Find the next three terms in the geometric sequence -36, 6, -1, 1/6

Answers

Answer 1

Answer:

in fraction form: -1/36, 1/216, -1/1296

in decimal form: -.03, .005, -.0008

Step-by-step explanation:

Each term is the previous term divided by -6:

-36 ÷ -6= 6

6 ÷ -6= -1

and so on...

Answer 2

-1/36

The numbers divide by -6 each time


Related Questions

Choose all that are correct. Choosing the brainliest.

Answers

Answer: A, B, F

Explanation:
- A is true because (1/2 x 6 x 8) x 2 is equivalent to 48 square inches.
- B is true because (18 x 6) x 3 is equivalent to 324 square inches.
- F is true because 324 + 48 is equivalent to 372 square inches.

NOTE: I hope this helped, a brainliest would be much appreciated! :)

Answer:

A, B and F

Step-by-step explanation:

Area of 2 triangles:

2(½ × 6 × 8)

48 in²

Area of 3 rectangles:

3(18 × 6)

324 in²

Total surface area:

324 + 48

372 in²

A company manufactures and sells x television sets per month. The monthly cost and​ price-demand equations are ​C(x)equals72 comma 000 plus 70 x and p (x )equals 300 minus StartFraction x Over 20 EndFraction ​, 0less than or equalsxless than or equals6000. ​(A) Find the maximum revenue. ​(B) Find the maximum​ profit, the production level that will realize the maximum​ profit, and the price the company should charge for each television set. ​(C) If the government decides to tax the company ​$4 for each set it​ produces, how many sets should the company manufacture each month to maximize its​ profit? What is the maximum​ profit? What should the company charge for each​ set?

Answers

Answer:

Part (A)

1. Maximum revenue: $450,000

Part (B)

2. Maximum protit: $192,5003. Production level: 2,300 television sets4. Price: $185 per television set

Part (C)

5. Number of sets: 2,260 television sets.6. Maximum profit: $183,8007. Price: $187 per television set.

Explanation:

0. Write the monthly cost and​ price-demand equations correctly:

Cost:

      [tex]C(x)=72,000+70x[/tex]

Price-demand:

     

      [tex]p(x)=300-\dfrac{x}{20}[/tex]

Domain:

        [tex]0\leq x\leq 6000[/tex]

1. Part (A) Find the maximum revenue

Revenue = price × quantity

Revenue = R(x)

           [tex]R(x)=\bigg(300-\dfrac{x}{20}\bigg)\cdot x[/tex]

Simplify

      [tex]R(x)=300x-\dfrac{x^2}{20}[/tex]

A local maximum (or minimum) is reached when the first derivative, R'(x), equals 0.

         [tex]R'(x)=300-\dfrac{x}{10}[/tex]

Solve for R'(x)=0

      [tex]300-\dfrac{x}{10}=0[/tex]

       [tex]3000-x=0\\\\x=3000[/tex]

Is this a maximum or a minimum? Since the coefficient of the quadratic term of R(x) is negative, it is a parabola that opens downward, meaning that its vertex is a maximum.

Hence, the maximum revenue is obtained when the production level is 3,000 units.

And it is calculated by subsituting x = 3,000 in the equation for R(x):

R(3,000) = 300(3,000) - (3000)² / 20 = $450,000

Hence, the maximum revenue is $450,000

2. Part ​(B) Find the maximum​ profit, the production level that will realize the maximum​ profit, and the price the company should charge for each television set.

i) Profit(x) = Revenue(x) - Cost(x)

Profit (x) = R(x) - C(x)

       [tex]Profit(x)=300x-\dfrac{x^2}{20}-\big(72,000+70x\big)[/tex]

       [tex]Profit(x)=230x-\dfrac{x^2}{20}-72,000\\\\\\Profit(x)=-\dfrac{x^2}{20}+230x-72,000[/tex]

ii) Find the first derivative and equal to 0 (it will be a maximum because the quadratic function is a parabola that opens downward)

Profit' (x) = -x/10 + 230 -x/10 + 230 = 0-x + 2,300 = 0x = 2,300

Thus, the production level that will realize the maximum profit is 2,300 units.

iii) Find the maximum profit.

You must substitute x = 2,300 into the equation for the profit:

Profit(2,300) = - (2,300)²/20 + 230(2,300) - 72,000 = 192,500

Hence, the maximum profit is $192,500

iv) Find the price the company should charge for each television set:

Use the price-demand equation:

p(x) = 300 - x/20p(2,300) = 300 - 2,300 / 20p(2,300) = 185

Therefore, the company should charge a price os $185 for every television set.

3. ​Part (C) If the government decides to tax the company ​$4 for each set it​ produces, how many sets should the company manufacture each month to maximize its​ profit? What is the maximum​ profit? What should the company charge for each​ set?

i) Now you must subtract the $4  tax for each television set, this is 4x from the profit equation.

The new profit equation will be:

Profit(x) = -x² / 20 + 230x - 4x - 72,000

Profit(x) = -x² / 20 + 226x - 72,000

ii) Find the first derivative and make it equal to 0:

Profit'(x) = -x/10 + 226 = 0-x/10 + 226 = 0-x + 2,260 = 0x = 2,260

Then, the new maximum profit is reached when the production level is 2,260 units.

iii) Find the maximum profit by substituting x = 2,260 into the profit equation:

Profit (2,260) = -(2,260)² / 20 + 226(2,260) - 72,000Profit (2,260) = 183,800

Hence, the maximum profit, if the government decides to tax the company $4 for each set it produces would be $183,800

iv) Find the price the company should charge for each set.

Substitute the number of units, 2,260, into the equation for the price:

p(2,260) = 300 - 2,260/20p(2,260) = 187.

That is, the company should charge $187 per television set.

Callie evaluated the expression 0.42 times 4.73 using the steps shown below. 0.42 times 4.73 = 1.26. 1.26 + 29.40 + 168.00 = 198.66 Which best explains Callie’s error? Callie incorrectly placed the decimal. Callie multiplied incorrectly. Callie added incorrectly. Callie incorrectly used placeholder zeros.

Answers

Answer:

The correct option is;

Callie multiplied incorrectly

Step-by-step explanation:

Here we have 0.42 × 4.73 = 1.9866 then

1.9866 + 29.4 + 168 = 199.3866

Therefore, from the question, we had 0.42 × 4.73 = 1.26 which is incorrect, meaning that Callie multiplied incorrectly

Apparently, Callie multiplied as follows;

0.42 × 3 = 1.26 but what was in the question was

0.42 × 4.73 which is equal to 1.9866.

Answer:

Callie multiplied incorrectly

Step-by-step explanation:

all the credit goes to guy above me

3x+5=3 solve this equation​

Answers

Answer:

-3/2

Step-by-step explanation:

Answer:  x = -2/3 = -0.667

For which survey is a sample not necessary?
What percentage of Colorado residents support planting more trees in the community?
Which electronic gadget will be the most popular among middle school students this year?
Do your classmates prefer warm or cool places to travel for vacation?
How many car accidents involve air bag malfunctions?

Answers

Answer:

c

Step-by-step explanation:

Answer:

Do your classmates prefer warm or cool places to travel for vacation?

Step-by-step explanation:

Braydon, a scuba diver, has a tank that holds 6 liters of air under a pressure of 220 pounds per square inch (psi).


Write the equation that relates pressure, P, to volume, V.


If the pressure increases to 330 psi, how much air is held in Braydon’s tank?

Answers

Answer: 4 litres of air is held in Braydon’s tank.

Step-by-step explanation:

The law relating pressure to volume is the Boyle's law. It states that the volume of a given mass of gas is inversely proportional to its pressure as long as temperature remains constant. It is expressed as

P1V1 = P2V2

Where

P1 and P2 are the initial and final pressures of the gas.

V1 and V2 are the initial and final volumes of the gas.

From the information given,

V1 = 6 litres

P = 220 psi

P2 = 330 psi

Therefore,

6 × 220 = 330V2

V2 = 1320/330 = 4 litres

Answer:

V=1320/p

the tank holds 4 liters

Step-by-step explanation:

Suppose that $2n$ tennis players compete in a round-robin tournament. Every player has exactly one match with every other player during $2n-1$ consecutive days. Every match has a winner and a loser. Show that it is possible to select a winning player each day without selecting the same player twice. \\ \\ \textit{Hint: Remember Hall's Theorem}

Answers

Answer:

Step-by-step explanation:

given that Suppose that $2n$ tennis players compete in a round-robin tournament. Every player has exactly one match with every other player during $2n-1$ consecutive days.

this is going to be proved by contradiction

Let there be a winning player each day where same players wins twice, let n = 3there are 6 tennis players and match occurs for 5daysfrom hall's theorem, let set n days where less than n players wining a day let on player be loser which loses every single day in n days so, players loose to n different players in n daysif he looses to n players then , n players are winnerbut, we stated less than  n players are winners in n days which is contradiction.so,we can choose a winning players each day without selecting the same players twice.

what is 81,007-26,318?

Answers

Answer:

54689

Step-by-step explanation:

A 90% confidence interval for the mean height of students
is (60.128, 69.397). What is the value of the margin of error?
a) m = 129.525
b) m = 4.635
c) m = 64.763
d) m = 9.269

Answers

Answer:

[tex] ME= \frac{69.397-60.128}{2}= 4.6345 \approx 4.635[/tex]

And the best answer on this case would be:

b) m = 4.635

Step-by-step explanation:

Let X the random variable of interest and we know that the confidence interval for the population mean [tex]\mu[/tex] is given by this formula:

[tex] \bar X \pm t_{\alpha/2} \frac{s}{\sqrt{n}} [/tex]

The confidence level on this case is 0.9 and the significance [tex]\alpha=1-0.9=0.1[/tex]

The confidence interval calculated on this case is [tex]60.128 \leq \mu \leq 69.397[/tex]

The margin of error for this confidence interval is given by:

[tex]ME =t_{\alpha/2} \frac{s}{\sqrt{n}} [/tex]

Since the confidence interval is symmetrical we can estimate the margin of error with the following formula:

[tex] ME = \frac{Upper -Lower}{2}[/tex]

Where Upper and Lower represent the bounds for the confidence interval calculated and replacing we got:

[tex] ME= \frac{69.397-60.128}{2}= 4.6345 \approx 4.635[/tex]

And the best answer on this case would be:

b) m = 4.635

A golf ball is selected at random from a golf bag. If the golf bag contains 5 type A​ balls, 8 type B​ balls, and 3 type C​ balls, find the probability that the golf ball is not a type A ball.

Answers

Final answer:

The probability that a randomly selected golf ball from the bag is not a type A ball is 11/16, as we calculate this by dividing the number of non-type A balls (11) by the total number of balls (16).

Explanation:

The probability that the golf ball selected at random is not a type A ball can be found by first determining the total number of balls in the golf bag and then subtracting the number of type A balls to obtain the number of non-type A balls. The total number of balls is 5 type A balls + 8 type B balls + 3 type C balls = 16 balls. The number of non-type A balls is 8 type B balls + 3 type C balls = 11 balls.

To find the probability that the selected ball is not a type A ball, we divide the number of non-type A balls by the total number of balls, which gives us a probability of 11/16.

Final answer:

The probability that a randomly selected golf ball from the bag is not a type A ball is 0.6875 or 68.75%.

Explanation:

To find the probability that the golf ball selected at random is not a type A ball, we need to determine the total number of non-type A balls in the golf bag and divide it by the total number of balls in the bag. The golf bag contains 5 type A balls, 8 type B balls, and 3 type C balls, so the total number of balls in the bag is 5 + 8 + 3 = 16. There are 8 + 3 = 11 non-type A balls (type B and type C).

The probability of selecting a non-type A ball is then given by the number of non-type A balls divided by the total number of balls:

Probability = Number of non-type A balls / Total number of balls

We calculate it as:

Probability = 11 / 16 = 0.6875

Thus, the probability that the selected golf ball is not a type A ball is 0.6875 or 68.75%.

Paulo works at the United Nations. He researched what percent of the world's population lives on each continent. He surveys a sample of employees at the United Nations about their continent of origin to see if the distribution in the sample agrees with the percentages he researched.

Which of these inference procedures is most appropriate?

Answers

Answer:

confidence interval using a  two sample t test between percents

Step-by-step explanation:

confidence interval using a  two sample t test between percents This can be used to compare percentages drawn from two independent samples in this case employees. It is used to compare two sub groups from a single sample example the population on the planet

I NEED HELP DUE IN 2 MINS!!

Answers

Answer:Triangle A

Step-by-step explanation: It has one right angle.

Answer:

THE ANSWERS A

Step-by-step explanation:

OMG GOOD LUCK!!! BECAUSE IT HAS THE AREA LAYED OUT HAVE A BLESSED DAY!!!

For problems 13-17 find a particular solution of the nonhomogeneous equation, given that the functions y1(x) and y2(x) are linearly independent solutions of the corresponding homogeneous equation. x^2y''+xy'-4y=x(x+x^3)

Answers

Answer:

y_g(x) = C1*x^2 + C2*x^-2 +  x^4 / 12

Step-by-step explanation:

Given:-

- The following second order ODE :

                                  x^2y''+xy'-4y=x*(x+x^3)  

Find:-

Find a particular solution of the nonhomogeneous equation    

Solution:-

- First note that the ODE given is a Cauchy Euler ODE. The order of derivative of independent and dependent variables are similar. The general form of Cauchy Euler ODE is:

                           a*x^n y^(n) + b*x^n-1 y^(n-1) + c*x^n-2 y^(n-2) + ... + d*y = f(x)

- We will use the following Auxiliary Equation to find the complementary solutions - Solving Homogeneous part of ODE.

                           am*(m-1) + bm + c = 0

Where, a,b,c are constants such that:

                            x^2y'' + xy' - 4y = 0

                            a = 1 , b = 1 , c = -4

- Solve the Auxiliary equation for (m) as follows:

                            m*(m-1) + m - 4 = 0

                            m^2 - 4 = 0

                            m = +/- 2  ...... ( Real and distinct roots )

- The complementary solutions to the Real and distinct roots from Auxiliary Equation is:

                            yc(x) = y1(x) + y2(x)

                            yc(x) = C1*x^2 + C2*x^-2   .... ( Complementary Solution ).

- Now for the non-homogeneous part of ODE. The function f(x) is defined as:

                            f(x) = x*( x + x^3 ) = x^2 + x^4

- We see that (x^2) term is common to both f(x) and complementary solution yc(x). So when we develop a particular solution, we have to make sure that the solution is independent from complementary solution. If not we multiply the particular solution with (x^n). Where n is the smallest possible integer for which the solution is independent. So in our case ( Using undetermined Coefficient method ) :

                           y_p (x) = A*x^4 + B*x^3 + C*x^2 + D*x + E

- To make the solution independent we multiply y_p by (x^3) where n = 3.

                          y_p (x) = A*x^7 + B*x^6 + C*x^5 + D*x^4 + E*x^3

- Take first and second derivatives of the y_p(x) as follows:

                          y'_p(x) = 7A*x^6 + 6B*x^5 + 5C*x^4 + 4D*x^3 + 3E*x^2

                          y''_p(x) = 42Ax^5 + 30Bx^4 + 20Cx^3 + 12Dx^2 + 6Ex

- Substitute y_p(x) , y'_p(x) and y''_p(x) into the ODE given:

                     42Ax^7 + 30Bx^6 + 20Cx^5 + 12Dx^4 + 6Ex^3

              +       7Ax^7  + 6B*x^6  + 5C*x^5 + 4D*x^4 + 3E*x^3

              -      ( 4Ax^7 +  4B*x^6 +  4C*x^5 +  4D*x^4 + 4E*x^3 )

              --------------------------------------------------------------------------------

                       45Ax^7  + 32Bx^6 + 21Cx^5 + 12Dx^4 + 5Ex^3  

              ---------------------------------------------------------------------------------

            45Ax^7  + 32Bx^6 + 21Cx^5 + 12Dx^4 + 5Ex^3 = x^2 + x^4

- Compare the coefficients:

                                           A = B = C = E = 0

                                           D = 1 / 12.

The particular solution is:

                                          y_p(x) = x^4 / 12

- The general solution is as follows:

                                     y_g(x) = yc(x) + y_p(x)

                                     y_g(x) = C1*x^2 + C2*x^-2 +  x^4 / 12

Answer:

The particular solution to the differential equation

x²y'' + xy' - 4y = x(x + x³)

is

y_p = (1/12)x^4 - x²/2 - x/3

Step-by-step explanation:

Given the differential equation:

x²y'' + xy' - 4y = x(x + x³)...............(1)

First, we solve the homogeneous part of (1)

x²y'' + xy' - 4y = 0...........................(2)

Let x = e^z

=>z = lnx

Let D = d/dz

dz/dx = (1/x)

dy/dx = (dy/dz).(dz/dx)

= (1/x)(dy/dz)

dy/dz = xdy/dx = xy' = Dy

d²y/dx² = (-1/x²)(dy/dz) + (1/x)(d²y/dx²)(dz/dx)

= (1/x²)(d²y/dx² - dy/dz) = (1/x²)(D² - D)y

Using these, (2) becomes

(D² - D)y + Dy - 4y = 0

(D² - 4)y = 0

The auxiliary equation is

m² - 4 = 0

(m - 2)(m + 2) = 0

m1 = 2, m2 = -2

The complementary function is

y = C1e^(2z) + C2e^(-2z)

But z = lnx

y_c = C1x² + C2/x² ...........................(3)

Now we solve (1) using the method of undetermined coefficients.

The nonhomogeneous part is

x(x + x³) = x² + x^4

So, we assume a particular solution of the form

y_p = Ax^4 + Bx³ + Cx² + Dx + E

y'_p = 4Ax³ + 3Bx² + 2Cx + D

y''_p = 12Ax² + 6Bx + 2C

Using these in (1)

x²y''_p + xy'_p - 4y_p = x²(12Ax² + 6Bx + 2C) + x(4Ax³ + 3Bx² + 2Cx + D) - 4(Ax^4 + Bx³ + Cx² + Dx + E)

= x² + x^4

12Ax^4 + 6Bx³ + 2Cx + 4Ax^4 + 3Bx³ + 2Cx² + Dx - 4Ax^4 - 4Bx³ - 4Cx² - 4Dx - 4E = x² + x^4

Comparing the coefficients of various powers of x, we have

12A + 4A - 4A = 1

12A = 1

=> A = 1/12

6B + 3B - 4B = 0

5B = 0

=> B = 0

2C - 4C = 1

-2C = 1

=> C = -1/2

2C + D - 4D = 0

2C - 3D = 0

2C = 3D

2(-1/2) = 3D

=> D = -1/3

-4E = 0

=> E = 0

(A, B, C, D, E) = (1/12, 0, -1/2, -1/3, 0)

y_p = Ax^4 + Bx³ + Cx² + Dx + E

= (1/12)x^4 - (1/2)x² - (1/3)x

The general solution is

y = y_c + y_p

= C1x² + C2/x² + (1/12)x^4 - x²/2 - x/3

A recent study reported that 18- to 24-year-olds average 192 restaurant visits per year. Assume that the standard deviation for number of visits per year for this age group is 56.5. To validate these findings, a random sample of forty 18- to 24-year-olds was selected and found to average 212 restaurant visits per year. Which of the following statements is correct

A.)The interval that contains 95% of the sample means is 170.3 and 213.7 visits. Because the sample mean is between these two values, we have support for the results of the May 2011 study.

B.)The interval that contains 95% of the sample means is 170.3 and 213.7 visits. Because the sample mean is between these two values, we do not have support for the results of the May 2011 study.

C.)The interval that contains 95% of the sample means is 174.5 and 209.5 visits. Because the sample mean is not between these two values, we have support for the results of the May 2011 study.

D.)The interval that contains 95% of the sample means is 174.5 and 209.5 visits. Because the sample mean is not between these two values, we do not have support for the results of the May 2011 study.

Answers

Answer:

Option C) is the correct answer.

Step-by-step explanation:

We are given the following in the question:

Mean = 192

Sample mean, [tex]\bar{x}[/tex] = 212

Sample size, n = 40

Alpha, α = 0.05

Population standard deviation, σ = 56.5

95% Confidence interval:

[tex]\mu \pm z_{critical}\dfrac{\sigma}{\sqrt{n}}[/tex]

Putting the values, we get,

[tex]z_{critical}\text{ at}~\alpha_{0.05} = 1.96[/tex]

[tex]192 \pm 1.96(\dfrac{56.5}{\sqrt{40}} ) = 192 \pm 17.5 = (174.5,209.5)[/tex]

Thus, the correction answer is

Option C)

"The interval that contains 95% of the sample means is 174.5 and 209.5 visits. Because the sample mean is not between these two values, we have support for the results of the May 2011 study."

Consider rolling two number cubes, each of which has its faces numbered
from 1 to 6. The cubes will be rolled and the sum of the numbers landing
face up will be recorded. Let the event E represent the event of rolling a sum
of 5. How many outcomes are in the collection for event E?

Answers

Answer: 4 outcomes

Step-by-step explanation:

For two number cubes, the total possible outcomes are:

6 events for the first and 6 events for the second, then the total number of combinations is 6*6 = 36

If the dice are different, the possible outcomes are:

Dice 1 = 3, Dice 2 = 2

Dice 1 = 2, Dice 2 = 3

Dice 1 = 4, Dice 2 = 1

Dice 1 = 1, Dice 2 = 4

Then we have 4 outcomes in the collection for event E.

Answer:

4

Step-by-step explanation:

I did it on college board

Which solids can have vertical cross sections that are circles? Check all that apply
-cones

-cylinders

-spheres

Answers

cones

cylinders

spheres

Step-by-step explanation:

The question was worded incorrectly and instead of giving the options it gave you the answers

A random sample of 28 plastic items is obtained, and their breaking strengths are measured. The sample mean is 7.142 and the sample standard deviation is 0.672. Conduct a hypothesis test to assess whether there is evidence that the average breaking strength is not 7.000.

Answers

Answer:

The test statistic t = 1.126 <  1.703 of '27' degrees of freedom at 0.05 level of significance.

null hypothesis(H₀ ) is accepted

There is evidence that the average breaking strength is  7.000.

Step-by-step explanation:

Step 1:-

Given random sample size (n) =28 <30

small sample size n= 28

The sample mean (x⁻) = 7.142

sample standard deviation (S) =0.672

Step 2:-

Null hypothesis :- there is evidence that the average breaking strength is  7.000.

H₀ : μ =7

Alternative hypothesis:-there is evidence that the average breaking strength is  7.000.

H₁ : μ ≠7

The test statistic [tex]t = \frac{x^{-} -mean}{\frac{S}{\sqrt{n} } }[/tex]

Substitute all values and simplification ,

[tex]t = \frac{7.142 -7}{\frac{0.672}{\sqrt{28} } } = \frac{0.142 }{0.1269}[/tex]

t = 1.126

Calculated value is t = 1.126

The degrees of freedom γ = n-1 = 28-1 =27

The tabulated value t= 1.703 at degrees of freedom at 0.05 level of significance.

since  calculated t < tabulated value 't' value of 27 degrees of freedom at 0.05 level of significance.

null hypothesis(H₀ ) is accepted

There is evidence that the average breaking strength is  7.000.

An experiment is carried out 400 times the possible outcomes are void fail and success if the frequency of void is 96 and the relative frequency is 0.24 then how much is the frequency of fail and success

Answers

the frequency of success is 244.

part b's answer is 240.

The relative Frequency of Fail is 0.15The relative Frequency of Success is 0.61 What is relative Frequency?

A relative frequency distribution shows the proportion of the total number of observations associated with each value or class of values and is related to a probability distribution, which is extensively used in statistics.

Relative frequency can be defined as the number of times an event occurs divided by the total number of events occurring in a given scenario. The relative frequency formula is given as:

Relative Frequency = Subgroup frequency/ Total frequency.

1. Frequency of success

=400 - 96 - 60

=244

relative frequency of fail

=60/400= 0.15

Relative Frequency of success

=1-0.15 - 0.24

=0.61

Learn more about relative frequency here:

https://brainly.com/question/16832475

#SPJ2

Based on these tables, what can you determine about the students in this class? Check all that apply.
There are 35 students in the class.
11 of the students are boys who have summer birthdays.
19 of the students are boys.
There is not enough information shown to determine how many girls have summer birthdays.

Answers

Answer:

Step-by-step explanation:

It’s 1 3,and 4

Answer:

1,3,4

Step-by-step explanation:

Find the volume of the cone

Answers

Answer:

209.467mm³

Step-by-step explanation:

the explanation is in the picture

hope this helps<3

please like and Mark as brainliest

1 poir
Elizabeth's tablet has a combined total of 20 apps and movies. Let x
represent the number of apps and y represent the number of movies.
Which of the following could represent the number of apps and movies on
Elizabeth's tablet? Select all that apply.​

Answers

The given options are:

(A)x+y = 20 (B)7 apps and 14 movies (C)x-y= 20 (D)y=-x+ 20 (E)8 apps and 12 movies (F)xy= 20

Answer:

(A)x+y = 20 (D)y=-x+ 20 (E)8 apps and 12 movies

Step-by-step explanation:

If Elizabeth has a combined total of 20 apps and movies.

Where:

Number of apps=x

Number of Movies =y

Then:

Their total,

x+y=20 (Option A)

If we subtract x from both sides

x+y-x=-x+20

y=-x+20 (Option D)

In Option E

8 apps and 12 movies  add up to 20. Therefore, this could also apply.

Use a one-sample t ‑test, based on the data below, to test the null hypothesis H0:µ=100.63 against the alternative hypothesis H1:µ>100.63 . The sample has a mean of x⎯⎯⎯=101.09 and a standard deviation of s=0.4887 . 100.68,101.23,100.82,101.15,100.96,100.70,102.09 Calculate the standard error (SE) and the t ‑statistic for this test. Give the standard error to four decimal places and t to three decimal places.

Answers

Answer:

The standard error (SE) is 0.1847.

The t-statistic for this test is 2.490.

Step-by-step explanation:

We are given that the sample has a mean of [tex]\bar X[/tex] = 101.09 and a standard deviation of s = 0.4887 .

Also, the 7 sample values are also given.

Let [tex]\mu[/tex] = population mean.

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 100.63  

Alternate Hypothesis, [tex]H_1[/tex] : [tex]\mu[/tex] > 100.63  

The test statistics that would be used here One-sample t test statistics as we don't know about population standard deviation;

                         T.S. =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = 101.09

            s = sample standard deviation = 0.4887

            n = sample values = 7

The Standard Error (SE) is given by =  [tex]\frac{s}{\sqrt{n} }[/tex]  =  [tex]\frac{0.4887}{\sqrt{7} }[/tex] = 0.1847

So, test statistics  =  [tex]\frac{101.09-100.63}{\frac{0.4887}{\sqrt{7} } }[/tex]  ~ [tex]t_6[/tex]

                                =  2.490

The value of t test statistics is 2.490.

In a certain region, 15% of people over the age of 50 didn’t graduate from high school. We would like to know if this percentage is the same among the 25-50 year age group. What is the minimum number of 25-50 year old people who must be surveyed in order to estimate the proportion of non-grads to within 6% of the true parameter with 99% confidence?

Answers

Answer:

235 people

Step-by-step explanation:

Given:

P' = 15% = 0.15

1 - P' = 1 - 0.15 = 0.85

At 99% confidence leve, Z will be:

[tex] \alpha [/tex] = 1 - 99%

= 1 - 0.99 = 0.01

[tex] \alpha /2 = \frac{0.01}{2} = 0.005 [/tex]

[tex] Z\alpha/2 = 0.005 [/tex]

Z0.005 = 2.576

For the minimum number of 25-50 year old people who must be surveyed in order to estimate the proportion of non-grads to within 6%, we have:

Margin of error, E = 6% = 0.06

sample size = n = [tex] (\frac{Z\alpha /2}{E})^2 * P* (1 - P) [/tex]

[tex] = (\frac{2.576}{0.06}) ^2 * 0.15 * 0.85 [/tex]

= 235.02 ≈ 235

A number of 235 people between 25-30 years should be surveyed .

Answer:

n = 236

Step-by-step explanation:

Solution:-

- The proportion of people over the age of 50 who didn't graduate from high school are, p = 0.15 - ( 15 % )

- We are to evaluate the minimum sample size " n " from the age group of 25-50 year in order to estimate the proportion of non-grads within a standard error E = 6% of the true proportion p within 99% confidence.

-  The minimum required sample size " n " for the standard error " E " for the original proportion p relation is given below:

                             [tex]n = \frac{(Z_\alpha_/_2)^2 * p* ( 1 - p )}{E^2}[/tex]

- The critical value of standard normal is a function of significance level ( α ), evaluated as follows:

                            significance level ( α ) = ( 1 - CI/100 )

                                                                 = ( 1 - 99/100 )

                                                                 = 0.01

- The Z-critical value is defined as such:

                           P ( Z < Z-critical ) = α / 2

                           P ( Z < Z-critical ) = 0.01 / 2 = 0.005

                          Z-critical = Z_α/2 = 2.58

- Therefore the required sample size " n " is computed as follows:

                           [tex]n = \frac{(2.58)^2 * 0.15* ( 1 - 0.15 )}{0.06^2}\\\\n = \frac{6.6564 * 0.1275}{0.0036}\\\\n = \frac{0.848691}{0.0036}\\\\n = 235.7475\\[/tex]

Answer: The minimum sample size would be next whole number integer, n = 236.

           

Directions for questions 4 & 5: We selected a random sample of 100 StatCrunchU students, 67 females and 33 males, and analyzed their responses to the question, "What is the total amount (in dollars) of credit card debt you have accrued to date?" With more than 30 in each random and independent sample, conditions are met for modeling the distribution of differences in sample means using a T-model. Therefore, we will proceed with finding a confidence interval to estimate the gender difference in credit card debt for StatCrunchU students. Summary statistics for CC Debt: Group by: Gender Gender Mean Std. dev. n Female 2577.75 1916.29 67 Male 3809.42 2379.47 33 Use StatCrunch to find the 95% confidence interval estimating the difference µ1 – µ2, where µ1 is the mean credit card debt for all female StatCrunchU students and µ2 is the mean credit card debt for all male StatCrunchU students. (directions) Since the numbers are dollars, round to two decimal places when you enter your answer. Flag this Question Question 42 pts The lower limit on the confidence interval is

Answers

Final answer:

The lower limit of the 95% confidence interval for the difference in mean credit card debt between female and male students can be calculated by formula using sample means, standard deviations, sample sizes, and accounting for the t-value associated with 95% confidence.

Explanation:

To calculate the 95% confidence interval for the difference between the mean credit card debt of female and male StatCrunchU students, we use the given information: µ1 (mean credit card debt of females) = 2577.75, µ2 (mean credit card debt of males) = 3809.42, std. dev. of females = 1916.29, std. dev. of males = 2379.47, number of females = 67, number of males = 33.

To calculate the confidence interval, we will use the t-model formula for confidence intervals for difference in means, which is:

(µ1-µ2) ± t*(sqrt([std. dev.1/sqrt(n1)] + [std. dev.2/sqrt(n2)]))

After plugging in the objective values, we would get the confidence range. The lower limit will be (µ1-µ2) - t*(sqrt([std. dev.1/sqrt(n1)] + [std. dev.2/sqrt(n2)])).

Learn more about Confidence Interval here:

https://brainly.com/question/34700241

#SPJ3

Translate the English phrase into an algebraic expression, then evaluate the expression
Nine less than negative eighteen

Answers

Answer:-18-9=-17

Step-by-step explanation:

Answer:

-27

Step-by-step explanation:

Nine less than negative eighteen

[tex] - 18 - 9 = - 27[/tex]

The population in the city of Millstone was approximately 2 million in 2010 and 2.2 million in 2015. What is the percent increase from 2010 to 2015

Answers

Answer:

10%

Step-by-step explanation:

Percentage increase for any change is calculated by formula

{(Final value - initial value)/initial value} * 100

Given

population in 2010 = 2 million ----------->initial value

population in 2015 = 2.2 million ----------->Final value

[tex]Percentage \ \ increase = {(2.2 - 2)/2} *100= (0.2/2)*100 = 10%[/tex]

Answer:

10%

Step-by-step explanation:the population in 2010 - 2015 is grown though 10%

as a percent incease the number willl incease in increase will increase and increase until the number can increase to 2.2 million or 2 millions and also the population would probably decrease

Meta-analysis involves:

a. averaging all the test statistics from every possible study on a given topic.
b. finding all studies published on a topic, calculating the effect size for each of those studies, and averaging the effect sizes together to find the average size of the effect across all studies.
c. finding all studies published on a topic, contacting the authors of the studies to request their original data, and then analyzing all the obtained data in one large analysis of variance.
d. attempting to recreate the experimental conditions of every published study on a given topic.

Answers

Answer: b. finding all studies published on a topic, calculating the effect size for each of those studies, and averaging the effect sizes together to find the average size of the effect across all studies.

Step-by-step explanation:

A grocery store has an average sales of $8000 per day. The store introduced several advertising campaigns in order to increase sales. To determine whether or not the advertising campaigns have been effective in increasing sales, a sample of 64 days of sales was selected. It was found that the average was $8300 per day. From past information, it is known that the standard deviation of the population is $1200. The correct null hypothesis for this problem is

Answers

Answer:

We need to conduct a hypothesis in order to check if the true mean for sales is significantly higher than 8000, the system of hypothesis would be:  

Null hypothesis:[tex]\mu \leq 8000[/tex]  

Alternative hypothesis:[tex]\mu > 8000[/tex]  

[tex]z=\frac{8300-8000}{\frac{1200}{\sqrt{64}}}=2[/tex]    

[tex]p_v =P(z>2)=0.0228[/tex]  

Step-by-step explanation:

Data given  

[tex]\bar X=8300[/tex] represent the sample mean  for the sales

[tex]\sigma=1200[/tex] represent the population standard deviation

[tex]n=64[/tex] sample size  

[tex]\mu_o =8000[/tex] represent the value that we want to test

z would represent the statistic (variable of interest)  

System of hypothesis

We need to conduct a hypothesis in order to check if the true mean for sales is significantly higher than 8000, the system of hypothesis would be:  

Null hypothesis:[tex]\mu \leq 8000[/tex]  

Alternative hypothesis:[tex]\mu > 8000[/tex]  

The statistic to check this hypothesis is given by:

[tex]z=\frac{\bar X-\mu_o}{\frac{\sigma}{\sqrt{n}}}[/tex]  (1)  

Calculate the statistic

[tex]t=\frac{8300-8000}{\frac{1200}{\sqrt{64}}}=2[/tex]    

P-value

Since is a one right tailed test the p value would be:  

[tex]p_v =P(z>2)=0.0228[/tex]  

An Individual Retirement Account​ (IRA) has ​$17 comma 000in​ it, and the owner decides not to add any more money to the account other than interest earned at 4​%compounded daily. How much will be in the account 30years from now when the owner reaches retirement​ age?

Answers

Answer: The owner reaches at Rs. 56438.28 after 30 years.

Step-by-step explanation:

Since we have given that

Sum = Rs. 17000

Rate of compounded daily = 4%

Number of years = 30 years

So, Using "compound interest formula" we get that :

[tex]A=P(1+\dfrac{r}{n})^{nt}\\\\A=17000(1+\dfrac{0.04}{365})^{365\times 30}\\\\A=17000(1.000109589)^{10950}\\\\A=56438.28[/tex]

Hence, The owner reaches at Rs. 56438.28 after 30 years.

part of a $3,600 bonus was invested at 9% annual simple interest. The rest was invested at %8 annual simple interest. The total interest at the end of one year was $312. How much was invested in the %9 account?

Answers

Answer:

  $2400

Step-by-step explanation:

Let x represent the amount invested at 9%. (3600-x) will be the amount invested at 8%. The total interest earned is then ...

  312 = 0.09x +0.08(3600 -x)

  24 = .01x . . . . subtract 288, simplify

  2400 = x . . . . divide by .01

$2400 was invested in the 9% account.

Other Questions
suppose ACT Mathematics scores are normally distributed with a mean of 21.3 and a standard deviation of 5.3. A university plans to send letters of recognition to students whose scores are in the top 11%. What is the minimum score required for a letter of recognition What celebrity would you like to meet at Starbucks for a cup of coffee?answer En los ngeles hay comida de pases latinoamericanos y de espaa. cierto falso leticia explica que la tortilla del taco americano es blanda y la del taco mexicano es dura. cierto falso las ventas de salsa son bajas en los estados unidos. cierto Is this statement true or false?A war between citizens of the same country that takes place within that country is known as a civil war.truefalse 1.What provides the foundation for the governments established by the Constitution of the United States and the state constitutions?A.educated ruling classB.free market economyC.consent of the peopleD.strong military power A good way to reduce miscommunication between employees and managersa) Require a meeting to talkb) Text each directivec) Exercise active listeningSubmit If U = 3 inches, V = 5 inches, W = 8 inches, X = 6 inches, Y = 8 inches, and Z = 4 inches, what is the area of the object? The Ramirez Company's last dividend was $1.5. Its dividend growth rate is expected to be constant at 15% for 2 years, after which dividends are expected to grow at a rate of 5% forever. Its required return (rs) is 12%. What is the best estimate of the current stock price? What is the relationship between asquare root, exponent, and alogarithm? Boxes of Candy (x)Pieces of Candy )10 150 9 1352 30 6 90 3 45Find the constant of proportionality for the table and write in the form Y=kx A) y= 1/15xB) y=10xC) y = 15xD) y = 150x Use the passage to answer the question: What kind of relationship can be found between the clams and the shrimp?Captionless ImageQuestion 5 options:parasitismpredationcompetitioncommensalismmutualism A note disclosed that the allowance for uncollectible accounts had a balance of $42.4 million and $39.7 million at the end of 2015 and 2014, respectively. Bad debt expense for 2015 was $30.0 million. Required:Determine the amount of cash collected from customers during 2015. (All sales are on credit. Enter your answer in millions rounded to 1 decimal place (i.e., 5,500,000 should be entered as 5.5).) 3x+5=3 solve this equation Suppose that $2n$ tennis players compete in a round-robin tournament. Every player has exactly one match with every other player during $2n-1$ consecutive days. Every match has a winner and a loser. Show that it is possible to select a winning player each day without selecting the same player twice. \\ \\ \textit{Hint: Remember Hall's Theorem} At 5 atmospheres of pressure and 70oC, how many moles are present in 1.5 L of O2 gas? A _______ is a tool often used to measure the amount of force exerted by an object Lin wants to know how many games teenagers in the United States have on their phones.What is the population for Lin's question? How did greed and corruption in the north contribute to the end of Reconstruction? The vapor pressure of any substance at its normal boiling point is The_relies on state and national funding to carry out programs.A local governmentB. state governmentc. national governmentD. all of the abovePlease select the best answer from the choices providedo oo