During launches, rockets often discard unneeded parts. A certain rocket starts from rest on the launch pad and accelerates upward at a steady 3.10 m/s^2. When it is 240 m above the launch pad, it discards a used fuel canister by simply disconnecting it. Once it is disconnected, the only force acting on the canister is gravity (air resistance can be ignored). A)How high is the rocket when the canister hits the launch pad, assuming that the rocket does not change its acceleration?
B)What total distance did the canister travel between its release and its crash onto the launch pad?

Answers

Answer 1

Answer:

a) 919 mts

b) 392 mts

Explanation:

In order to solve this, we will use the formulas of acceletared motion problems:

[tex](1)Y=Yo+Vo*t+\frac{1}{2}*a*t^2\\(2)Vf^2=Vo^2+2*a*y[/tex]

We are looking to obtain the initial velocity of the canister right after it was relased, we will use formula (2):

[tex]Vf^2=(0)^2+2*(3.10)*(240)\\Vf=38.6 m/s[/tex]

we need to calculate the time the canister takes to reach the ground, we will use formula (1):

[tex]0-240m=38.6*t+\frac{1}{2}(-9.8m/s^2)*t^2\\\\-4.9*t^2+38.6*t+240=0\\t=11.9seconds[/tex]

in order to know the new height of the rocket we have to use the formula (1) again:

[tex]Y=240+38.6*(11.9)+\frac{1}{2}*(3.10)*(11.9)^2\\Y=919mts[/tex]

We can calulate the total distance the canister traveled before reach the ground by (2):

[tex](0)^2=(38.6)^2+2*(-9.8)*y\\Y=76m[/tex]

So the canister will go up another 76m, so the total distance will be:

[tex]Yc=Yup+Ydown+240m\\Yc=76+76+240\\Yc=392 mts[/tex]


Related Questions

A house is advertised as having 1 420 square feet under its roof. What is its area in square meters?

Answers

Answer:

area is  131.9223168 square meters

Explanation:

given data

we have given 1420 square feet

to find out

area in square meters

solution

we know that 1 square feet is equal to  0.09290304 square meter

so for 1420 square feet we will multiply 1420 by  0.09290304 square meter

and we get 1420 square feet will be = 1420 × 0.09290304  square meter

1420 square feet  = 131.9223168 square meter

so area is  131.9223168 square meters

A red ball is thrown down with an initial speed of 1.1 m/s from a height of 28 meters above the ground. Then, 0.5 seconds after the red ball is thrown, a blue ball is thrown upward with an initial speed of 24.4 m/s, from a height of 0.9 meters above the ground. The force of gravity due to the earth results in the balls each having a constant downward acceleration of 9.81 m/s^2. How long after the red ball is thrown are the two balls in the air at the same height?

Answers

Answer:0.931 s

Explanation:

Given

initial speed=1.1 m/s

height(h)=28 m

after 0.5 sec blue ball is thrown upward

Velocity of blue ball is 24.4 m/s

height with which blue ball is launched is 0.9 m

Total distance between two balls is 28-0.9=27.1 m

Let in t time red ball travels a distance of x m

[tex]x=1.1t+\frac{gt^2}{2}[/tex] --------1

for blue ball

[tex]27.1-x=24.4t-\frac{g(t-0.5)^2}{2}[/tex] -----2

Add 1 & 2

we get

[tex]27.1=24.4t+1.1t+\frac{g(2t-0.5)(0.5)}{2}[/tex]

[tex]27.1=25.5t+g\frac{4t-1}{8}[/tex]

t=0.931 s

after 0.931 sec two ball will be at same height

While skydiving, your parachute opens and you slow from 50.0 m/s to 8.0 m/s in 0.75 s . Determine the distance you fall while the parachute is opening.

Answers

Answer:

21.75 m

Explanation:

t = Time taken for the car to slow down = 0.75 s

u = Initial velocity = 50 m/s

v = Final velocity = 8 m/s

s = Displacement

a = Acceleration

Equation of motion

[tex]v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{8-50}{0.75}\\\Rightarrow a=-56\ m/s^2[/tex]

Acceleration is -56 m/s²

[tex]v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{8^2-50^2}{2\times -56}\\\Rightarrow s=21.75\ m[/tex]

The distance covered in the 0.75 seconds is 21.75 m

As part of calculations to solve an oblique plane triangle (ABC), the following data was available: b=50.071 horizontal distance, C=90.286° (decimal degrees), B=62.253° (decimal degrees). Calculate the distance of c to 3 decimal places (no alpha).

Answers

Answer:

The distance of c is 56.57

Explanation:

Given that,

Horizontal distance b = 50.071

Angle C = 90.286°

Angle B = 62.253°

We need to calculate the distance of c

Using sine rule

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

[tex]\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

Put the value into the formula

[tex]\dfrac{50.071}{\sin62.253 }=\dfrac{c}{\sin90.286}[/tex]

[tex]c= \dfrac{50.071\times\sin90.286}{\sin62.253}[/tex]

[tex]c=56.575[/tex]

Hence, The distance of c is 56.575.

If the stopping potential of a metal when illuminated with a radiation of wavelength 480 nm is 1.2 V, find (a) the work function of the metal, (b) the cutoff wavelength of the metal, and (c) the maximum energy of the ejected electrons

Answers

Answer:

Part a)

[tex]W = 1.38 eV[/tex]

Part b)

[tex]\lambda = 901.22 nm[/tex]

Part c)

[tex]KE = 1.2 eV[/tex]

Explanation:

As we know by Einstein's equation of energy that

incident energy of photons = work function of metal + kinetic energy of electrons

here we know that incident energy of photons is given as

[tex]E = \frac{hc}{\lambda}[/tex]

[tex]E = \frac{(6.6 \times 10^{-34})(3 \times 10^8)}{480 \times 10^{-9}}[/tex]

now we have

[tex]E = 4.125 \times 10^{-19} J[/tex]

[tex]E = 2.58 eV[/tex]

kinetic energy of ejected electrons = qV

so we have

[tex]KE = e(1.2 V) = 1.2 eV[/tex]

Part a)

now we have

[tex]E = KE + W[/tex]

[tex]2.58 = 1.2 + W[/tex]

[tex]W = 1.38 eV[/tex]

Part b)

in order to find cut off wavelength we know that

[tex]W = \frac{hc}{\lambda}[/tex]

[tex]1.38 eV = \frac{1242 eV-nm}{\lambda}[/tex]

[tex]\lambda = 901.22 nm[/tex]

Part c)

Maximum energy of ejected electrons is the kinetic energy that we are getting

the kinetic energy of electrons will be obtained from stopping potential

so it is given as

[tex]KE = 1.2 eV[/tex]

Find the volume of a sphere of radius 10 mm.

Answers

Answer:

Explanation: This is done using the equation:

[tex]\frac{4}{3} π R^{3}[/tex]

Because the Radius is a know value. We have the following.

[tex]\frac{4}{3} π (10mm)^{3}[/tex]

Which is:

4188.7902 mm

A ship leaves the island of Guam and sails a distance 255 km at an angle 49.0 o north of west. Part A: In which direction must it now head so that its resultant displacement will be 125 km directly east of Guam? (Express your answer as an angle measured south of east) Part B: How far must it sail so that its resultant displacement will be 125 km directly east of Guam?

Answers

Answer:

Explanation:

We shall represent displacement in vector form .Consider east as x axes and north as Y axes west as - ve x axes and south as - ve Y axes . 255 km can be represented by the following vector

D₁ = - 255 cos 49 i  + 255 sin49 j

= - 167.29 i + 192.45 j

Let D₂ be the further displacement which lands him 125 km east . So the resultant displacement is

D = 125 i

So

D₁ + D₂ = D

- 167.29 i + 192.45 j + D₂ = 125 i

D₂ = 125 i + 167.29 i - 192.45 j

= 292.29 i - 192.45 j

Angle of D₂ with x axes θ

tan θ = -192.45 / 292.29

= - 0.658

θ = 33.33 south of east

Magnitude of D₂

D₂² = ( 192.45)² + ( 292.29)²

D₂ = 350 km approx

Tan

Two particles, one with charge -6.29 × 10^-6 C and one with charge 5.23 × 10^-6 C, are 0.0359 meters apart. What is the magnitude of the force that one particle exerts on the other?

Answers

Answer:

Force, F = −229.72 N

Explanation:

Given that,

First charge particle, [tex]q_1=-6.29\times 10^{-6}\ C[/tex]

Second charged particle, [tex]q_2=5.23\times 10^{-6}\ C[/tex]

Distance between charges, d = 0.0359 m

The electric force between the two charged particles is given by :

[tex]F=k\dfrac{q_1q_2}{d^2}[/tex]

[tex]F=9\times 10^9\times \dfrac{-6.29\times 10^{-6}\times 5.23\times 10^{-6}}{(0.0359)^2}[/tex]

F = −229.72 N

So, the magnitude of force that one particle exerts on the other is 229.72 N. Hence, this is the required solution.

A rock is thrown straight up and passes by a window. The window is 1.7m tall, and the rock takes 0.19 seconds to pass from the bottom of the window to the top. How far above the top of the window will the rock rise?

Answers

Answer:

The rock will rise 3.3 m above the top of the window.

Explanation:

The equations used to find the height and velocity of the rock at any given time are as follows:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height of the rock at time t

y0 = initial height

v0 = initial velocity

t = time

g = acceleration due to gravity

v = velocity of the rock at time t

If we place the frame of reference at the bottom of the window, we can say that at time t = 0.19 s the height of the rock is 1.7 m. That will allow us to find the initial velocity needed to find the time at which the rock is at its maximum height.

y = y0 + v0 · t + 1/2 · g · t²

1.7 m = 0 m + v0 · 0.19 s - 1/2 · 9.8 m/s² · (0.19 s)²

1.7 m + 1/2 · 9.8 m/s² · (0.19 s)²  = v0 · 0.19 s

(1.7 m + 1/2 · 9.8 m/s² · (0.19 s)²) / 0.19 s = v0

v0 = 9.9 m/s

With the initial velocity, we can find at which time the rock reaches its max- height. We know that at maximum height, the velocity of the rock is 0. Then, using the equation of velocity:

v = v0 + g · t

0 = 9.9 m/s - 9.8 m/s² · t

-9.9 m/s / -9.8 m/s² = t

t = 1.0 s

Now calculating the position at time t = 1.0 s, we will find the maximum heigth:

y = y0 + v0 · t + 1/2 · g · t²

y = 0 m + 9.9 m/s · 1.0 s - 1/2 · 9.8 m/s² · (1.0 s)²

y = 5.0 m  (this is the max-height meassured from the bottom of the window)

Then, the rock will rise (5.0 m - 1.7 m) 3.3 m above the top of the window.

David is driving a steady 30 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady 2.0 m/s2 at the instant when David passes. How far does Tina drive before passing David

Answers

Answer:

The distance traveled by Tina before passing David is 900 m

Given:

Initial speed of David, [tex]u_{D} = 30 m/s[/tex]

Acceleration of Tina, [tex]a_{T} = 2.0 m/s^{2}[/tex]

Solution:

Now, as per the question, we use 2nd eqn of motion for the position of David after time t:

[tex]s = u_{D}t + \frac{1}{2}at^{2}[/tex]

where

s = distance covered by David after time 't'

a = acceleration of David = 0

Thus

[tex]s = 30t[/tex]

Now, Tina's position, s' after time 't':

[tex]s' = u_{T}t + \frac{1}{2}a_{T}t^{2}[/tex]

where

[tex]u_{T} = 0[/tex], initially at rest

[tex]s' = 0.t + \frac{1}{2}\times 2t^{2}[/tex]

[tex]s' = t^{2}[/tex]                     (1)

At the instant, when Tina passes David, their distances are same, thus:

s = s'

[tex]30t = t^{2}[/tex]

[tex]t(t - 30) = 0[/tex]

t = 30 s

Now,

The distance covered by Tina before she passes David can be calculated by substituting the value t = 30 s in eqn (1):

[tex]s' = 30^{2}[/tex] = 900 m

The distance covered by Tina before passing David at an acceleration rate of  2 m/s² is 900 meters.

Given to us

Velocity of David, v = 30 m/s

Acceleration of Tina, a = 2 m/s²

Let the time taken by Tina pass David is t.

What is the Distance traveled by David before Tina pass him?

According to the given information, the distance traveled by Tina will be the same as the distance traveled by David between Tina when she was at rest and when Tina passes her.

Distance traveled by Tina = Distance traveled by David

Distance traveled by David,

[tex]s = v \times t\\\\ = 30 \times t =30t[/tex]

                 

What is the time taken by Tina to pass David?

Using the second equation of Motion

[tex]s= ut +\dfrac{1}{2}at^2[/tex]

Substitute,

[tex]30t= (0)t +\dfrac{1}{2}(2)t^2[/tex]

[tex]t = 30\rm\ sec[/tex]

Thus, the time taken by Tina to pass David is 30 seconds.

How far does Tina drive before passing David?

We have already discussed,

Distance traveled by Tina = Distance traveled by David,

therefore,

[tex]s = v \times t\\\\ = 30 \times 30 =900\rm\ meters[/tex]

Hence, the distance covered by Tina before passing David at an acceleration rate of  2 m/s² is 900 meters.

Learn more about the Equation of motion:

https://brainly.com/question/5955789

Two joggers are running with constant speed in opposite directions around a circular lake. One jogger runs at a speed of 2.15 m/s; The other runs at a speed of 2.55 m/s. The track around the lake is 300m long, and the two joggers pass each other at exactly 3:00 PM. How long is it before the next time the two joggers pass each other again?

Answers

Answer:

The two joggers will pass each other after 1 minute and 4 seconds at 3:01:04 PM.

Explanation:

The situation is analogous to two joggers running in opposite direction in a straight line where one jogger starts at the beginning of the line and the other starts at the other end, 300 m ahead.

The equation for the position of the joggers will be:

x = x0 + v · t

Where:

x = position of the jogger at time t

x0 = initial position

v = velocity

t = time

When the joggers pass each other, their position will be the same. Let´s find at which time both joggers pass each other:

x jogger 1 = x jogger 2

0 m + 2.15 m/s · t = 300 m - 2.55 m/s · t

(notice that the velocity of the joggers has to be of opposite sign because they are running in opposite directions).

2.15 m/s · t + 2.55 m/s · t = 300 m

4.70 m/s · t = 300 m

t = 300 m / 4.70 m/s = 63.8 s

The two joggers will pass each other after 1 minute and 4 seconds at 3:01:04 PM.

A loop of wire with cross-sectional area 1×10^−3 m^2 lays centered in the xy -plane. The wire carries a uniform current of 180A running counter-clockwise. What is the magnitude of the magnetic moment of the current loop?

Answers

Answer:

[tex]\mu=180\times 10^{-3}A-m^2[/tex]      

Explanation:

Given that,

Area of the loop, [tex]A=10^{-3}\ m^2[/tex]

Current flowing in the wire, I = 180 A

We need to find the magnetic moment of the current loop. It is given by :

[tex]\mu=I\times A[/tex]

[tex]\mu=180\times 10^{-3}[/tex]      

[tex]\mu=180\times 10^{-3}A-m^2[/tex]      

So, the magnetic moment of the current loop is [tex]180\times 10^{-3}A-m^2[/tex]. Hence, this is the required solution.

A type of transmission line for electromagnetic waves consists of two parallel conducting plates (assumed infinite in width) separated by a distance a. Each plate carries the same uniform surface current density of 16.0 A/m, but the currents run in opposite directions. What is the magnitude of the magnetic field between the plates at a point 1.00 mm from one of the plates if a = 0.800 cm? (μ0 = 4π × 10-7 T · m/A)

Answers

Answer:

[tex]B=2.01 \times 10^{-5}\ T[/tex]

Explanation:

Distance between plates = 0.8 cm

Distance from one plate = 1 mm

Current density (J)= 16 A/m

Currents are flowing in opposite direction.

[tex]\mu _o=4\pi \times 10^{-7}[/tex]

When current is flowing in opposite direction then magnetic field given as

[tex]B=\dfrac{\mu _oJ}{2}+\dfrac{\mu _oJ}{2}[/tex]

[tex]B=\mu _oJ[/tex]

Now by putting the values we get

[tex]B=4\pi \times 10^{-7}\times 16[/tex]

[tex]B=2.01 \times 10^{-5}\ T[/tex]

The magnitude of the magnetic field between the plates at the given point is 2.011 x 10⁻⁵ T.

What is magnetic field?

The magnitude of magnetic field between the plates due to the current flowing in opposite directions is determined by using the following formula;

B = μ₀J/2 + μ₀J/2

B = μ₀J

where;

μ₀ is permeability of free space = 4π x 10⁻⁷ T.m/AJ is current density

Substitute the given parameters and solve for the magnetic field as follows;

B = (4π x 10⁻⁷) x (16)

B = 2.011 x 10⁻⁵ T

Thus, the magnitude of the magnetic field between the plates at the given point is 2.011 x 10⁻⁵ T.

Learn more about magnetic field here: https://brainly.com/question/7802337

What is the magnetic field at the center of a circular loop
ofwire of radius 4.0cm when a current of 2.0A flows in
thewire?

Answers

Answer:

The magnetic field at the center of a circular loop is [tex]3.14\times10^{-5}\ T[/tex].

Explanation:

Given that,

Radius = 4.0 cm

Current = 2.0 A

We need to calculate the magnetic field at the center of a circular loop

Using formula of magnetic field

[tex]B = \dfrac{I\mu_{0}}{2r}[/tex]

Where, I = current

r = radius

Put the value into the formula

[tex]B =\dfrac{2.0\times4\pi\times10^{-7}}{2\times4.0\times10^{-2}}[/tex]

[tex]B =0.00003141\ T[/tex]

[tex]B=3.14\times10^{-5}\ T[/tex]

Hence, The magnetic field at the center of a circular loop is [tex]3.14\times10^{-5}\ T[/tex].

What is the time traveled by a pulse over a distance of lcm in air (n=1) and in 1cm of glass (n 1.5)? What is the difference in picoseconds?

Answers

Answer: in air 33.33 ps and in the glass 50 ps: so the difference 16.67 ps

Explanation: In order to calculate the time for a pulse travellin in air  and in a glass we have to consider the expresion of the speed given by:

v= d/t  v the speed in a medium is given by c/n where c and n are the speed of light and refractive index respectively.

so the time is:

t=d/v=d*n/c

in air

t=0.01 m*1/3*10^8 m/s= 33.33 ps

while for the glass

t=0.01 m*1.5* 3* 10^8 m/s= 50 ps

Finally the difference is (50-33.33)ps = 16.67 ps

Light with a wavelength of 494 nm in vacuo travels from vacuum to water. Find the wavelength of the light inside the water in nm (10-9 m). Note that wavelength and speed change when light transfers between media. Frequency does not change. Assume the index of refraction of water is 1.333.

Answers

Answer:

370.6 nm

Explanation:

wavelength in vacuum = 494 nm

refractive index of water with respect to air = 1.333

Let the wavelength of light in water is λ.

The frequency of the light remains same but the speed and the wavelength is changed as the light passes from one medium to another.

By using the definition of refractive index

[tex]n = \frac{wavelength in air}{wavelength in water}[/tex]

where, n be the refractive index of water with respect to air

By substituting the values, we get

[tex]1.333 = \frac{494}{\lambda }[/tex]

λ = 370.6 nm

Thus, the wavelength of light in water is 370.6 nm.

Estimate the mass of blood in your body Explain your reasoning (Note: It is not enough to provide a numeric answer. The main point of this problem is to assess your reasoning ability)

Answers

Answer: A little more that 5 Kg for a healthy person

Explanation: First, we know the following:

The regular adult has from 9 to 12 pints of blood. This is around 5 liters for a healthy male adult.

The human body is composed mostly on water, around 80%.

Blood is mostly composed on plasma, which makes blood thicker than water.

Knowing that, almost all the body is compose of water, it is safe to think that blood density should be near to that of water but higher.

The density on water is a know value. Which makes the following true:

1 Liter of Water weights 1 Kg

It could be said then, that the total mass of blood for a healthy person should be a little more that 5 kgs.

A flat uniform circular disk (radius = 2.00 m, mass= 100
kg) is initially stationary. The disk is free to rotate inthe
horizontal plane about a frictionless axis perpendicular to
thecenter of the disk. A 40.0-kg person, standing 1.25 m from
theaxis, begins to run on the disk in a circular path and has
atangential speed of 2.00 m/s relative to the ground. Find
theresulting angular speed (in rad/s) of the disk.

Answers

Answer:

0.5 rad / s

Explanation:

Moment of inertia of the disk I₁ = 1/2 MR²

M is mass of the disc and R is radius

Putting the values in the formula

Moment of inertia of the disc  I₁  = 1/2 x 100 x 2 x 2

= 200 kgm²

Moment of inertia of man about the axis of rotation of disc

mass x( distance from axis )²

I₂  = 40 x 1.25²

= 62.5 kgm²

Let ω₁ and ω₂ be the angular speed of disc and man about the axis

ω₂ = tangential speed / radius of circular path

= 2 /1.25 rad / s

= 1.6 rad /s

ω₁ = ?

Applying conservation of angular moment ( no external torque is acting on the disc )

I₁ω₁ = I₂ω₂

200 X ω₁ = 62.5 X 1.6

ω₁ =  0.5 rad / s

As a train accelerates away from a station, it reaches a speed of 4.6 m/s in 5.2 s. If the train's acceleration remains constant, what is its speed after an additional 7.0 s has elapsed? Express your answer using two significant figures.

Answers

Answer:

Vf = 10.76 m/s

Explanation:

Train kinematics

The train moves with uniformly accelerated movement

[tex]V_f = V_o + a*t[/tex] Formula (1)

Vf: Final speed (m/s)

V₀: Inital speed (m/s)

t: time in seconds (s)

a: acceleration (m/s²)

Movement from t = 0 to t = 5.2s

We replace in formula (1)

4.6 = 0 + a*5.2

a = 4.6/5.2 = 0.88 m/s²

Movement from t = 5.2s to t = 5.2s + 7s = 12.2s

We replace in formula (1)

[tex]V_f = 4.6 + 0.88*7[/tex]

Vf = 10.76 m/s

What magnitude charge creates a 1.70 N/C electric field at a point 4.60 m away? Express your answer with the appropriate units.

Answers

Answer:

[tex]Q=4.0*10^{-9}C[/tex]

Explanation:

Electric field of a charge:

[tex]E=k*\frac{Q}{R^{2}}[/tex]

[tex]Q=\frac{E*R^{2}}{K}=1.7*4.6^{2}/(9*10^{9})=4.0*10^{-9}C[/tex]

what is the approximate radius of the n = 1orbit of gold ( Z
=79 )?

Answers

Answer:

[tex]6.70\times 10^{-13}\ m[/tex]

Explanation:

Given:

[tex]n = n^{th}[/tex] orbit of gold = 1[tex]Z[/tex] = atomic number of gold = 79

Assumptions:

[tex]h[/tex] = Planck's constant = [tex]6.62\times 10^{-34}\ m^2kg/s[/tex][tex]k[/tex] = Boltzmann constant = [tex]9\times 10^{9}\ Nm^2/C^2[/tex][tex]e[/tex] = magnitude of charge on an electron = [tex]1.6\times 10^{-19}\ C[/tex][tex]m[/tex] = mass of an electron = [tex]9.1\times 10^{-31}\ kg[/tex][tex]r[/tex] = radius of the [tex]n^{th}[/tex] orbit of the atom

WE know that the radius of the [tex]n^{th}[/tex] orbit of an atom is given by:

[tex]r = \dfrac{n^2h^2}{4\pi^2kZe^2m}\\[/tex]

Let us find out the radius of the 1st orbit of the gold atom for which n = 1 and Z = 79.

[tex]r = \dfrac{n^2h^2}{4\pi^2kZe^2m}\\\Rightarrow r = \dfrac{(1)^2(6.62\times 10^{-34})^2}{4\pi^2\times 9\times 10^9\times 79\times (1.6\times 10^{-19})^2\times 9.1\times 10^{-31}}\\\Rightarrow r =6.70\times 10^{-13}\ m[/tex]

An electron moves with a speed of 5.0 x 10^4m/s
perpendicularto a uniform magnetic field of .20T. What is the
magnitude ofthe magnetic force on the electron?

Answers

Final answer:

The magnitude of the magnetic force on an electron moving with a speed of 5.0 × [tex]10^4[/tex] m/s perpendicular to a magnetic field of 0.20 Tesla is calculated using the formula F = qvB, resulting in a force of 1.6 × [tex]10^{-15}[/tex] Newtons.

Explanation:

The magnetic force on an electron moving perpendicular to a magnetic field can be calculated using the formula F = qvB, where F is the magnetic force, q is the charge of the electron (-1.6 × [tex]10^{-19}[/tex] C), v is the velocity of the electron, and B is the magnetic field strength. Given that the electron moves with a speed of  5.0 × [tex]10^4[/tex] m/s perpendicular to a uniform magnetic field of 0.20 T, we use the formula to find the magnitude of the force:

F = (1.6 ×[tex]10^{-19}[/tex]C)( 5.0 × [tex]10^4[/tex] m/s)(0.20 T) =1.6 ×[tex]10^{-19}[/tex]C× 104 m/s × 2 × [tex]10^{-1}[/tex] T

F = 1.6 ×[tex]10^{-15}[/tex] N

The magnitude of the magnetic force on the electron is  1.6 ×[tex]10^{-15}[/tex] Newtons.

How many 1140 nm long molecules would you have to line up end to end to stretch a distance of 158 miles?

Answers

Answer:

221754385964.9123

Explanation:

Convert miles to nanometer

1 mile = 1.6 km

1 km = 1×10³×10³×10³×10³ nm

1 mile = 1.6×10¹² nm

So,

158 miles = 158×1.6×10¹² = 252.8×10¹² nm

Length of each molecule = 1140 nm

Number of molecules = Total length / Length of each molecule

[tex]\text{Number of molecules}=\frac{252.8\times 10^{12}}{1140}\\\Rightarrow \text{Number of molecules}=221754385964.9123[/tex]

There are 221754385964.9123 number of molecules in a stretch of 158 miles

The wheel has a weight of 5.50 lb, a radius of r=13.0 in, and is rolling in such a way that the center hub, O, is moving to the right at a constant speed of v=17.0 ft/s. Assume all the mass is evenly distributed at the outer radius r of the wheel/tire assembly. What is the total kinetic energy of the bicycle wheel?

Answers

Answer:

[tex]E_{k}=1589.5ftlb[/tex]  

Explanation:

[tex]E_{k}=E_{movement}+E_{rotational}\\[/tex]    

[tex]E_{k}=\frac{1}{2}mv^{2}+\frac{1}{2}Iw^{2}[/tex]     (1)

For this wheel:

[tex]w=\frac{v}{r}[/tex]

[tex]I=mr^{2}[/tex]:    inertia of a ring

We replace (2) and (3) in (1):

[tex]E_{k}=\frac{1}{2}mv^{2}+\frac{1}{2}(mr^{2})(\frac{v}{r})^{2}=mv^{2}=5.5*17^{2}=1589.5ftlb[/tex]  

A driver increases his velocity from 20 km/hr to 100 km/hr. BY what factor does he increase the kinetic energy of the car with this increase in speed? Kinetic energy is 4 times greater
Kinetic energy is 16 times greater
Kinetic energy is 25 times greater
Kinetic energy is 9 times greater
Kinetic energy is 2 times greater

Answers

Answer:

25 times greater

Explanation:

Let the mass of the car is m

Initial speed, u = 20 km/h = 5.56 m/s

Final speed, v = 100 km/h = 27.78 m/s

The formula for the kinetic energy is given by

[tex]K = \frac{1}{2}mv^{2}[/tex]

So, initial kinetic energy

[tex]K_{i} = \frac{1}{2}m(5.56)^{2}[/tex]

Ki = 15.466 m

final kinetic energy

[tex]K_{f} = \frac{1}{2}m(27.78)^{2}[/tex]

Kf = 385.86 m

Increase in kinetic energy is given by

= [tex]\left ( \frac{K_{f}}{K_{i}} \right )[/tex]

= 385.86 / 15.466 = 25

So, the kinetic energy is 25 times greater.

Final answer:

The kinetic energy of the car increases by a factor of 25.

Explanation:

The increase in kinetic energy of the car can be determined by comparing the initial kinetic energy to the final kinetic energy. Kinetic energy is directly proportional to the square of velocity.

In this case, the velocity is increased from 20 km/hr to 100 km/hr. Let's calculate the ratio of the final kinetic energy to the initial kinetic energy.

The initial kinetic energy is given by 1/2 * (mass of the car) * (initial velocity)^2, and the final kinetic energy is given by 1/2 * (mass of the car) * (final velocity)^2.

Let's substitute the values and calculate the ratio:

Ratio = (1/2 * (mass) * (final velocity)^2) / (1/2 * (mass) * (initial velocity)^2) = (final velocity)^2 / (initial velocity)^2.

Substituting the numbers, Ratio = (100 km/hr)^2 / (20 km/hr)^2 = 10000 / 400 = 25.

Therefore, the factor by which the kinetic energy of the car increases is 25 times greater.

A parallel-plate capacitor is charged by a 9.00 V battery, then the battery is removed. Part A What is the potential difference between the plates after the battery is disconnected? Express your answer with the appropriate units. V V = nothing nothing SubmitRequest Answer Part B What is the potential difference between the plates after a sheet of Teflon is inserted between them? Express your answer with the appropriate units. V T V T = nothing nothing SubmitRequest Answer Provide Feedback Next

Answers

Final answer:

After the battery is disconnected, the potential difference between the capacitor plates remains at 9.00V. After a sheet of Teflon is inserted between the plates, the potential difference decreases due to increased capacitance.

Explanation:

Part A: When a parallel-plate capacitor is charged by a battery and then the battery is disconnected, the potential difference between the plates remains the same as it was before disconnecting the battery. In this case, the potential difference would remain 9.00V, as this potential difference is determined by the charge on the capacitor and the capacitance, neither of which changes when the battery is disconnected.

Part B: When a dielectric (in this case Teflon) is inserted between the plates of a charged capacitor without a connected battery, the potential difference between the plates decreases. This is because the dielectric increases the capacitance of the capacitor, causing the potential difference to decrease for a fixed charge. The exact amount of the decrease would depend on the dielectric constant of Teflon.

Learn more about Physics of Capacitors here:

https://brainly.com/question/30917709

#SPJ12

The potential difference between the capacitor plates remains 9.00 V after disconnecting the battery. After inserting Teflon, the potential difference decreases to around 4.29 V.

A) The potential difference between the plates will remain at 9.00 V after the battery is disconnected as no charge can leave the plates.

B) Introducing a dielectric such as Teflon with a dielectric constant K will reduce the potential difference.

The formula to calculate the new potential difference (V') is given by [tex]V' = V/K[/tex], where

V is the initial potential difference, and K is the dielectric constant of Teflon.

Thus, the new potential difference will be [tex]V' = 9.00\left V / 2.1 \approx 4.29\left V[/tex]. This occurs because Teflon inserts a dielectric constant that reduces the voltage.

If the electric potential is zero at a particular point, must the electric field be zero at the point? Explain

Answers

Answer:

If the potential is zero , the electric field could be different to zero

Explanation:

The relation between the electric field and the potential is:

=−∇

∇: gradient operator

If the electric potential, , is zero at one point but changes in the neighbourhood of this point, then the Electric field, , at that point is different from zero.

A football quarterback runs 15.0 m straight down the playing field in 3.00 s. He is then hit and pushed 3.00 m straight backward in 1.74 s. He breaks the tackle and runs straight forward another 29.0 m in 5.20 s. (a) Calculate his average velocity (in m/s) for each of the three intervals. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)
v1= m/s, v2= m/s, v3= m/s
(b) Calculate his average velocity (in m/s) for the entire motion. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)
m/s

Answers

Answer:

a) [tex]v_{1}=14.29m/s\\v_{2}=9.25m/s\\v_{3}=6.36m/s[/tex]

b) [tex]v=+9.97m/s[/tex]

Explanation:

From the exercise we know that

[tex]x_{1} =15m, t_{1}=3s[/tex]

[tex]x_{2} =-3m, t_{1}=1.74s[/tex]

[tex]x_{3} =29m, t_{3}=5.20s[/tex]

From dynamics we know that the formula for average velocity is:

[tex]v=\frac{x_{2}-x_{1}  }{t_{2}-x_{1}  }[/tex]

a) For the three intervals:

[tex]v_{1}=\frac{x_{2}-x_{1}  }{t_{2}-t_{1}  }=\frac{(-3-15)m}{(1.74-3)s}=14.29m/s[/tex]

[tex]v_{2}=\frac{x_{3}-x_{2}  }{t_{3}-t_{2}  }=\frac{(29-(-3))m}{(5.20-1.74)s}=9.25m/s[/tex]

[tex]v_{3}=\frac{x_{3}-x_{1}  }{t_{3}-t_{1}  }=\frac{(29-15)m}{(5.20-3)s}=6.36m/s[/tex]

b) The average velocity for the entire motion can be calculate by the following formula:

[tex]v=\frac{v_{1}+v_{2}+v_{3}   }{n} =\frac{(14.29+9.25+6.36)m/s}{3}=+9.97m/s[/tex]

Suppose two equal charges of 0.65 C each are separated by a distance of 2.5 km in air. What is the magnitude of the force acting between them, in newtons?

Answers

Answer:

Force between two equal charges will be 608.4 N

Explanation:

We have given charges [tex]q_1=0.65C\ and\ q_2=0.65C[/tex]

Distance between the charges = 2.5 km = 2500 m

According to coulombs law force between two charges is given by

[tex]F=\frac{1}{4\pi \varepsilon _0}\frac{q_1q_2}{r^2}=\frac{Kq_1q_2}{r^2}[/tex], here K is constant which value is [tex]9\times 10^9Nm^2/C^2[/tex]

So force [tex]F=\frac{9\times 10^9\times 0.65\times 0.65}{2500^2}=608.4N[/tex]

Serving at a speed of 164 km/h, a tennis player hits the ball at a height of 2.23 m and an angle θ below the horizontal. The service line is 11.6 m from the net, which is 0.99 m high. What is the angle θ in degrees such that the ball just crosses the net? Give a positive value for the angle.

Answers

Answer:

The angle θ is 6.1° below the horizontal.

Explanation:

Please, see the figure for a description of the situation.

The vector "r" gives the position of the ball and can be expressed as the sum of the vectors rx + ry (see figure).

We know the magnitude of these vectors:

magnitude rx = 11.6 m

magnitude ry = 2.23 m - 0.99 m = 1.24 m

Then:

rx = (11. 6 m, 0)

ry = (0, -1.24 m)

r = (11.6 m + 0 m, 0 m - 1.24 m) = (11.6 m, -1.24 m)

Using trigonometry of right triangles:

magnitude rx = r * cos θ = 11. 6 m

magnitude ry = r * sin θ = 2.23 m - 0.99 = 1.24 m

where r is the magnitude of the vector r

magnitude of vector r:

[tex]r = \sqrt{(11.6m)^{2} + (1.24m)^{2}} = 11.667m[/tex]

Then:

cos θ = 11.6 m / 11.667 m

θ = 6.1°

Using ry, we should obtain the same value of θ:

sin θ = 1.24 m/ 11.667 m

θ = 6.1°

( the exact value is obtained if we do not round the module of r)

Other Questions
An ESPs efficiency is increased from 96% to 98% total mass removal. What is the percent change in mass of emissions? The left ventricle pumps blood to the A) right ventricle. B) right atrium. C) pulmonary circuit. D) aorta. E) lungs. Can anyone help me with these two problems? I found the distance to one. Please, assignment is due tonight. Thank you. Prove: If n is a positive integer andn2 isdivisible by 3, then n is divisible by3. For analysis purposes Jenny considers her restaurant to have three day parts. These three are breakfast, lunch and dinner. Last month Jenny s breakfast sales were $ 20,000. Lunch sales were 40% of total sales. Total sales were $200,000. What was the amount of sales contributed by the dinner day part? find the value of 15 minus 8 divided by 2 The law of effect laid the foundation for: - Garcia and Koelling's research on taste aversion. - Pavlov's studies of conditioned salivation. - Skinner's experiments on reinforcement. - Watson and Rayner's findings on fear conditioning. 3(x - 6) + 6 = 5x - 6. what is the solution A loan for $85,000 is to be paid in 10 yearly payments. Each payment is larger by $100.00. Compute the first, the fourth, and the last payment, if the time value of money is 10% per year. QUESTION 6 When a plate of oceanic lithosphere meets a plate whose leading edge is continental lithosphere along a convergent plate boundary, what is the result? A volcanic island arc, like the modern Aleutian Islands in Alaska. A mountain belt, like the modern Himalayas. Earthquakes, but no volcanism, like the modern San Andreas Fault in California. A continental volcanic arc, like the modern Andes. QUESTION 7 10 The magnetic field of Earth in the geologic past is Click Save and Submit to save and submit. Click Save AllA to save all answers Why is it important to ground both computers and network devices (Netacad) Let C(x) represent the cost of producing x items and p(x) be the sale price per item if x items are sold. The profit P(x) of selling x items is P(x)=xp(x)-C(x) (revenue minus costs). The average profit per item when x items are sold is P(x)/(x) and the marginal profit is dP/dx. The marginal profit approximates the profit obtained by selling one more item given that x items have already been sold. Consider the following cost functions C and price function p.C(x)=-0.02x^2+40x+80, p(x)=100, a=500a) what is the profit function P.P(x)=?b) find the average profit function and marginal profit function.average profit function: P(x)/(x)=?marginal profit function: dP/dx=?c OMG PLZ HELP RN Five-eighths of a number decreased by twelve is the same as one-half of the number increased by two.5/8x-12=1/2x+2What is the answer? Compute the missing amount in the accounting equation for each company (amounts in billions): Assets Liabilities Stockholders' Equity Love Drycleaners $ ? $43 $38 Ernie's Bank 25 ? 20 Weekly Stop Grocery 38 9 ? Requirement 1. Which company appears to have the strongest financial position? Explain your reasoning. Calculate the missing amounts. (Enter amounts in billions.) Assets Liabilities Stockholders' equity Love Drycleaners 81 $43 $38 Ernie's Bank 25 45 20 Weekly Stop Grocery 38 9 In which areas of the body would you expect to find the most Merkel discs and tactile corpuscles? Why? Mr. Johnson has his newspaper delivered every day. He determines the probability the newspaper is on his front porch is 0.64. The rest of the time he finds the newspaper somewhere on his lawn. What is the probability that Mr. Johnson finds his newspaper on his lawn? A 25 liter gas cylinder contains 10 mole of carbon dioxide. Calculate the pressure, in atm, of the gas at 325K. ANSWER ASAP BRAINLIESTwhich of the following is NOT a idea from the enlightment?kings should rule by divine right with absolute power Governments exists to serve the poepleall citizens are born with natural rights to life liberty and propertyuse of reason can solve government problems What does federal government require public libraries to do? Nando is on a rehabilitation program following a car accident. For the first month, he needs to exercise at most five hours per week and must burn at least 2,000 calories per week. The exercise he is allowed todo is brisk walking which burns about 350 calories per hour and biking at a moderate pace which burnsabout 700 calories per hour. Which graph best represents the set of all points that satisfy the systemrepresenting Nando's exercise options?