Dylan borrowed $2100 from the bank for 15 months. The bank discounted the loan at 2.6%. How much was the interest? $ State your result to the nearest penny. How much did Dylan receive from the bank? $ State your result to the nearest penny. What was the actual rate of interest? % State your result to the nearest hundredth of a percent.

Answers

Answer 1

Answer:

actual rate of interest is 2.08 %

Step-by-step explanation:

Given data

borrowed = $2100

time = 15 months

rate = 2.6%

to find out

interest and receive from the bank and actual rate of interest

solution

we know bank discounted the loan at 2.6%

so interest will be 2.6% of $2100

that is  = 2.6/100 × 2100

interest = $54.60

so receive from the bank  is  borrowed money - interest

receive = 2100 - 54.60

receive from the bank is $2045.40

and we can say that interest is directly proportional to time

so interest of 12 months / interest of 15 month = 12 month time/ 15 month time

here  interest of 12 months = 12/15 ×  interest of 15 month

interest of 12 months = 12/15 × 54.60

interest of 12 months is $43.68 (annually)

now we can calculate actual rate of interest

that is = interest / borrowed money × 100

actual rate of interest = 43.68/2100 × 100

actual rate of interest is 2.08 %

Answer 2

Final answer:

Dylan borrowed $2100 which was discounted at a 2.6% rate by the bank over 15 months, incurring $68.25 in interest, leaving him to receive $2031.75. The actual annual rate of interest calculated is approximately 2.667%.

Explanation:

The calculation of the interest on a discounted loan involves understanding the interest rate and the method by which the interest is calculated. In Dylan's case, the bank used a discount rate of 2.6% on a loan of $2100 over a period of 15 months.

To calculate discounted interest, you need to multiply the principal amount by the discount rate and then adjust for the loan term. In this case, the formula for interest (I) looks like this: I = Principal (P) × Discount Rate (r) × Time (t), where 't' is in years. Since the loan term is 15 months, we convert it to years by dividing by 12, resulting in 1.25 years.

So, the interest can be calculated as follows:
I = $2100 × 0.026 × (15/12) = $2100 × 0.026 × 1.25 = $68.25. Therefore, the interest on the loan is $68.25, rounded to the nearest penny.

The actual amount Dylan received from the bank can be found by subtracting the interest from the principal: $2100 - $68.25 = $2031.75.

To calculate the actual interest rate, we compare the amount of interest paid over the loan term to the amount received. The actual interest for 15 months is the interest Dylan would be paying, divided by the amount he received, all divided by the time in years: Actual Rate (R) = ($68.25 / $2031.75) / 1.25. After solving for R, we get an actual rate of approximately 2.667%, rounded to the nearest hundredth.


Related Questions

An english reading list has 9 american novels and 7 english novels. A student must read 5 from the list and at least 3 must be english novels. In how many different ways can the five books be selected combination

Answers

[tex]_7C_3\cdot {_{13}C_2}=\dfrac{7!}{3!4!}\cdot\dfrac{13!}{2!11!}=\dfrac{5\cdot6\cdot7}{2\cdot3}\cdot\dfrac{12\cdot13}{2}=2730[/tex]

Final answer:

The number of ways the student can select 5 books such that at least 3 are English novels can be calculated as the sum of combinations of 3 English and 2 American, 4 English and 1 American, and all 5 being English.

Explanation:

The subject matter of this question is based in the mathematics field, specifically combinatorics. To tackle this problem, we will utilize the concept of combination, which is a way of selecting items from a larger set where order does not matter.

The student has to select 5 books out of 16 (9 American and 7 English novels). But at least 3 should be English novels. It means the student can pick 3, 4 or all 5 novels as English novels. Let's calculate each possibility:

3 English novels and 2 American novels: Ways = C(7,3) * C(9,2) 4 English novels and 1 American novel: Ways = C(7,4) * C(9,1) All 5 English novels: Ways = C(7,5)

So, the total number of ways = [C(7,3)*C(9,2)] + [C(7,4)*C(9,1)] + C(7,5). Here C(n,r) denotes combination and is equal to n! / [(n-r)!*r!], where '!' denotes factorial.

Learn more about Combinations here:

https://brainly.com/question/37999460

#SPJ2


How many primes are between 2^31 and 2^32? What is the approximate ratio of primes to
all numbers between 2^31 and 2^32?

Answers

Final answer:

There are approximately 132489 prime numbers between 2³¹and 2³², with a ratio of primes to all numbers being approximately 0.1156.

Explanation:

To find the number of primes between 2³¹and 2³², we can use the Sieve of Eratosthenes algorithm. With this algorithm, we can mark all the multiples of each prime number, and the remaining unmarked numbers will be prime.

Using this method, we can calculate that there are approximately 132489 primes between 2³¹ and 2³². The ratio of primes to all the numbers between 2³¹and 2³²is approximately 0.1156.

Which of the following is not listed as natural causes for our annihilation? OA. Super Volcano B. Asteroid Impact C. Gamma Rays D. Epidemic E. None of the above

Answers

Answer:

its E none of the above

Step-by-step explanation:

Automobile sales in a country were 20.6 million thisâ year, a 4.9â% increase over last year. Find the number of auto sales in the country last year.?

number â(Round to the nearestâ tenth.)?

Answers

Answer: 19.6 million

Step-by-step explanation:

The exponential growth function is given by :-

[tex]A=A_0(1+r)^x[/tex], where A is the initial amount , r is rate of interest and x is time period.

Given : The automobile sales in a country this year : A= 20.6 million

The rate of increase : r = 4.9 %=0.049

For last year , we take x = 1 , then the required exponential equation will be :-

[tex]20.6=A_0(1+0.049)^1\\\\\Rightarrow\ A_0=\dfrac{20.6}{1.049}=19.63775\approx19.6[/tex]

Hence, the  number of auto sales in the country last year = 19.6 million.

Final answer:

To find last year's auto sales, the formula original amount = final amount / (1 + rate of increase) is used. The sales last year, before a 4.9% increase to 20.6 million, were approximately 19.6 million when rounded to the nearest tenth.

Explanation:

To find the number of automobile sales last year before the increase, we can use the formula: original amount = final amount / (1 + rate of increase).

Given that the sales this year were 20.6 million and the rate of increase was 4.9%, the calculation for last year's sales would be as follows:

Original sales = 20.6 million / (1 + 0.049) = 20.6 million / 1.049

After performing the division, we get:

Original sales = 19.638 million

Rounding to the nearest tenth, the number of auto sales in the country last year was 19.6 million.

The laws shown in the video—kirchhoff’s junction law and kirchhoff’s loop law—are not newly introduced laws of physics. The junction law is based on __________

Answers

Answer:

  The junction law is based on the conservation of charge.

Step-by-step explanation:

Kirchhoff's current law, or junction law, (1st Law) states that current flowing into a node (or a junction) must be equal to current flowing out of it. This is a consequence of charge conservation—charge is not created or destroyed in a closed system.

The tread life of tires mounted on light duty trucks follows the normal probability distribution with a mean of 60,000 miles and a standard deviation of 4,000 miles. Suppose you bought a set of four tires, what is the likelihood the mean tire life of these four tires is more than 66,000 miles?

Answers

Answer:  0.0013

Step-by-step explanation:

Given : The test scores are normally distributed with

Mean : [tex]\mu=\ 60,000[/tex]

Standard deviation :[tex]\sigma= 4,000[/tex]

Sample size : [tex]n=4[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

For x = 66,000

[tex]z=\dfrac{66000-60000}{\dfrac{4000}{\sqrt{4}}}=3[/tex]

The p-value = [tex]P(z>3)\=1-P(z<3)=1- 0.9986501\approx0.0013[/tex]

Hence, the likelihood the mean tire life of these four tires is more than 66,000 miles = 0.0013

Inclusions are defects in poured metal caused by contaminants. The number of (large) inclusions in cast iron follows a Poisson distribution with a rate of 3.2 per cubic millimetre. What is the probability of exactly four inclusions in 2.0 cubic millimetres? Please enter the answer to 3 decimal places.

Answers

Answer: 0.116

Step-by-step explanation:

The Poisson distribution probability formula is given by :-

[tex]P(X=x)=\dfrac{e^{-\lambda}\lambda^x}{x!}[/tex], where \lambda is the mean of the distribution and x is the number of success

Given : The number of inclusions in one cubic millimeter = 3.2

Then , the number of inclusions in two cubic millimeters=[tex]\lambda=2\times3.2=6.4[/tex]

Now, the probability of exactly four inclusions in 2.0 cubic millimetres is given by :-

[tex]P(X=4)=\dfrac{e^{-6.4}(6.4)^4}{4!}\\\\=0.11615127195\approx0.116[/tex]

Hence, the probability of exactly four inclusions in 2.0 cubic millimetres = 0.116

Find the area of the triangle with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 1). (Hint: A triangle is half of a parallelogram. Sketching a generic picture may help you visualize before you start to compute.)

Answers

To find the area of a triangle with given vertices, calculate the cross product of two vectors representing the sides of the triangle. The magnitude of this cross product gives the area of the parallelogram, and half of this value is the triangle's area.

The area of a triangle with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 1) can be calculated using the cross product of two vectors that represent two sides of the triangle. First, we find the vectors AB and AC by subtracting the coordinates of the points:

Vector AB = B - A = (0 - 1, 2 - 0, 0 - 0) = (-1, 2, 0)Vector AC = C - A = (0 - 1, 0 - 0, 1 - 0) = (-1, 0, 1)

Next, we calculate the cross product AB x AC:

|i    j    k|
|-1  2  0|
|-1  0  1|

This results in a new vector (2, -1, -1). The magnitude of this vector gives us the area of the parallelogram formed by vectors AB and AC.

Area of parallelogram = |(2, -1, -1)| = √(2^2 + (-1)^2 + (-1)^2) = √(6)

Since the area of the triangle is half the area of the parallelogram, we get:

Area of triangle = ½ √(6) = √(1.5).

Trucks in a delivery fleet travel a mean of 120 miles per day with a standard deviation of 22 miles per day. The mileage per day is distributed normally. Find the probability that a truck drives between 100 and 157 miles in a day. Round your answer to four decimal places.

Answers

Final answer:

The probability that a truck drives between 100 and 157 miles in a day within a normal distribution can be calculated using z-scores. The z-scores for 100 and 157 miles are computed relative to the mean and standard deviation, and the corresponding probabilities are obtained from the standard normal distribution table. The final probability is the difference of these two probabilities.

Explanation:

Given that the distribution of trucks' daily mileage is normally distributed, we can approach this problem by using the principles of normal distribution and z-scores. The z-score is a measure of how many standard deviations an element is from the mean.

First, we calculate the z-scores for both 100 miles and 157 miles:

Z1 =(100 - 120) / 22 = -0.9091 Z2 = (157 - 120) / 22 = 1.6818

Next, we look up these z-scores in the standard normal distribution table (or use a calculator with a normal distribution function), which will give us the probabilities P(Z To arrive at four decimal places precision, this process typically involves using a statistical calculator or software.

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ2

An individual is planning a trip to a baseball game for 20 people. Of the people planning to go to the baseball game, 11 can go on Saturday and 14 can go on Sunday, some of them can go on both days. How many people can only go to the game on Saturday?

Answers

Answer:

6 people

Step-by-step explanation:

Suppose A represents the event of going on Saturday,

B represents the event of going on Sunday,

According to the question,

n(A)=11

n(B)=14

n(A∪B)=20

We know that,

n(A∪B) = n(A) + n(B) - n(A∩B)

By substituting values,

20 = 11 + 14 - n(A∩B)

⇒ n(A∩B) = 25 - 20 = 5,

Hence, the number of people who can only go to the game on Saturday = n(A) - n(A∩B) = 11 - 5 = 6.

Write the linear system of differential equations in matrix form then solve the system.

dx/dt = x + y

dy/dt = 4x + y

x(0) = 1, y(0) = 2

Answers

In matrix form, the system is

[tex]\dfrac{\mathrm d}{\mathrm dt}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}1&1\\4&1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}[/tex]

First find the eigenvalues of the coefficient matrix (call it [tex]\mathbf A[/tex]).

[tex]\det(\mathbf A-\lambda\mathbf I)=\begin{vmatrix}1-\lambda&1\\4&1-\lambda\end{vmatrix}=(1-\lambda)^2-4=0\implies\lambda^2-2\lambda-3=0[/tex]

[tex]\implies\lambda_1=-1,\lambda_=3[/tex]

Find the corresponding eigenvector for each eigenvalue:

[tex]\lambda_1=-1\implies(\mathbf A+\mathbf I)\vec\eta_1=\vec0\implies\begin{bmatrix}2&1\\4&2\end{bmatrix}\begin{bmatrix}\eta_{1,1}\\\eta_{1,2}\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}[/tex]

[tex]\lambda_2=3\implies(\mathbf A-3\mathbf I)\vec\eta_2=\vec0\implies\begin{bmatrix}-2&1\\4&-2\end{bmatrix}\begin{bmatrix}\eta_{2,1}\\\eta_{2,2}\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}[/tex]

[tex]\implies\vec\eta_1=\begin{bmatrix}1\\-2\end{bmatrix},\vec\eta_2=\begin{bmatrix}1\\2\end{bmatrix}[/tex]

Then the system has general solution

[tex]\begin{bmatrix}x\\y\end{bmatrix}=C_1\vec\eta_1e^{\lambda_1t}+C_2\vec\eta_2e^{\lambda_2t}[/tex]

or

[tex]\begin{cases}x(t)=C_1e^{-t}+C_2e^{3t}\\y(t)=-2C_1e^{-t}+2C_2e^{3t}\end{cases}[/tex]

Given that [tex]x(0)=1[/tex] and [tex]y(0)=2[/tex], we have

[tex]\begin{cases}1=C_1+C_2\\2=-2C_1+2C_2\end{cases}\implies C_1=0,C_2=2[/tex]

so that the system has particular solution

[tex]\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}e^{3t}\\2e^{3t}\end{bmatrix}[/tex]

Final answer:

The linear system of differential equations can be written in matrix form as [dx/dt, dy/dt] = [1, 1; 4, 1] * [x, y]. By solving the system with the given initial conditions x(0) = 1 and y(0) = 2, the values of x and y at different time points can be determined.

Explanation:

To write the linear system of differential equations in matrix form, we can express the given equations as:

[dx/dt, dy/dt] = [1, 1; 4, 1] * [x, y]

Using the initial conditions x(0) = 1 and y(0) = 2, we can solve the system of equations to find the values of x and y at different time points.

An 80 kg Rottweiler needs 40 mL/kg over 12 hours. What's the flow rate per hour?


A. 3,200 mL/hr
B. 267 mL/hr
C. 3.3 mL/hr
D. 133 mL/hr

Answers

Answer:

The flow rate is 267ml/hour

Step-by-step explanation:

Hello, great question. These types are questions are the beginning steps for learning more advanced Equations.

To solve this we first need to find out how many ml the Rottweiler needs over 12 hours. We do this by using the Rule of Three property.

[tex]\frac{40ml}{1kg} = \frac{x}{80kg}[/tex]

[tex]\frac{40ml*80kg}{1kg} =x[/tex]

[tex]3200ml = x[/tex]

So the Rottweiler needs 3200 ml over a 12 hour period. We now need to find the flow rate per hour. We can solve this by simply dividing 3200 ml by 12 hours.

[tex]3200ml / 12hours = 266.67ml/hour[/tex]

So the flow rate is 267 ml/hour (rounded to the nearest whole number)

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

In your own words, explain the problem of correlation vs. causation. Why are causation and correlation very different?

Answers

Answer:

Step-by-step explanation:

Correlation means that two or more events happen together. They are related to one another by being caused by the same thing.

Causation has a definite order. The first event has some cause that is comes before the second event. One event caused the other.

Write out the form of the partial fraction decomposition of the function (as in this example). Do not determine the numerical values of the coefficients. (a) x4 − 2x3 + x2 + 3x − 2 x2 − 2x + 1

Answers

[tex]\dfrac{x^4-2x^3+x^2+3x-2}{x^2-2x+1}[/tex]

The degree of the numerator exceeds the degree of the denominator, so first you have to divide:

[tex]x^2+\dfrac{3x-2}{x^2-2x+1}[/tex]

Now, [tex]x^2-2x+1=(x-1)^2[/tex], so the remainder term can be expanded to get

[tex]\boxed{x^2+\dfrac a{x-1}+\dfrac b{(x-1)^2}}[/tex]

A medical equipment industry manufactures X-ray machines. The unit cost C (the cost in dollars to make each X-ray machine) depends on the number of machines made. If X machines are made, then the unit cost is given by the function C (x) = 1.2x^2 -600x + 89,966. How many machines must be made to minimize the unit cost?
Do not round your answer.

Answers

Answer:

x = 250 units

Step-by-step explanation:

We can easily solve this problem by using a graphing calculator or any plotting tool.

We must find the minimum point in the graph. This corresponds to the number of machines that produce the minimum cost.

The equation is

C (x) = 1.2x^2 -600x + 89,966

Please see attached image below

By producing x = 250 units, we obtain the minimum cost

A customer brings a check of 2,941. he wants 100 in cash, put 20% of the remaining into her savings account then the rest into a checking account. How much will ge be putting in his checking account

Answers

Answer:

Amount theta she is putting in Checking account is 2272.80

Step-by-step explanation:

Given:

Amount on check = 2941

Amount that he want in cash = 100

Amount she put in saving account = 20% of remaining after getting cash

Remaining Amount she put in checking account.

To find: Amount in her Checking Account.

Amount left after taking cash = 2941 - 100 = 2841

Amount that she put in saving account = 20% of 2841 = [tex]\frac{20}{100}\times2841[/tex] =  568.20

Amount in her checking account = 2941 - 100 - 568.20  = 2272.8

Therefore, Amount theta she is putting in Checking account is 2272.80

Prove that (AB)−1=B−1A−1

Answers

Answer with Step-by-step explanation:

Consider,

[tex](AB)^{-1}(AB)=I[/tex] (Identity rule)

Multiplying by B⁻¹ on the both the sides, we get that

[tex](AB)^{-1}(AB)B^{-1}=IB^{-1}\\\\(AB)^{-1}A(BB^{-1})=B^{-1}[/tex]

And we know that BB⁻¹ = I

So, it becomes,

[tex](AB)^{-1}A=B^{-1}[/tex]

Now, multiplying by A⁻¹ on both the sides, we get that

[tex](AB)^{-1}AA^{-1}=B^{-1}A^{-1}\\\\(AB)^{-1}=B^{-1}A^{-1}[/tex] (AA⁻¹=I)

Hence, proved.

3. For each of the following lists of integers, provide a simple formula or rule.. Assuming that your formula or rule is correct, determine the next three term of the sequence. 15, 20, 25, 30, 35,... a. b. 5,9, 13, 17, 21, ...

Answers

Step-by-step explanation:

Consider the first sequence:

15, 20, 25, 30, 35,...

Note that each term is increased by 5 from its previous term.

Therefore,

[tex]a_n=a_{n-1}+5[/tex]

If the pattern continue, the next three term of the sequence will be:

[tex]a_6=a_{6-1}+5[/tex]

[tex]a_6=a_{5}+5[/tex]

[tex]a_6=35+5[/tex]

[tex]a_6=40[/tex]

Similarly,

[tex]a_7=a_{7-1}+5[/tex]

[tex]a_7=a_{6}+5[/tex]

[tex]a_7=40+5[/tex]

[tex]a_7=45[/tex]

Similarly,

[tex]a_8=a_{8-1}+5[/tex]

[tex]a_8=a_{7}+5[/tex]

[tex]a_8=45+5[/tex]

[tex]a_8=50[/tex]

Thus, the next three term of the sequence 15, 20, 25, 30, 35,... is 40, 45, and 50.

Now, consider the second sequence:

5, 9, 13, 17, 21,...

Note that each term is increased by 4 from its previous term.

Therefore,

[tex]a_n=a_{n-1}+4[/tex]

If the pattern continue, the next three term of the sequence will be:

[tex]a_6=a_{6-1}+4[/tex]

[tex]a_6=a_{5}+4[/tex]

[tex]a_6=21+4[/tex]

[tex]a_6=25[/tex]

Similarly,

[tex]a_7=a_{7-1}+4[/tex]

[tex]a_7=a_{6}+4[/tex]

[tex]a_7=25+4[/tex]

[tex]a_7=29[/tex]

Similarly,

[tex]a_8=a_{8-1}+4[/tex]

[tex]a_8=a_{7}+4[/tex]

[tex]a_8=29+4[/tex]

[tex]a_8=33[/tex]

Thus, the next three term of the sequence 5, 9, 13, 17, 21,... is 25, 29, and 33.

Which is the solution to the equation 3/5(x+4/3)= 1.04 ?

Answers

The correct answer is 2/5

3/5X + 4/5 =26/25

15x+20=26

15x=26-20

15x=6

x=2/5

What is the GCF of 96x5 and 64x2?

Answers

Answer:

6

Step-by-step explanation:

96x5

4667777654442to is 2272666543 GCF is 6

Answer:

32x(2)         (squared)

Step-by-step explanation:

GCF of 96 and 64:

  64 = (2)(2)(2)(2)(2)(2)

  96 = (2)(2)(2)(2)(2)(3)

  GCF = (2)(2)(2)(2)(2) = 32

GCF of x5 and x2:

x5 = (x)(x)(x)(x)(x)

x2 = (x)(x)

GCF = (x)(x) = x2

You have a hat containing 8 red chips, 4 green chips, 5 yellow chips, and 3 white chips. Find the following probabilities and write the answers as simplified fractions:

(4 points each)

Probability of picking a red chip?

Probability of not picking a green chip?

Probability of picking one chip and it is a yellow or green chip?

Answers

Step-by-step explanation:

There are 20 chips in total.

P(red) = 8/20 = 2/5

P(not green) = 16/20 = 4/5

P(yellow or green) = 9/20


A vacuum cleaner dealership sold 370 units in 2011 and 411 units in 2012. Find the percent increase or decrease in the number of units sold.

The number of units sold increased or decreased? by about what percent?

Answers

Answer:

The percent of Increase is of 11.08% (0.1108)

Step-by-step explanation:

Hello, great question. These types are questions are the beginning steps for learning more advanced Algebraic Equations.

Since we have two different values for two different years, we can use the following Algebraic Expression to calculate the percent difference of sales between both years. The Expression would be the following,

[tex]370 * (x+1) = 411[/tex]

Where x is the percent difference. Now we solve for x,

[tex]370 * (x+1) = 411[/tex]

[tex]x+1 = 1.1108[/tex]

[tex]x = 0.1108[/tex]

so now we see that the percent of Increase is of 11.08% (0.1108)

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

Final answer:

The number of units sold increased by about 11.08%.

Explanation:

To find the percent increase or decrease in the number of units sold, we need to calculate the difference between the number of units sold in 2012 and 2011, and then divide that difference by the number of units sold in 2011.

The amount of increase or decrease is calculated as: (Number of units sold in 2012 - Number of units sold in 2011)/Number of units sold in 2011 x 100

In this case, the calculation is: (411 - 370)/370 x 100 = (41/370) x 100 = 11.08%

Therefore, the number of units sold increased by about 11.08%.

2) Here are two relations defined on the set {a, b, c, d): S= { (a, b), (a, c), (c, d), (c, a)} R={ (b, c), (c, b), (a, d), (d, b)} Write each relation as a set of ordered pairs. a) SoR b) RoS c) SoS

Answers

Answer:

Given relations defined on the set {a, b, c, d},

S= { (a, b), (a, c), (c, d), (c, a)}

R={ (b, c), (c, b), (a, d), (d, b)},

Since, SoR(x) = S(R(x)),

So, SoR(a) = S(R(a)) = S(d) = ∅,

SoR(b) = S(R(b)) = S(c) = d and a,

SoR(c) = S(R(c)) = S(b) = ∅,

SoR(d) = S(R(d)) = S(b) = ∅,

Thus, SoR = { (b,d), (b,a) }

RoS(a) = R(S(a)) = R(b) = c and RoS(a) = R(S(a)) = R(c) = b,

RoS(b) = R(S(b)) = R(∅) = ∅,

RoS(c) = R(S(c)) = R(d) = b and RoS(c) = R(S(c)) = R(a) = d

RoS(d) = R(S(d)) = R(∅) = ∅,

Thus, RoS = { (a, c), (a, b), (c,d), (c, b) },

SoS(a) = S(S(a)) = S(b) = ∅ and SoS(a) = S(S(a)) = S(c) = d and a

SoS(b) = S(S(b)) = S(∅) = ∅,

SoS(c) = S(S(c)) = S(d) = ∅ and SoS(c) = S(S(c)) = S(a) = b and c

SoS(d) = S(S(d)) = S(∅) = ∅,

SoS = { (a, d), (a, a), (c, b), (c, c) }

Final answer:

The composition of relations S and R mentioned in the question are SoR: { (a, c), (c, b)}, RoS: { (b, d), (a, b)} and SoS: { (a, d), (c, b)}.

Explanation:

The question is asking for the composition of relations. So, composition of relations S and R, denoted as 'SoR' or 'S ◦ R', is the set of ordered pairs where the first element is related to the second element through the combination of relations S and R. In this case the relations S and R on the set {a, b, c, d} are: S= { (a, b), (a, c), (c, d), (c, a)} and R={ (b, c), (c, b), (a, d), (d, b)}.

By the rule of composition SoR will be: { (a, c), (c, b)}.

Similarly, for RoS will be: { (b, d), (a, b)}.

And for SoS it will be: { (a, d), (c, b)}.

Learn more about Composition of Relations here:

https://brainly.com/question/11269249

#SPJ3

Find two power series solutions of the given differential equation about the ordinary point x = 0. Compare the series solutions with the solutions of the differential equation obtained using the method of Section 4.3. Try to explain any differences between the two forms of the solution. y'' − y' = 0

Answers

Final answer:

To find power series solutions of the differential equation y'' − y' = 0, we can assume a power series solution and find the recurrence relation. Two power series solutions are found by choosing different initial conditions. The power series solutions are equivalent to the exponential solutions obtained using another method.

Explanation:

To find power series solutions of the differential equation y'' − y' = 0, we can assume a power series solution of the form y(x) = ∑(n=0)∞ a_nx^n. Substituting this into the differential equation and simplifying, we find that the power series satisfies the recurrence relation a_{n+2} = a_{n+1} in terms of a_0 and a_1.

By letting a_0 = 0 and a_1 = 1, we obtain the power series solution y_1(x) = x. Alternatively, by letting a_0 = 1 and a_1 = 0, we obtain the power series solution y_2(x) = 1.

Comparing these power series solutions with the solutions obtained using the method of Section 4.3, we see that the power series solutions are polynomials. In this case, the power series solutions are equivalent to the solutions obtained using the method of Section 4.3, which are exponential functions.

Learn more about Power series solution here:

https://brainly.com/question/31522450

#SPJ11

Riding a bike a person takes 20 minutes to go to work. The trip back home takes 30 minutes. If the rate back is 8 mph slower than the trip to work, find the rates (speeds) each way and the distance to work.

Answers

Answer:Trip to work has rate:  24 mphTrip back to home has rate: 18 mphDistance to work is:  480 mStep-by-step explanation:

We know that speed is defined as the ratio of distance to time.

i.e.

[tex]Speed=\dfrac{Distance}{Time}[/tex]

Let the distance traveled to work be: x m.

Now, while going to work it takes a person 20 minutes.

This means that the speed of the person while going to work is:

[tex]S_1=\dfrac{x}{20}[/tex]

Also, the time taken to come back home is: 30 minutes.

This means that the speed of person while riding to home is:

[tex]S_2=\dfrac{x}{30}[/tex]

Also, it is given that  the rate back is 8 mph slower than the trip to work.

This means that:

[tex]S_1-S_2=8[/tex]

i.e.

[tex]\dfrac{x}{20}-\dfrac{x}{30}=8\\\\i.e.\\\\\dfrac{30x-20x}{600}=8\\\\i.e.\\\\\dfrac{10x}{600}=8\\\\i.e.\\\\\dfrac{x}{60}=8\\\\i.e.\\\\x=480\ \text{m}[/tex]

Hence, the distance to work is:  480 m.

Also, the rate while going to work is:

[tex]=\dfrac{480}{20}\\\\=24\ \text{mph}[/tex]

and the trip back to home is covered with the speed:

[tex]=\dfrac{480}{30}\\\\=16\ \text{mph}[/tex]

Find the remainder when dividing 2^2013 by 15.

*Answer should be in modulo. Example: Find the remainder when dividing 2^100 by 21 and the answer is 2^100 = 16mod(21).*

Answers

[tex]2^{2013}=2^{4\cdot503+1}\\\\2^4=16\equiv 1\pmod{15}\\2^{4\cdot 503}\equiv 1\pmod{15}\\2^{4\cdot 503+1}\equiv 2\pmod{15}\\\\2^{2013}\equiv 2\pmod{15}[/tex]

A normal distribution has a mean 20 and standard deviation 5. What is the z score that corresponds to the value x=222

Answers

Answer: The z score that corresponds to the value x=22 is 0.4 .

Step-by-step explanation:

Given : A normal distribution has a mean 20 and standard deviation 5.

i.e. [tex]\mu=20[/tex]

[tex]\sigma=5[/tex]

Let x be the random selected variable.

We know that to find the z-score corresponds to the value x is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = 22, we have

[tex]z=\dfrac{22-20}{5}=\dfrac{2}{5}\\\\\Rightarrow\ z=0.4[/tex]

Hence, the z score that corresponds to the value x=22 is 0.4

A z-score in a normal distribution measures the number of standard deviations a value is from the mean. To calculate it, use the formula z = (x - μ) / σ for the specific values provided, such as half a standard deviation below the mean, 5 points above the mean, three standard deviations above the mean, and 22 points below the mean.

The calculation of a z-score within a normal distribution is a common task in statistics, allowing one to determine how many standard deviations a particular value, x, is from the mean, μ, of the distribution. The z-score is calculated using the formula:

z = (x - μ) / σ

where x is the value in question, μ is the mean, and σ is the standard deviation. Now, we will calculate the z-scores for the given situations:

One-half of a standard deviation below the mean:5 points above the mean:Three standard deviations above the mean:22 points below the mean:

Remember, when you use these calculations for specific numerical values, you need to insert the actual values of mean and standard deviation into the formula.

You would like to make a salad that consists of​ lettuce, tomato,​ cucumber, and onions. You go to the supermarket intending to purchase one variety of each of these ingredients. You discover that there are nine varieties of​ lettuce, four varieties of​ tomatoes, two varieties of​ cucumbers, and three varieties of onions for sale at the supermarket. How many different salads can you​ make?

Answers

Answer:  216

Step-by-step explanation:

Given : We like to make a salad that consists of​ lettuce, tomato,​ cucumber, and onions.

The number of varieties of lettuce = 9

The number of varieties of tomatoes = 4

The number of varieties of cucumbers = 2

The number of varieties of onions = 3

Now, the number of different salads we can make is given by :-

[tex]9\times4\times2\=216[/tex]

Hence, we can make 216 different types of salads.

Find the value of 715×211 Although these numbers aren't quite as nice as the ones from the example, the procedure is the same, so the difficulty is the same same excepting the ability to perform the calculation in your head. You may choose to use a calculator.

Answers

Final answer:

To calculate the value of 715 × 211, you can use the standard multiplication method by multiplying each digit of the two numbers and summing up the results.

Explanation:

To find the value of 715 × 211, you can use the standard multiplication method. Start by multiplying the ones digit of 715 (5) by each digit of 211 (1, 1, and 2), and write down the results. Then, multiply the tens digit of 715 (1) by each digit of 211, and write down the results one place to the left of the previous results. Finally, multiply the hundreds digit of 715 (7) by each digit of 211 and write down the results two places to the left. Sum up the columns and you will get the final product.

Here's how it looks:

   715
× 211
--------
 715
 1430  
+1425
--------
 150665

Learn more about Multiplication here:

https://brainly.com/question/35502092

#SPJ2

How do you simplify this?

[tex](9k^{6}+8k^{4}-6k^{2})(4k^{2}-5)[/tex]

Answers

ANSWER

[tex]36k^{8} -13{k}^{6} -64k^{4} + 30 {k}^{2} [/tex]

EXPLANATION

Recall the distributive property:

[tex](a + b + c)(d + e) = a(d + e) + b(d + e) + c(d + e)[/tex]

We apply this property multiple times to simplify

[tex](9k^{6}+8k^{4}-6k^{2})(4k^{2}-5)[/tex]

This implies that:

[tex]9k^{6}(4k^{2}-5)+8k^{4}(4k^{2}-5)-6k^{2}(4k^{2}-5)[/tex]

We apply the distributive property again:

This time: a(b+c)=ac+ab

[tex] \implies \: 9k^{6} \times 4k^{2}-5 \times 9 {k}^{6} +8k^{4} \times 4k^{2}-5 \times 8 {k}^{4} -6k^{2} \times 4k^{2} + 5 \times 6 {k}^{2} [/tex]

[tex]\implies \: 36k^{8} -45{k}^{6} +32k^{6} -40 {k}^{4} -24k^{4} + 30 {k}^{2} [/tex]

[tex]\implies 36k^{8} -13{k}^{6} -64k^{4} + 30 {k}^{2} [/tex]

NB: [tex]k^{n}\times{k}^{m}=k^{m+n} [/tex]

Other Questions
In the first paragraph of her response, Levinson uses the phrases I wish I could say and I was wrong but I didnt know that yet.How do those phrases affect the tone of the interview? They create a formal and academic tone. They create an informal and humble tone. They create an informal and humorous tone. They create a formal and aloof tone. with the passage _____, tariffs among the United States, Mexico, and Canada were reduced. identify the image of XYZ for a composition of a 190 rotation and a 80 rotation, both about point y If the length of a diagonal of a square is "a", what is the length of its side? what is the reference angle for 7pi/6 What is the equation of a hyperbola with a = 3 and c = 7 Assume that the transverse axis is horizontal. Which of the following best illustrates the free rider problem?A. Since no one owns elephants and elephants are valued for their hide, meat and ivory, elephants can be hunted to extinction.B. For every purchase of a $30 fare card, you are entitled to five free bus rides.C. If your neighbors professionally landscape their front yards, it is likely that the market value of your property will increase.D. All three homeowners in a quiet cul-de-sac have expressed the desirability of security lighting in the common parking area. One of the homeowners installs the lighting and asks you to contribute toward the cost. You choose not to contribute. What country is this?A.EcuadorB.PanamaC.BoliviaD.Espana Define the isentropic efficiency for each of the following 3. a. i. Adiabatic turbine ii. Adiabatic compressor iii. Adiabatic nozzle Which state gives each of its residents $1 plz solve my problem.any how Which of the following is a type of data that is likely to be normallydistributed? beam of light, traveling in air(the index of refraction for air is 1), strikes the surface of mineral oil at an ngle of 30 with the normal to the surface.( the index of refraction for this mineral oil is 1.38) What is the ngle of refraction? What is the speed of the light traveling in mineral oil? Find the y -axis intercept for the functions f(x) = -{3/2} -x-1 +2 Instead of saying, "You're making me angry," say, "I'm getting angry." Instead of saying, "You hurt my feelings," say, "I feel hurt when you do that." These are examples of ________ . Please someone help me with these equations You need to find the distance across a river, so you make a triangle. BC is 943 feet, mB=102.9 and mC=18.6. Find AB. Five consecutive multiples of 3 yield a sum that is equal to the product of 7 and 15. What are these multiples? Daquan and Juan are twins but their sister phillipa is 3 years older than them if the sum of their three ages is 36 how old are the twins During the 1950s, a scientist named Lysenko tried to solve the food shortages in the Soviet Union by breeding wheat that could grow in Siberia. He theorized that if individual wheat plants were exposed to cold, they would develop additional cold tolerance and pass it to their offspring. Based on the ideas of artificial and natural selection, do you think this project worked as planned?A. Yes; the wheat probably evolved better cold tolerance over time through inheritance of acquired characteristics.B. No, because Lysenko took his wheat seeds straight to Siberia instead of exposing them incrementally to cold.C. No, because there was no process of selection based on inherited traits. Lysenko assumed thatexposure could induce a plant to develop additional cold tolerance and that this tolerance would be passed to the plant's offspring.D. Yes, because this is generally the method used by plant breeders to develop new crops.