reaction is obtained by substituting for any intermediates that appear in the rate of reaction for the rate determining step

The rate of reaction of the rate determining step is:

Rate = k [CHCl₃] [Cl]

But we can substitute for [Cl] by obtaining an expression for it from the step 1.

Step 1: Cl₂(g) → 2Cl(g)

K₁ = [Cl]²/[Cl₂]

[Cl]² = K₁ [Cl₂]

[Cl] = √{K₁ [Cl₂]}

We then substitute this into the rate determining step

Rate = k [CHCl₃] [Cl]

Rate = k [CHCl₃] √{K₁ [Cl₂]}

Rate = (k)(√K₁) [CHCl₃] √[Cl₂]

Let (k)(√K₁) = K (the overall rate constant)

Rate = K [CHCl₃] √[Cl₂]

e) If the concentrations of the reactants are doubled, by what ratio does the reaction rate change

Old Rate = K [CHCl₃] √[Cl₂]

If the concentrations of the reactants are doubled, the new rate would be

New Rate = K × 2[CHCl₃] × √{2 × [Cl₂]}

New Rate = K × 2[CHCl₃] × √2 × √[Cl₂]

New Rate = 2√2 K [CHCl₃] √[Cl₂]

Old Rate = K [CHCl₃] √[Cl₂]

New Rate = 2√2 × (Old Rate)

The reaction rate increases by a multiple of 2√2 when the reactants' concentrations are doubled.

Hope this Helps!!!!

Heat capacity is the amount of heat needed to raise the temperature of a substance 1 ∘ ∘ C or 1 K. Open Odyssey. In the Molecular Explorer, choose Measuring Specific Heat (16). Follow the directions for water only. What variable is plotted on the y - y- axis? total energy What variable is plotted on the x - x- axis? temperature What is the molar heat capacity? molar heat capacity = J ⋅ K − 1 ⋅ mol − 1 J⋅K−1 ⋅mol−1 What is the specific heat capacity?

Answers

Answer:J.K^-1. kg^-1

Explanation:

Heat capacity= H

Mass=m

Specific heat capacity= c

H=mc

J.K^-1 = c ×kg

c= J.K^-1/kg

=J.K^-1.kg^-1

7. If you fill a balloon with 5.2 moles of gas and it creates a balloon with a volume of 23.5 liters, how many moles are in a balloon at the same temperature and pressure that has a volume of 14.9 liters

Answers

Final answer:

To solve this problem, we can use the ideal gas law equation PV=nRT. We can find the number of moles in the first balloon using the given information, and then use that value to find the volume of the second balloon.

Explanation:

To solve this problem, we can use the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, we can use the given information to find the number of moles in the first balloon. Rearranging the ideal gas law equation, we have n = PV / RT. Plugging in the values, we get n = (5.2 mol)(23.5 L) / (0.0821 atm L/mol K)(T in Kelvin).

Once we have the number of moles for the first balloon, we can use this value to find the volume of the second balloon. Rearranging the ideal gas law equation, we have V = nRT / P. Plugging in the values and solving for V, we get V = (5.2 mol)(0.0821 atm L/mol K)(T in Kelvin) / (P)

This reaction involves a conjugate addition reaction followed by an intramolecular Claisen condensation. The steps involved are as follows: 1. Conjugate addition of methyl carbanion (from the Gilman reagent) to form enolate ion 1; 2. Cyclization to form tetrahedral intermediate 2; 3. Collapse of the tetrahedral intermediate and expulsion of methoxide ion completes the reaction to form the final product. Write out the reaction on a separate sheet of paper, and then draw the structure of tetrahedral intermediate 2.

Answers

Answer:

Explanation:

Check below for the answer in the attachment.

Other Questions
What is the measure of AC? 1. Symbolism was started by whom?2. Name at least two artists known for doing surrealistic art.3. What are the two main types of Surrealistic art?4. Name at least two examples of surrealism where it is used today. True or false 100% of what you look like or behave like come directly from both of your parents? Administrators at the county's juvenile hall have implemented a reward program to decrease disruptive behavior during meal times. The scientific approach would primarily dictate that the program: covers theoretical issues concerning social behavior. be thoroughly assessed to measure the intended result. integrates theoretical concepts to eliminate ambiguity. discusses the immediate practical implications and poses new questions. (1, 5)(2, 8)(3, 11)(4, 14)(5, 17)(6, 20)(7, 23) A)y = 3x - 2 B)y = 3x + 2 C)y = -3x + 2 D)y = 1 3 x - 2 3 1. Firm A has 10 million shares outstanding, currently trading at $5/share. They are worried about possible hostile acquisitions, so they adopt a poison pill that consists of call options that allow shareholders to purchase 1 additional share per share owned. The poison pill options will allow the shareholders to purchase their new share at a price of $2/share if a hostile bidder purchases 20% of the equity of Firm A. (Assume all options are exercised) Show the impact of this poison pill if a bidder buys 20% of Firm A: Who helped launch the factory system in the United States?A. Eli WhitneyB. Samuel SlaterC. Francis Cabot LowellD. Henry Fordgiving Braineliest out The model below shows the ratio of gray to white squares. Which of the following is not an equivalent ratio of gray squares to total squares The number of users on a website has grown exponentially since its launch. After 2 months, there were 90 users. After 4 months, there were 810 users. Find the exponential function that models the number of users x months after the website was launched. Write your answer in the form f(x)=a(b)x. Simplify each expression.[tex] \frac{2x - 16}{8x ^{3} + 56x {}^{2} } \times \frac{x + 7}{x ^{2} - 7x - 8 } [/tex] Dos ms que dos veces el nmero es menor que 8. Cul podra ser lasolucin?Uno menos de tres veces el nmero es como mximo diecisis negativo.Cuales son las soluciones? For the reaction: 2 H2 + 2 NO N2 + 2 H2O the observed rate expression, under some conditions, is: rate = k[H2][NO]2 Which of the following mechanisms are consistent with these data? Select all that are True. step 1 H2 + 2 NO N2O + H2O (slow) step 2 N2O + H2 N2 + H2O (fast) step 1 2 H2 + 2 NO N2 + H2O step 1 NO + NO N2O2 (fast) step 2 N2O2 + H2 N2 + H2O + O (slow) step 3 O + H2 H2O (fast) step 1 H2 + NO H2ON (fast) step 2 H2ON + NO N2 + H2O2 (slow) step 3 H2O2 H2O + O (fast) step 4 O + H2 H2O (fast) Instinct theories of aggression would have the most difficulty accounting for 1.biochemical influences on aggression. 2.silent and social aggression in animals.3.unprovoked outbursts of aggression. 4.wide variations of aggressiveness from culture to culture. Question 1 (1 point)The diagram shows a bean plant growing in soil. Which labels best complete the diagram? Which of the following is NOT a sign and symptom of low blood sugar diabetic emergency?dizzinessO red, blotchy skinO hungerO clumsiness please answer all of them there are 3 pages cuz i couldnt fit them all only 10 questions tho please answer it like this 1:2:3:4: Which of the following would cause the force of kinetic friction to increase?OA. An increase in the normal forceOB. A decrease in the normal forceOC. A decrease in HyOD. An increase in us NEED HELP ASAP!Use the net as an aid to compute the surface area of the triangular prism.A)108 cm2B)120 cm2EliminateC)132 cm2D)170 cm2 The development of phobias can be partly explained by: A. high brain levels of dopamine. B. low brain levels of dopamine. C. the misinterpretation of the signs of normal physical arousal. D. classical conditioning, operant conditioning, and observational learning. Which of these is a factual statement about carbon? 1 point Burning rainforests helps restore equilibrium to the carbon cycle There is no relationship between carbon emissions and global climate change Carbon is the fourth-most abundant element in the universe Humans use far too much carbon-based fuel