Find an equation for the line that passes through the points (-2, 1) and (6, -5)

Answers

Answer 1

Answer:

y=-3/4x-1/2

Step-by-step explanation:

Using the slope equation,

m=y₂-y₁

    ____

     x₂-x₁

you get the slope:

m=-5-1/6+2

m=-6/8

m=-3/4

We find that the intercept is -1/2.

The equation is y=-3/4x-1/2

Answer 2
Hello!

The answer is:

The equation of the line that passes through the points (-2,1) and (6,-5) is:

[tex]y=-\frac{3}{4}x-\frac{1}{2}[/tex]

Why?

To solve the problem, we can use the following formula:

We have that:

[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}*(x-x_1)[/tex]

So, using the given points (-2,1) and (6,-5), we have:

[tex]y-1=\frac{-5-1}{6-(-2)}*(x-(-2))[/tex]

[tex]y-1=\frac{-6}{6+2}*(x+2)[/tex]

[tex]y-1=\frac{-6}{8}*(x+2)[/tex]

[tex]y-1=-\frac{3}{4}*(x+2)[/tex]

[tex]y=-\frac{3}{4}*(x+2)+1[/tex]

[tex]y=-\frac{3}{4}*(x)-\frac{3}{4}**(2)+1[/tex]

[tex]y=-\frac{3}{4}(x)-\frac{6}{4})+1[/tex]

[tex]y=-\frac{3}{4}(x)-\frac{3}{2})+1[/tex]

[tex]y=-\frac{3}{4}x-\frac{1}{2}[/tex]

Hence, we have that the equation of the line that passes through the points (-2,1) and (6,-5) is:

[tex]y=-\frac{3}{4}x-\frac{1}{2}[/tex]

Have a nice day!


Related Questions


I need the answer to this question.

1) Divide 1197 hours 48 minutes by 53.

Need hours and minutes

Round to the nearest hundredth as necessary.

Answers

1197 hours, 48 minutes

is equal to

1197 + 48/60 hours

Dividing by 53 gives

1197/53 + 48/3180 hours

Since

1197 = 22*53 + 31

we get

22 + 31/53 + 48/3180 hours

22 + (1860 + 48)/3180 hours

22 + 3/5 hours

22 + 36/60 hours

22 hours, 36 minutes

The population of a town with a 2016 population of 66,000 grows at a rate of 2.5% per year a. Find the rate constant k and use it to devise an exponential growth function that fits the given data b. In what year will the population reach 176.000? Book a. Find the rate constant k k= (Type an exact answer) tents ccess Library Resources

Answers

Final answer:

The rate constant, k, can be found using the formula k = ln(1 + r), where r is the growth rate. In this case, the growth rate is 2.5%. The rate constant is approximately 0.0253. The exponential growth function is P(t) = 66,000 * e^(0.0253t). To find in what year the population will reach 176,000, we solve the equation 176,000 = 66,000 * e^(0.0253t) and find that it will take approximately 42 years.

Explanation:

To find the rate constant, we can use the formula:

k = ln(1 + r)

where k is the rate constant and r is the growth rate as a decimal.

In this case, the growth rate is 2.5%, which is equivalent to 0.025 as a decimal.

Using the formula, we have:

k = ln(1 + 0.025) = ln(1.025) ≈ 0.0253

Therefore, the rate constant k is approximately 0.0253.

To devise an exponential growth function, we can use the formula:

P(t) = P0 * ekt

where P(t) is the population at time t, P0 is the initial population, k is the rate constant, and t is the time in years.

In this case, the initial population P0 is 66,000 and we already found that the rate constant k is 0.0253.

So, the exponential growth function is:

P(t) = 66,000 * e0.0253t

To find in what year the population will reach 176,000, we can set up the following equation:

176,000 = 66,000 * e0.0253t

Divide both sides by 66,000:

176,000 / 66,000 = e0.0253t

Simplify:

2.6667 = e0.0253t

To solve for t, we can take the natural logarithm of both sides:

ln(2.6667) = 0.0253t

Divide both sides by 0.0253:

t = ln(2.6667) / 0.0253 ≈ 41.71

Therefore, the population will reach 176,000 in approximately 41.71 years, which can be rounded to 42 years.

Find a counter example to show that the following statement is false:

For all nonzero real numbers a, b, c, d, a/b + c/d = a+c/b+d

A. a=3, b=5,c=-3,d=5
B. a=0, b=4,c=0,d=9
C. a=-2, b=1,c=2,d=1
D.a=1, b=2,c=1,d=2

Answers

Answer:

Option D. is the answer.

Step-by-step explanation:

The given statement is [tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]

Now we have to find a counter example from the given options that the statement is False.

A. a = 3, b = 5, c = -3, d = 5

[tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]=[tex]\frac{3}{5}+\frac{-3}{5}=\frac{3-3}{5+5}[/tex]

0 = 0

So the given statement is true.

B. a = 0, b = 4, c = 0, d= 9

[tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]

0 + 0 = 0

So for this example the given statement is true.

C. a = -2, b = 1, c = 2, d = 1

[tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]

[tex]\frac{-2}{1}+\frac{2}{1}=\frac{-2+2}{1+1}[/tex]

0 = 0

Statement is true for these values.

D. a = 1, b = 2, c = 1, d = 2

[tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]

[tex]\frac{1}{2}+\frac{1}{2}=\frac{1+1}{2+2}[/tex]

[tex]1=\frac{1}{2}[/tex]

Therefore, for these values of a, b, c and d, the given statement is False.

Option D. is the answer.

Final answer:

To find a counter example for the given statement, we need to test the options provided. However, all the options satisfy the equation, indicating that the statement holds true for all nonzero real numbers.

Explanation:

To find a counter example for the given statement, we need to find values for a, b, c, and d that make the equation a/b + c/d = a+c/b+d false. Let's consider the options given:

Option A: a=3, b=5, c=-3, d=5Option B: a=0, b=4, c=0, d=9Option C: a=-2, b=1, c=2, d=1Option D: a=1, b=2, c=1, d=2

We can see that for all the options, the equation holds true. Therefore, there is no counter example and the statement is true for all nonzero real numbers.

Learn more about Counter example here:

https://brainly.com/question/29193211

#SPJ3

Use the definition to find an expression for the area under the curve y = x3 from 0 to 1 as a limit. lim n→∞ n i = 1 R (b) The following formula for the sum of the cubes of the first n integers is proved in Appendix E. Use it to evaluate the limit in part (a). 13 + 23 + 33 + + n3 = n(n + 1) 2 2

Answers

The summand (R?) is missing, but we can always come up with another one.

Divide the interval [0, 1] into [tex]n[/tex] subintervals of equal length [tex]\dfrac{1-0}n=\dfrac1n[/tex]:

[tex][0,1]=\left[0,\dfrac1n\right]\cup\left[\dfrac1n,\dfrac2n\right]\cup\cdots\cup\left[1-\dfrac1n,1\right][/tex]

Let's consider a left-endpoint sum, so that we take values of [tex]f(\ell_i)={\ell_i}^3[/tex] where [tex]\ell_i[/tex] is given by the sequence

[tex]\ell_i=\dfrac{i-1}n[/tex]

with [tex]1\le i\le n[/tex]. Then the definite integral is equal to the Riemann sum

[tex]\displaystyle\int_0^1x^3\,\mathrm dx=\lim_{n\to\infty}\sum_{i=1}^n\left(\frac{i-1}n\right)^3\frac{1-0}n[/tex]

[tex]=\displaystyle\lim_{n\to\infty}\frac1{n^4}\sum_{i=1}^n(i-1)^3[/tex]

[tex]=\displaystyle\lim_{n\to\infty}\frac1{n^4}\sum_{i=0}^{n-1}i^3[/tex]

[tex]=\displaystyle\lim_{n\to\infty}\frac{n^2(n-1)^2}{4n^4}=\boxed{\frac14}[/tex]

The limit  expression for the area under the curve y = x³ as n approaches infinity is; ¹/₄

What is the integral limit?

The given definition is area A of the region S that lies under the graph of the continuous function which is the limit of the sum of the areas of approximating rectangles.

The expression for the area under the curve y = x³ from 0 to 1 as a limit is;

[tex]\lim_{n \to \infty} \Sigma^{n} _{i = 1} (\frac{i}{n})^{3} * \frac{1}{n} }[/tex]

From the expression above, when we factor out 1/n⁴, we will get;

[tex]\lim_{n \to \infty} \frac{1}{n^{4} } \Sigma^{n} _{i = 1} \frac{i}{n} }[/tex]

This is further broken down to get;

[tex]\lim_{n \to \infty} \frac{1}{n^{4} } (\frac{n(n + 1)}{2} )^{2} } }[/tex]

This will be simplified to;

[tex]\lim_{n \to \infty} \frac{1}{n^{4} } \frac{(n^{4} + 2n^{3} + n^{2}) }{2}[/tex]

This would be simplified to;

[tex]\lim_{n \to \infty} \frac{1}{4} + \frac{1}{2n} + \frac{1}{4n^{2} }[/tex]

At limit of n approaches ∞, we have;

Limit = ¹/₄

Read more about integral limits at; https://brainly.com/question/14388434

4 Permutations 1. Let a "small block cipher be a function f which maps 8-bit plaintexts m E (0,1)8 to 8-bit ciphertexts c E (0,1)8. However, function f must be 1-1 or otherwise it would be impossible to invert a block cipher, i.e. compute (using the block cipher key) the plaintext f(c) given ciphertext c. How many "small" block ciphers are there? students if each student must have a computer and computers cannot be shared? capital letters but with no repeated characters? 2. There are 10 computers and 5 students. In how many ways can computers be assigned to 3. Recall problem 1. How many 8-character passwords are there made of either lower-case or . How many 10-digit decimal strings are there in which there is no repeated digits? 5. How many 10-digit decimal strings are there in which there is no repeated digits and where 5" occurs before "6"? (By "before" I mean "anywhere before" and not "mmediately before", e.g. string (5,0, 1, 2, 3, 4, 7, 8, 9, 6) is included.) 6. How many 10-digit decimal strings are there in which there is no repeated digits and where "5" and "6" are next to each other?

Answers

Listen to Kid cudi that’s the answer

The marketing manager for a newspaper has commissioned a study of the advertisements in the classified section. The results for the Wednesday edition showed that 208 are help dash wanted ​ads, 552 are real estate ​ads, and 331 are other ads. a. If the newspaper plans to select an ad at random each week to be published​ free, what is the probability that the ad for a specific week will be a help dash wanted ​ad

Answers

Answer:

[tex]\frac{208}{1091}[/tex]

Step-by-step explanation:

To find probability of x, we need to find the number of x divided by total number.

Here,

Total = 208 + 552 + 331 = 1091

Number of help dash wanted ad = 208

Hence, the probability that the ad for a specific week is a help dash wanted ad = 208/1091

Suppose a preliminary screening is given to prospective student athletes at a university to determine whether they would qualify for a scholarship. The scores are approximately normal with a mean of 85 and a standard deviation of 20. If the range of possible scores is 0 to 100, what percentage of students has a score less than 85?

Answers

Answer:

80

Step-by-step explanation:

Answer:

50% of students has a score less than 85

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 85, \sigma = 20[/tex]

What percentage of students has a score less than 85?

This is the pvalue of Z when X = 85. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{85 - 85}{20}[/tex]

[tex]Z = 0[/tex]

[tex]Z = 0[/tex] has a pvalue of 0.5

50% of students has a score less than 85

Which type of validity has become the overriding objective in validity? a. construct validity b. discriminant validity c. predictive validity d. construct validity

Answers

Answer:

Construct validity

Step-by-step explanation:

Construct validity is the most important and outmost validity that is used in scientific methods. Construct validity tells us how an experiment or a test is performed well and how well is the outcome of the experiment, How can the experiments can be measured upto its claims. Construct validity is not concerned about the simple question or the factual question that if an experiment measures an attribute. Construct validity is thus an evaluation of the quality of the experiment.

Answer:

a. construct validity

Step-by-step explanation:

Construct validity refers to whether a particular test actually measures what it claims to be measuring. This is one of the main types of validity evidence. It has become the overriding objective in validity, subsuming all other types of validity evidence. Construct validity answers whether a particular measure behaves in the way that the theory says a measure of that construct should behave.

a gross of baseball cards contains 144 packs of cards. each pack contains 8 baseball cards how many cards do you have in all?

Answers

912 cards in all

If there are 114 packs of cards and 8 in each you multiply 114 by 8 and get 912.

Final answer:

To find the total number of baseball cards, multiply the number of packs (144) by the number of cards in each pack (8), resulting in a total of 1,152 cards.

Explanation:

If a gross of baseball cards contains 144 packs of cards and each pack contains 8 baseball cards, the total number of cards would be calculated by multiplying the number of packs by the number of cards in each pack.

To get the total number of baseball cards.

144 packs x 8 cards/pack = 1,152 cards

Hence, a gross of baseball cards contains 1,152 cards in total.

Learn more about Multiplication here:

https://brainly.com/question/35502092

#SPJ2

The lengths of pregnancies are normally distributed with a mean of 267 days and a standard deviation of 15 days. a. Find the probability of a pregnancy lasting 309 days or longer. b. If the length of pregnancy is in the lowest 4​%, then the baby is premature. Find the length that separates premature babies from those who are not premature.

Answers

Answer:

We have a normal distribution with a mean of 267 days and a standard deviation of 15 days. To solve this proble we're going to need the help of a calculator.

a. The probability of a pregnancy lasting 309 days or longer is:

P(z>309) = 0.0026 or 0.26%

b. The lowest 4% is separeted by the 240.74 days. The probability of pregnancy lasting 240.74 days is 4%.

Answer:

a) 0.26% probability of a pregnancy lasting 309 days or longer.

b) A pregnancy length of 241 days separates premature babies from those who are not premature.

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 267, \sigma = 15[/tex]

a. Find the probability of a pregnancy lasting 309 days or longer.

This is 1 subtracted by the pvalue of Z when X = 309. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{309 - 267}{15}[/tex]

[tex]Z = 2.8[/tex]

[tex]Z = 2.8[/tex] has a pvalue of 0.9974

So there is a 1-0.9974 = 0.0026 = 0.26% probability of a pregnancy lasting 309 days or longer.

b. If the length of pregnancy is in the lowest 4​%, then the baby is premature. Find the length that separates premature babies from those who are not premature.

This is the value of X when Z has a pvalue of 0.04. So X when Z = -1.75

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.75 = \frac{X - 267}{15}[/tex]

[tex]X - 267 = -1.75*15[/tex]

[tex]X = 240.75[/tex]

A pregnancy length of 241 days separates premature babies from those who are not premature.

Write the rational expression in lowest terms. x^2-9x+8/x^2 + x-3; x^2-9x+8/x^2+2x-3 (Simplify your answer.)

Answers

Answer:

[tex]\frac{x-8}{x+3}[/tex]

Step-by-step explanation:

Given expression,

[tex]\frac{x^2-9x+8}{x^2+2x-3}[/tex]

[tex]=\frac{x^2-(8+1)x+8}{x^2+(3-1)x-3}[/tex]

[tex]=\frac{x^2-8x-x+8}{x^2+3x-x-3}[/tex]

[tex]=\frac{x(x-8)-1(x-8)}{x(x+3)-1(x+3)}[/tex]

[tex]=\frac{(x-1)(x-8)}{(x-1)(x+3)}[/tex]

[tex]=\frac{x-8}{x+3}[/tex]

Since, further simplification is not possible,

Hence, the given rational expression in lowest terms is,

[tex]\frac{x-8}{x+3}[/tex]

Consider a drug testing company that provides a test for marijuana usage. Among 300 tested​ subjects, results from 30 subjects were wrong​ (either a false positive or a false​ negative). Use a 0.01 significance level to test the claim that less than 10 percent of the test results are wrong.

Answers

Answer:

static value come under the rejection value because it is less than critical value

Step-by-step explanation:

Given data

test = 300

wrong test = 30

significance level = 0.01

claim for wrong  = 10 %

to find out

test the claim that less than 10 percent of the test results are wrong

solution

we take test claim null hypo thesis  = 10 % = 0.10

and and alternate hypo thesis < 10% i.e. <0.10

and we know proportion of sample is = result/ test

sample proportion = 30/300 = 0.10

so the statistics of this test will  be = sample proportion - hypothesis / [tex]\sqrt{hyro(1-hypo)/test}[/tex]

so statistics of this test  = 0.10 - 0.10 / [tex]\sqrt{0.10(1-0.10)/300}[/tex]

so statistics of this test  =  0

and α = tail area critical value for  Z (0.01)  = 2.33

so here static value come under the rejection value because it is less than critical value

Final answer:

To test the claim that less than 10 percent of the test results are wrong, we'll use a hypothesis test with a 0.01 significance level. The calculated test statistic z will determine whether to reject or fail to reject the null hypothesis.

Explanation:

To test the claim that less than 10 percent of the test results are wrong, we'll use a hypothesis test with a 0.01 significance level. Let p represent the proportion of wrong test results. The null hypothesis is that p is greater than or equal to 0.10, and the alternative hypothesis is that p is less than 0.10.

We'll calculate the test statistic z = (x - np) / sqrt(np(1-p)), where x is the number of wrong test results and n is the total number of tested subjects. Using the given information, x = 30 and n = 300.

Using a z-table or calculator, we can find the z-score corresponding to a significance level of 0.01. If the calculated test statistic z is less than the z-score from the table, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

Learn more about Hypothesis testing here:

https://brainly.com/question/34171008

#SPJ11

In the diagram, how many pairs of vertical angles are shown? ​

Answers

I see 4 pairs of vertical angles and they are:

7/9

8/10

11/13

12/14

Answer:

4 pairs

Step-by-step explanation:

vertical angles are opposite angles formed by two intersecting lines.

please thank if you learned from this answer.

Let p and q denote the following statements. pis "The chair is broken." qis "The stove is hot." Write the compound statement. The chair is broken or the stove is not hot, in symbolic form. The chair is broken or the stove is not hot. The symbolic form is a

Answers

Is q i think it is .

Final answer:

The statement 'The chair is broken or the stove is not hot' translates to 'p v ~q' in symbolic form, where 'p' represents 'The chair is broken,' and 'q' represents 'The stove is hot.' The 'v' symbolizes 'or,' and '~' indicates negation.

Explanation:

The question requests the compound statement 'The chair is broken or the stove is not hot' be written in symbolic form using propositional logic. Given the statements, p is 'The chair is broken,' and q is 'The stove is hot,' we can translate the request into symbolic form. The use of 'or' in propositional logic is represented by the symbol 'v' (wedge), and the negation of a statement is represented by the symbol '~' (tilde). Therefore, 'The stove is not hot' can be represented as '~q'.

To combine these statements into the requested compound statement, we use:
p v ~q
This reads as 'p or not q', which translates back into the original statement 'The chair is broken or the stove is not hot.' This allows us to see how logical operators like disjunction ('or') and negation ('not') work together to construct compound statements in propositional logic.

PLEASE HELP

I am confused on these equations

Answers

Answer:

See below.

Step-by-step explanation:

I'll show you step by step how to do the synthetic division.

You are dividing polynomial -6x^4 + 22x^3 + 3x^2 + 15x + 20 by x - 4.

From the polynomial, you only need the coefficients in descending order of degree as they are written.

         -6    22    3    15    20

In synthetic division, you divide by x - b. You are dividing by x - 4, so b = 4.

The 4 is written to the left of the coefficients of the polynomial.

      ___________________

4   |       -6    22    3    15    20

      ___________________

This is what the setup looks like. You can see it in the problem you were given.

The first step is to just copy the leftmost coefficient straight down to below the line.

      ___________________

4   |       -6    22    3    15    20

      ___________________

             -6

Now multiply b, which is 4, by -6 and write it above and to the right.

     ___________________

4   |       -6    22    3    15    20

                    -24

      ___________________

            -6

Add 22 and -24 and write it next to -6.

     ___________________

4   |       -6    22    3    15    20

                    -24

      ___________________

             -6     -2

Multiply 4 by -2 and write it above and to the right. Add vertically.

     ___________________

4   |       -6    22     3    15    20

                    -24   -8

      ___________________

             -6     -2    -5

Multiply 4 by -5 and write it above and to the right. Add vertically.

     ___________________

4  |       -6    22     3    15    20

                    -24   -8   -10

      ___________________

             -6     -2    -5   -5

Multiply 4 by -5 and write it above and to the right. Add vertically.

     ___________________

4   |       -6    22     3    15    20

                    -24   -8   -10   -20

      ___________________

             -6     -2    -5   -5      0

The 4 numbers in the second line are the coefficients of the quotient.

The quotient is 1 degree less than the original polynomial.

The quotient is: -24x^3 - 8x^2 - 10x - 20

The last number on the third line is the remainder. Since here the reminder is zero, that means that this division has no remainder. The remainder is 0/(x - 4)

Fill in the boxes with:

-24, -8, -10, -20

-6, -2, -5, -5, 0

-24x^3 - 8x^2 - 10x - 20

0

One serving of soybeans contains 14 grams of protein and 8 grams of fat. One serving of rice contains 4 grams of protein and 1/2 gram of fat. Calculate the number of servings of each that need to be combined, in order to end up with precisely 30 grams of protein and 15 grams of fat. How many servings of rice will be needed?

Answers

Answer: 1.8 servings of soybean and 1.2 servings rice will be needed.

Step-by-step explanation:

Let x be the number of soybeans and y be the number of rice.

Then , According to the question , we have

[tex]14x+4y=30\\\Rightarrow\ 7x+2y=15..................................(1)\\\\ 8x+\frac{1}{2}y = 15\\\Rightarrow\ 16x+y=30.............................(2)[/tex]

Multiply 2 on both the sides of equation (2), we get

[tex]32x+2y=60................................(3)[/tex]

Subtract equation (2) from equation (3), we get

[tex]25x=45\\\\\Rightarrow\ x=1.8[/tex]

Put x = 1.8 in equation (2), we get

[tex]16x+y=30\\\\\Rightarrow\ y=30-16x\\=30-16(1.8)=1.2[/tex]

Hence, 1.8 servings of soybean and 1.2 servings rice will be needed.

Which of the formulas below could be a polynomial with all of the following properties: its only zeros are x = -6, -2, 2, it has y-intercept y = 4, and its long-run behavior is y rightarrow - infinity as x plusminus infinity? Select every formula that has all of these properties. A. y = -4/144 (x + 6)^2 (x + 2)(x - 2) B. y = -4/192 (x + 6)(x + 2)^4 (x - 2) C. y = -4x (x + 6)(x + 2)(x - 2) D. y = -4/24 (x + 6)(x + 2)(x - 2) E. y = -4/48 (x + 6) (x + 2)^2 (x - 2) F. y = -4/48 (x + 6)(x + 2)(x - 2)^2 G. y = 4/48 (x + 6)(x + 2) (x - 2)^2

Answers

Answer:

A, B, and E

if I read your functions right.

Step-by-step explanation:

It's zeros are x=-6,-2, and 2.

This means we want the factors (x+6) and (x+2) and (x-2) in the numerator.

It has a y-intercept of 4.  This means we want to get 4 when we plug in 0 for x.

And it's long-run behavior is y approaches - infinity as x approaches either infinity.  This means the degree will be even and the coefficient of the leading term needs to be negative.

So let's see which functions qualify:

A) The degree is 4 because when you do x^2*x*x you get x^4.

The leading coefficient is -4/144 which is negative.

We do have the factors (x+6), (x+2), and (x-2).

What do we get when plug in 0 for x:

[tex]\frac{-4}{144}(0+6)^2(0+2)(0-2)[/tex]

Put into calculator:  4

A works!

B) The degree is 6 because when you do x*x^4*x=x^6.

The leading coefficient is -4/192 which is negative.

We do have factors (x+6), (x+2), and (x-2).

What do we get when we plug in 0 for x:

[tex]\frac{-4}{192}(0+6)(0+2)^4(x-2)[/tex]

Put into calculator: 4

B works!

C) The degree is 4 because when you do x*x*x*x=x^4.

The leading coefficient is -4 which is negative.

Oops! It has a zero at 0 because of that factor of (x) between -4 and (x+6).

So C doesn't work.

D) The degree is 3 because x*x*x=x^3.

We needed an even degree.

D doesn't work.

E) The degree is 4 because x*x^2*x=x^4.

The leading coefficient is -4/48 which is negative.

It does have the factors (x+6), (x+2), and (x-2).

What do we get when we plug in 0 for x:

[tex]\frac{-4}{48}(0+6)(0+2)^2(0-2)[/tex]

Put into calculator: 4

So E does work.

F) The degree is 4 because x*x*x^2=x^4.

The leading coefficient is -4/48.

It does have factors (x+6), (x+2), and (x-2).

What do we get when we plug in 0 for x:

[tex]\frac{-4}{48}(0+6)(0+2)(0-2)^2[/tex]

Put into calculator: -4

So F doesn't work.

G. I'm not going to go any further. The leading coefficient is 4/48 and that is not negative.

So G doesn't work.

Answer:

D. [tex]y=-\frac{4}{24} (x+6)(x+2)(x-2)[/tex]

Step-by-step explanation:

Notice that we have 3 zeros, which means there are only 3 roots, which are -6, -2 and 2, this indicates that our expression must be cubic with the binomials (x+6), (x+2) and (x-2).

We this analysis, possible choices are C and D.

Now, according to the problem, it has y-intercept at y = 4, so let's evaluate each expression for x = 0.

C.

[tex]y=-4x(x+6)(x+2)(x-2)\\y=-4(0)(0+6)(0+2)(0-2)\\y=0[/tex]

D.

[tex]y=-\frac{4}{24} (x+6)(x+2)(x-2)\\y=-\frac{4}{24}(0+6)(0+2)(0-2)\\y=-\frac{4}{24}(-24)\\ y=4[/tex]

Therefore, choice D is the right expression because it has all given characteristics.

Calculate the percent of customer returns for a week with the following figures: gross sales, $7,500; returns, $95 on Monday, $19 on Tuesday, $50 on Wednesday, $140 on Thursday, $160 on Friday, and $80 on Saturday.

Answers

Answer:

The percentage of customer returns is 7%.

Step-by-step explanation:

Given,

Total gross sales = $ 7,500

Returns are,

$95 on Monday, $19 on Tuesday, $50 on Wednesday, $140 on Thursday, $160 on Friday, and $80 on Saturday,

So, the total returns = $ 95 + $ 50 + $ 140 + $ 160 + $ 80 = $ 525,

Hence, the percent of customer returns for the week = [tex]\frac{\text{Total returns}}{\text{Total gross sales}}\times 100[/tex]

[tex]=\frac{525}{7500}\times 100[/tex]

[tex]=\frac{52500}{7500}[/tex]

[tex]=7\%[/tex]

A realtor sold a home for ​$341,100 The commission was 4​% of the sale​ price; however, the realtor receives only 60% of the commission while 40% of the commission remains with his broker. Find the amount of commission received by the realtor.

Answers

Answer:

The relator recived $8,186.4

Step-by-step explanation:

What you have to do is find the 60% of the commission. Commission is 4% of $341,100 (100%)

First do a cross multiplication to find 4% of $341,100

100% ___ $341,100

4%______x:

[tex]x=(4*341,100)/100=13,644[/tex]

So, the 4% of $341,100 is $13,466

Now you have to find the 60% of $13,466

100% ___ $13,466

60%______x:

[tex]x=(60*13,466)/100=8,186.4[/tex]

The answer is: $8,186.4

Compound Interest Application

Compound interest is given by the formula A = P ( 1 + r ) t . Where A is the balance of the account after t years, and P is the starting principal invested at an annual percentage rate of r , expressed as a decimal.

Wyatt is investing money into a savings account that pays 2% interest compounded annually, and plans to leave it there for 15 years. Determine what Wyatt needs to deposit now in order to have a balance of $40,000 in his savings account after 15 years.

Wyatt will have to invest $___________ now in order to have a balance of $40,000 in his savings account after 15 years. Round your answer UP to the nearest dollar.

Answers

Answer:

$29,721

Step-by-step explanation:

We have been given that Wyatt is investing money into a savings account that pays 2% interest compounded annually, and plans to leave it there for 15 years. We are asked to find the amount deposited by Wyatt in order to have a balance of $40,000 in his savings account after 15 years.

We will use compound interest formula to solve our given problem.

[tex]A=P(1+\frac{r}{n})^{nT}[/tex], where,

A = Final amount after T years,

P = Principal amount,

r = Annual interest rate in decimal form,

n = Number of times interest is compounded per year,

T = Time in years.

Let us convert our given interest rate in decimal form.

[tex]2\%=\frac{2}{100}=0.02[/tex]

Upon substituting our given values in compound interest formula, we will get:

[tex]\$40,000=P(1+\frac{0.02}{1})^{1*15}[/tex]

[tex]\$40,000=P(1+0.02)^{15}[/tex]

[tex]\$40,000=P(1.02)^{15}[/tex]

[tex]\$40,000=P\times 1.3458683383241296[/tex]

Switch sides:

[tex]P\times 1.3458683383241296=\$40,000[/tex]

[tex]\frac{P\times 1.3458683383241296}{ 1.3458683383241296}=\frac{\$40,000}{1.3458683383241296}[/tex]

[tex]P=\$29,720.5891995[/tex]

Upon rounding our answer to nearest dollar, we will get:

[tex]P\approx \$29,721[/tex]

Therefore, Wyatt will have to invest $29,721 now in order to have a balance of $40,000 in his savings account after 15 years.

Find the size of each of 6 payments made at the end of each year into a 6% rate sinking fund which produces $82000 at the end of 6 years. The payment size is $? rounded to the nearest cent

Answers

Answer:

at the end of 1st year we pay $ 11756

at the end of 2nd year we pay $ 24217

at the end of 3rd year we pay $ 37426

at the end of 4th year we pay $ 51427

at the end of 5th year we pay $ 66269

at the end of 6th year we pay $ 82001

Step-by-step explanation:

Given data

rate ( i ) = 6%

Future payment  = $82000

no of time period ( n ) = 6

to find out

size of all of 6 payments

solution

we know future payment formula i.e.

future payment = payment per period ( [tex](1 + rate)^{n}[/tex] - 1 )   / rate

put all these value and get payment per period

payment per period = future payment × rate  /  ( [tex](1 + rate)^{n}[/tex] - 1 )   / rate

payment per period = 82000 × 0.06  /  ( [tex](1 + 0.06)^{6}[/tex] - 1 )   / rate

payment per period = 82000 × 0.06 / 0.4185

payment per period = $ 11756.27

at the end of 1st year we pay $ 11756

and at the end of 2nd year we pay $ 11756 × ( 1  + 0.06) + 11756

and at the end of 2nd year we pay $ 24217

and at the end of 3rd year we pay $ 24217 × ( 1  + 0.06) + 11756

and at the end of 3rd year we pay $ 37426

and at the end of 4th year we pay $ 37426 × ( 1  + 0.06) + 11756

and at the end of 4th year we pay $ 51427

and at the end of 5th year we pay $ 51427 × ( 1  + 0.06) + 11756

and at the end of 5th year we pay $ 66269

and at the end of 6th year we pay $ 66269 × ( 1  + 0.06) + 11756

and at the end of 6th year we pay $ 82001

Write down the converse and contrapositive. If 2 divides x, then x is an even number. Hint call this (p?q)

Answers

Answer:  

The converse and contrapositive of the given conditional statement are :

Converse : "If x is an even number, then 2 divides x".

Contrapositive : "If x is not an even number, then 2 does not divide x."

Step-by-step explanation:  We are given to write the converse and contrapositive of the following conditional statement :

"If 2 divides x, then x is an even number."

Let us consider that

p : 2 divides x

and

q : x is an even number.

We know that

the CONVERSE of a conditional statement p ⇒ q is written as q ⇒ p.

So, the converse of the given statement is

"If x is an even number, then 2 divides x".

The CONTRAPOSITIVE of the conditional statement  p ⇒ q is written as ~q ⇒ ~p (where ~p stands for the negation of p).

So, the contrapositive of the given statement is

"If x is not an even number, then 2 does not divide x."

Thus, the converse and contrapositive of the given statement are :

Converse : "If x is an even number, then 2 divides x".

Contrapositive : "If x is not an even number, then 2 does not divide x."

a rain gutter is 24 feet long, 4 inches in height, 3 inches at base and 6 inches at top. how many gallons of water will it hold?

Answers

Answer:1.8701

Step-by-step explanation:

Area (A) of trapezium as marked is =[tex]\frac{1}{2}[/tex][tex]\left ( sum\ of\ parallel\ sides\right )\times height[/tex]

A=[tex]\frac{1}{2}[/tex][tex]\left ( 3+6\right )\times 4[/tex]

A=18[tex]in^2[/tex]

Now for Volume we have to multiply by length because area is same across the length.

volume(v)=[tex]A\times length[/tex]

Volume(v)=[tex]18\times 24[/tex]

Volume(v)=432 [tex]in^3[/tex]

Volume(v)=1.8701 gallon

3. Find all the solutions to the equation x^2-x=0 mod 12. Comment on your answer.

Answers

Answer:

The solutions of the given equation are:

              x=0,1,4 and 9

Step-by-step explanation:

We are asked to find the solution of the equation:

[tex]x^2-x=0\ \text{mod}\ 12[/tex]

i.e. we have to find the possible values of x such that the equation is true.

If x=0

then

[tex]x^2-x=0-0\\\\i.e.\\\\x^2-x=0[/tex]

Hence, x=0 is the solution of the equation.

if x=1

then

[tex]x^2=1\\\\Hence,\\\\x^2-x=1-1\\\\i.e.\\\\x^2-x=0[/tex]

Hence, x=1 is  a solution.

If x=2

then

[tex]x^2=4[/tex]

i.e.

[tex]x^2-x=4-2\\\\i.e.\\\\x^2-x=2\neq 0[/tex]

Hence, x=2 is not  a solution.

If x=3

then

[tex]x^2=9[/tex]

i.e.

[tex]x^2-x=9-3\\\\i.e.\\\\x^2-x=6\neq 0[/tex]

Hence, x=3 is not  a solution.

If x=4

then

[tex]x^2=16=4\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=4-4\\\\i.e.\\\\x^2-x=0[/tex]

Hence, x=4 is a solution to the equation.

If x=5

then

[tex]x^2=25=1\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=1-4\\\\i.e.\\\\x^2-x=-3=9\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=9\neq 0[/tex]

Hence, x=5 is not a solution.

If x=6

then

[tex]x^2=36\\\\i.e.\\\\x^2=0\ \text{mod}\ 12\\\\i.e.\\\\x^2=0[/tex]

Hence,

[tex]x^2-x=0-6\\\\i.e.\\\\x^2-x=-6=6 \text{mod}\ 12\\\\i.e.\\\\x^2-x=6\neq 0[/tex]

Hence, x=6 is not a solution

If x=7

then,

[tex]x^2=49=1\ \text{mod}\ 12\\\\i.e.\\\\x^2=1[/tex]

Hence,

[tex]x^2-x=1-7\\\\i.e.\\\\x^2-x=-6=6\ \text{mod}\ 12\\\\i.e.\\\\x^2-x=6\neq 0[/tex]

Hence, x=7 is not a solution.

If  x=8

then,

[tex]x^2=64=4\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=4-8\\\\i.e.\\\\x^2-x=-4=8\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=8\neq 0[/tex]

Hence, x=8 is not a solution.

If x=9

then,

[tex]x^2=81=9\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2=9[/tex]

Hence,

[tex]x^2-x=9-9\\\\i.e.\\\\x^2-x=0[/tex]

Hence, x=9 is a solution.

If x=10

then,

[tex]x^2=100=4\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=4-10\\\\i.e.\\\\x^2-x=-6=6\ \text{mod}\ 12\\\\i.e.\\\\x^2-x=6\neq 0[/tex]

Hence, x=10 is not a solution.

If x=11

then,

[tex]x^2=121=1\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=1-11\\\\x^2-x=-10=2\ \text{mod}\ 12\\\\i.e.\\\\x^2-x=2\neq 0[/tex]

Hence, x=11 is not a solution.

A researcher wishes to estimate the proportion of adults who have​ high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.05 with 95​% confidence if ​(a) she uses a previous estimate of 0.32​? ​(b) she does not use any prior​ estimates?

Answers

Answer: a) 8359  b) 384

Step-by-step explanation:

Given : Significance level : [tex]\alpha=1-0.95=0.05[/tex]

Critical value : [tex]z_{\alpha/2}}=\pm1.96[/tex]

Margin of error : [tex]E=0.01[/tex]

a) If previous estimate of proportion : [tex]p=0.32[/tex]

Formula to calculate the sample size needed for interval estimate of population proportion :-

[tex]n=p(1-p)(\frac{z_{\alpha/2}}{E})^2[/tex]

[tex]\Rightarrow\ n=0.32(1-0.32)(\frac{1.96}{0.01})^2=8359.3216\approx 8359[/tex]

Hence, the required sample size would be 8359 .

b) If she does not use any prior estimate , then the formula to calculate sample size will be :-

[tex]n=0.25\times(\frac{z_{\alpha/2}}{E})^2\\\\\Rightarrow\ n=0.25\times(\frac{1.96}{0.05})^2=384.16\approx384[/tex]

Hence, the required sample size would be 384 .

a pizza parlor offers a choice of 12 different toppings. how many 3-topping pizzas are possible? (no double orders of toppings are allowed)

Answers

4 pizzas with 3 toppings each

only 12 toppings and 3 toppings per pizza

You have to do 12/3=4

Simplify the following: 3(-3 + 5x) -1 (4 - 4x)

Answers

3(-3 + 5x) -1 (4 - 4x)

Simplify each term by first using the distributive property with each set of parenthesis:

3*-3 + 3*5x - 1*4 -1* -4x

Now do the multiplications:

-9 + 15x -4 + 4x

Combine like terms

15x +4x - 9 -4

19x - 13

6) Let A = ℤ and R be the relation on A where a R b if and only if a + b is a multiple of 4. Determine whether R is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. For each property, either explain why R has that property or give an example showing why it does not.

Answers

reflexive

NO -  e.g. 1+1=2 which is not a multiple of 4

irreflexive

NO - e.g. 2+2=4 which is multiple of 4

symmetric

YES - If [tex]a+b[/tex] is a multiple of 4, then [tex]b+a[/tex] is all multiple of 4, because addition is commutative.

antysymmetric

NO, because it's symmetric.

transitive

NO - e.g. 1+3=4 , 3+5=8 , 1+5=6 and 6 is not a multiple of 4.

find the integral of ((x^(2)-1))/(x^(2)+3x) using integration by partial fractions

Answers

Answer:

[tex]x+\frac{-1}{3} \ln|x|+\frac{-8}{3}\ln|x+3|+C[/tex]

Step-by-step explanation:

To use partial fractions, I'm going to first do long division because the degree of the top is more than or equal to that of the bottom.

After I have that the degree of the bottom is more than the degree of the top, I will factor my bottom to figure out what kinds of partial fractions I'm going to have.

Let's begin with the long division:

The bottom goes outside.

The top goes inside.

                                      1

                                  -----------------

                    x^2+3x|    x^2          -1

                                  -(x^2+3x)

                              -----------------------------

                                          -3x       -1

We can not going any further since the divisor is more in degree than the left over part.

So we have so for that the integrand given equals:

[tex]\frac{x^2-1}{x^2+3x}=1+\frac{-3x-1}{x^2+3x}[/tex]

The 1 will of course not need partial fraction.

So we know our answer is x +  something   + C

Since the derivative of (x+c)=(1+0)=1.

Let's focus now on:

[tex]\frac{-3x-1}{x^2+3x}[/tex]

The bottom is not too bad too factor because it is binomial quadratic containing terms with a common factor of x:

[tex]x^2+3x=x(x+3)[/tex]

Since both factors our linear and there are two factors, then we will have two partial fractions where the numerators are both constants.

So we are looking to make this true:

[tex]\frac{-3x-1}{x^2+3x}=\frac{A}{x}+\frac{B}{x+3}[/tex]

Some people like to combine the fractions on the left and then regroup the terms and then compare coefficients.

Some people also prefer a method called heaviside method.

So I'm actually going to do this last way and I will explain it as I got.

We are going to clear the fractions by multiplying both sides by [tex]x(x+3)[/tex] giving me:

[tex]-3x-1=A(x+3)+Bx[/tex]

I know x+3 will be 0 when x=-3  so entering in -3 for x gives:

[tex]-3(-3)-1=A(-3+3)+B(-3)[/tex]

[tex]9-1=A(0)-3B[/tex]

[tex]8=-3B[/tex]

Divide both sides by -3:

[tex]\frac{8}{-3}=B[/tex]

[tex]B=\frac{-8}{3}[/tex]/

Now let's find A. If I replace x with 0 then Bx becomes 0 giving me:

[tex]-3(0)-1=A(0+3)+B(0)[/tex]

[tex]-1=A(3)+0[/tex]

[tex]-1=3A[/tex]

Divide both sides by 3:

[tex]\frac{1}{-3}=A[/tex]

[tex]\frac{-1}{3}=A[/tex]

Okay let me also who you other method of just comparing coefficients.

[tex]-3x-1=A(x+3)+Bx[/tex]

Distribute on the right:

[tex]-3x-1=Ax+3A+Bx[/tex]

Regroup terms on right so like terms are together:

[tex]-3x-1=(A+B)x+3A[/tex]

Now if this is to be true then we need:

-3=A+B        and         -1=3A

The second equation can be solved by dividing both sides by 3 giving us:

-3=A+B        and        -1/3=A

Now we are going to plug that second equation into the first:

-3=A+B  with A=-1/3

-3=(-1/3)+B

Add 1/3 on both sides:

-3+(-1/3)=B

-8/3=B

So either way you should get the same A and B if no mistake is made of course.

So this is the integral we are looking at now (I'm going to go ahead and include the 1 from earlier):

[tex]\int (1+\frac{\frac{-1}{3}}{x}+\frac{\frac{-8}{3}}{x+3})dx[/tex]

[tex]x+\frac{-1}{3} \ln|x|+\frac{-8}{3}\ln|x+3|+C[/tex]

Why I did choose natural log for both of those 2 terms' antiderivatives?

Because they are a constant over a linear expression. Luckily both of those linear expressions had a leading coefficient of 1.

Also recall the derivative of ln(x) is (x)'/x=1/x and

the derivative of ln(x+3) is (x+3)'/(x+3)=(1+0)/(x+3)=1/(x+3).

Let's check our answer:

To do that we need to differentiate what we have for the integral and see if we wind up with the integrand.

[tex]\frac{d}{dx}(x+\frac{-1}{3} \ln|x|+\frac{-8}{3}\ln|x+3|+C)[/tex]

[tex]1+\frac{-1}{3} \frac{1}{x}+\frac{-8}{3}\frac{1}{x+3}+0[/tex]

We are going to find a common denominator which would be the least common multiple of the denominators which is x(x+3):

[tex]\frac{x(x+3)+\frac{-1}{3}(x+3)+\frac{-8}{3}(x)}{x(x+3)}[/tex]

Now distribute property:

[tex]\frac{x^2+3x+\frac{-1}{3}x-1+\frac{-8}{3}x}{x^2+3x}[/tex]

Combine like terms:

[tex]\frac{x^2+3x+\frac{-9}{3}x-1}{x^2+3x}[/tex]

[tex]\frac{x^2+3x-3x-1}{x^2+3x}[/tex]

[tex]\frac{x^2-1}{x^2+3x}[/tex]

So that is the same integrand we started with so our answer has been confirmed.

Which of the following is NOT a principle of​ probability? Choose the correct answer below. A. All events are equally likely in any probability procedure. B. The probability of an event that is certain to occur is 1. C. The probability of an impossible event is 0. D. The probability of any event is between 0 and 1 inclusive.

Answers

Answer:

The correct option is A.

Step-by-step explanation:

The formula of probability is

[tex]P=\frac{a}{b}[/tex]

Where, a≤b, a is total favorable outcomes and b is total possible outcomes.

If an event is certain to occur, then a=b and the probability of an event that is certain to occur is

[tex]P=\frac{a}{a}=1[/tex]

If an event is impossible, then a=0 and the probability of an impossible event is

[tex]P=\frac{0}{a}=0[/tex]

Since total favorable outcomes a and total possible outcomes b can not be negative, a is always less than of equal to b. So,

[tex]0\leq \frac{a}{b}\leq 1[/tex]

[tex]0\leq P\leq 1[/tex]

Therefore the probability of any event is between 0 and 1 inclusive.

All events are not equally likely in any probability procedure. So, the statement "All events are equally likely in any probability procedure" is not true.

Therefore the correct option is A.

Final answer:

The statement 'All events are equally likely in any probability procedure' is NOT a fundamental principle of probability. Events in a probability procedure can have different probabilities based on the situation.

Explanation:

The question is asking to identify which of the given options is NOT a principle of probability. Here, the principles of probability suggest that the probability of an event that is certain to occur is 1 (option B), the probability of an impossible event is 0 (option C), and that the probability of any event is between 0 and 1 inclusive (option D). These are well-established principles of probability and hold true in most situations.

However, option A, 'All events are equally likely in any probability procedure', is NOT a fundamental principle of probability. This is not always true as the likelihood of events can vary greatly depending on the scenario. For instance, if you roll a fair six-sided dice, the probability of landing a 1 is 1/6, but in sampling with or without replacement, probabilities of different outcomes can differ. Thus, it is not a rule that all outcomes are always equally likely in any probabilistic process.

A simple real-life application of this can be seen in card games. If you draw one card from a standard deck of 52, the probability of drawing a heart is 1/4, not equal to the probability of drawing a specific number card like the 7 of clubs, which is 1/52. Therefore, the statement that 'all events are equally likely in any probability procedure' is not always true.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ6

Other Questions
What is the Thermodynamic (Absolute) temperature scale? Ryan was giving his speech to his class. He leaned on the podium a little and moved from side to side, just to keep the speech interesting. Ryan delivered the speech in a way that showed he cared about his appearance, according to the tips discussed in this course.TrueFalse In ABC, mA=44, mB=48, and a=25. Find c to the nearest tenth. Review the information in the chart about the problems of turning stories into films. What solution best completes the chart? Add more narrative detail. Eliminate characters. Add dialogue or a voice-over. Change the ending. Write a C++ programthat reads in the side of a square and prints out a pattern on$symbols representing thatsquare. The program should work for side sizes between2 and 10. For example, ifa size of 4 is entered, the following output should beproduced:$$$$$$$$$$$$ Please help me with this problem. Which of the following statements is TRUE? Multiple Choice Double-ended needles are used with syringes. Higher needle gauges correspond to larger needle bore size. Needles should be recapped prior to disposal. You have 100 quarters in a jar. One of the quarters is double sided (heads). You pick out a random quarter and flip it 7 times, and get all heads. what is the probability you picked the double sided quarter? Then, given that you flipped it 7 times with all heads, what is the probability that you'll get heads on the 8th flip? The one-to-one functions g and h are defined as follows. g = {(24), (4, 2), (5,-1), (8, -9) h x) 8x+13 Find the following. g (4) = Use the list below to answer the question. City-state government Cuneiform writing Lunar calendarWhich title would BEST describe this list?AAdvances by the Yellow River CivilizationB.Developments in Egyptian CivilizationC.Influences of Sumerian CivilizationD.Contributions of the Indus River Civilization claim: though they are popular and inexpensive, processed foods cause a variety of health problems and should. e avoided as much as possible. which evidence does not provide good support for this claim? Factor this trinomial.x2 - 8x+15 Which of the following are not related to a materials structure? (Mark all that apply) a)- Atomic bonding b)- Crystal structure c)- Atomic number d)- Microstructure Which products result in a perfect square trinomial? Check all that apply. (x + 9)(x 9) (xy + x)(xy + x) (2x 3)(3 + 2x) (16 x2)(x2 16) (4y2 + 25)(25 + 4y2) Which planet rotates the fastest? After you create an array variable, you still need to ____ memory space.a.reserveb.createc.organized.dump Right now, Jamal's mother is 3 times older than jamal. But in 12 years, her age will be exactly 2 times greater than Jamal's. How old are Jamal and his mother today? Help please I dont get it Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x^3 3x^2 9x + 4 (a) Find the interval on which f is increasing. (Enter your answer using interval notation.) PLEASE HURRY [100 Points]Read and match each sentence with its correct indirect object for the blank. Match Term Definition Seor Montana, ________ gustan las verduras con la carne? A) nos A Carlota y a Pepa no ________ gusta preguntar a la directora. B) le Pablo, ________ gusta la Navidad? C) les A mis hermanos y a m ________ gustan los das festivos. D) te