find the value of x if A, B and C are collinear points and B is between A and C. AB= 6x, BC= x-5, AC= 23

Answers

Answer 1

Answer:

x=4

Step-by-step explanation:

AB + BC = AC

AB= 6x, BC= x-5, AC= 23

Substituting what we know

6x + x-5 = 23

Combine like terms

7x -5 = 23

Add 5 to each side

7x-5+5 =23+5

7x = 28

Divide each side by 7

7x/7 = 28/7

x=4


Related Questions

The polynomial P(x) = 2x^3 + mx^2-5 leaves the same remainder when divided by (x-1) or (2x + 3). Find the value of m and the remainder.

The polynomial also leaves the same remainder also leaves the same remainder when divided by (qx+r), find
the values of q and r.​

Answers

Answer:

m=7

Remainder =4

If q=1 then r=3 or r=-1.

If q=2 then r=3.

They are probably looking for q=1 and r=3 because the other combinations were used earlier in the problem.

Step-by-step explanation:

Let's assume the remainders left when doing P divided by (x-1) and P divided by (2x+3) is R.

By remainder theorem we have that:

P(1)=R

P(-3/2)=R

[tex]P(1)=2(1)^3+m(1)^2-5[/tex]

[tex]=2+m-5=m-3[/tex]

[tex]P(\frac{-3}{2})=2(\frac{-3}{2})^3+m(\frac{-3}{2})^2-5[/tex]

[tex]=2(\frac{-27}{8})+m(\frac{9}{4})-5[/tex]

[tex]=-\frac{27}{4}+\frac{9m}{4}-5[/tex]

[tex]=\frac{-27+9m-20}{4}[/tex]

[tex]=\frac{9m-47}{4}[/tex]

Both of these are equal to R.

[tex]m-3=R[/tex]

[tex]\frac{9m-47}{4}=R[/tex]

I'm going to substitute second R which is (9m-47)/4 in place of first R.

[tex]m-3=\frac{9m-47}{4}[/tex]

Multiply both sides by 4:

[tex]4(m-3)=9m-47[/tex]

Distribute:

[tex]4m-12=9m-47[/tex]

Subtract 4m on both sides:

[tex]-12=5m-47[/tex]

Add 47 on both sides:

[tex]-12+47=5m[/tex]

Simplify left hand side:

[tex]35=5m[/tex]

Divide both sides by 5:

[tex]\frac{35}{5}=m[/tex]

[tex]7=m[/tex]

So the value for m is 7.

[tex]P(x)=2x^3+7x^2-5[/tex]

What is the remainder when dividing P by (x-1) or (2x+3)?

Well recall that we said m-3=R which means r=m-3=7-3=4.

So the remainder is 4 when dividing P by (x-1) or (2x+3).

Now P divided by (qx+r) will also give the same remainder R=4.

So by remainder theorem we have that P(-r/q)=4.

Let's plug this in:

[tex]P(\frac{-r}{q})=2(\frac{-r}{q})^3+m(\frac{-r}{q})^2-5[/tex]

Let x=-r/q

This is equal to 4 so we have this equation:

[tex]2u^3+7u^2-5=4[/tex]

Subtract 4 on both sides:

[tex]2u^3+7u^2-9=0[/tex]

I see one obvious solution of 1.

I seen this because I see 2+7-9 is 0.

u=1 would do that.

Let's see if we can find any other real solutions.

Dividing:

1     |   2    7     0     -9

     |         2      9      9

       -----------------------

          2    9     9      0

This gives us the quadratic equation to solve:

[tex]2x^2+9x+9=0[/tex]

Compare this to [tex]ax^2+bx+c=0[/tex]

[tex]a=2[/tex]

[tex]b=9[/tex]

[tex]c=9[/tex]

Since the coefficient of [tex]x^2[/tex] is not 1, we have to find two numbers that multiply to be [tex]ac[/tex] and add up to be [tex]b[/tex].

Those numbers are 6 and 3 because [tex]6(3)=18=ac[/tex] while [tex]6+3=9=b[/tex].

So we are going to replace [tex]bx[/tex] or [tex]9x[/tex] with [tex]6x+3x[/tex] then factor by grouping:

[tex]2x^2+6x+3x+9=0[/tex]

[tex](2x^2+6x)+(3x+9)=0[/tex]

[tex]2x(x+3)+3(x+3)=0[/tex]

[tex](x+3)(2x+3)=0[/tex]

This means x+3=0 or 2x+3=0.

We need to solve both of these:

x+3=0

Subtract 3 on both sides:

x=-3

----

2x+3=0

Subtract 3 on both sides:

2x=-3

Divide both sides by 2:

x=-3/2

So the solutions to P(x)=4:

[tex]x \in \{-3,\frac{-3}{2},1\}[/tex]

If x=-3 is a solution then (x+3) is a factor that you can divide P by to get remainder 4.

If x=-3/2 is a solution then (2x+3) is a factor that you can divide P by to get remainder 4.

If x=1 is a solution then (x-1) is a factor that you can divide P by to get remainder 4.

Compare (qx+r) to (x+3); we see one possibility for (q,r)=(1,3).

Compare (qx+r) to (2x+3); we see another possibility is (q,r)=(2,3).

Compare (qx+r) to (x-1); we see another possibility is (q,r)=(1,-1).

What is the slope of st.line xcosa+ysina=p? ( Find by using derivative)​

Answers

Answer:

Assume that [tex]a[/tex] and [tex]p[/tex] are constants. The slope of the line will be equal to

[tex]\displaystyle -\frac{\cos{(a)}}{\sin{(a)}} = \cot{(a)}[/tex] if [tex]\sin{a} \ne 0[/tex];Infinity if [tex]\sin{a} = 0[/tex].

Step-by-step explanation:

Rewrite the expression of the line to express [tex]y[/tex] in terms of [tex]x[/tex] and the constants.

Substract [tex]x\cdot \cos{(a)}[/tex] from both sides of the equation:

[tex]y \sin{(a)} = p - x\cos{(a)}[/tex].

In case [tex]\sin{a} \ne 0[/tex], divide both sides with [tex]\sin{a}[/tex]:

[tex]\displaystyle y = - \frac{\cos{(a)}}{\sin{(a)}}\cdot x+ \frac{p}{\sin{(a)}}[/tex].

Take the first derivative of both sides with respect to [tex]x[/tex]. [tex]\frac{p}{\sin{(a)}}[/tex] is a constant, so its first derivative will be zero.

[tex]\displaystyle \frac{dy}{dx} = - \frac{\cos{(a)}}{\sin{(a)}}[/tex].

[tex]\displaystyle \frac{dy}{dx}[/tex] is the slope of this line. The slope of this line is therefore

[tex]\displaystyle - \frac{\cos{(a)}}{\sin{(a)}} = -\cot{(a)}[/tex].

In case [tex]\sin{a} = 0[/tex], the equation of this line becomes:

[tex]y \sin{(a)} = p - x\cos{(a)}[/tex].

[tex]x\cos{(a)} = p[/tex].

[tex]\displaystyle x = \frac{p}{\cos{(a)}}[/tex],

which is the equation of a vertical line that goes through the point [tex]\displaystyle \left(0, \frac{p}{\cos{(a)}}\right)[/tex]. The slope of this line will be infinity.

square root of 3 x^2 times square root of 4x

Answers

[tex]\bf \sqrt{3x^2}\cdot \sqrt{4x}\implies \sqrt{3x^2\cdot 4x}\implies \sqrt{12x^2x}\implies \sqrt{4\cdot 3\cdot x^2x} \\\\\\ \sqrt{2^2\cdot 3\cdot x^2x}\implies 2x\sqrt{3x}[/tex]

one x-intercept for a parabola is at the point (2, 0). use the quadratic formula to find the other x-intercept for the parabola defined by y=x^2-3x+2​

Answers

Answer:

Step-by-step explanation:

There are 3 ways to find the other x intercept.

1) Polynomial Long Division.

Divide x^2 - 3x + 2 by the binomial x - 2, because by the Factor Theorem if a is a root of a polynomial then x - a is a factor of said polynomial.

2) Just solving for x when y = 0, by using the quadratic formula.

[tex]x^2 - 3x + 2 = 0\\x_{12} = \frac{3 \pm \sqrt{9 - 4(1)(2)}}{2} = \frac{3 \pm 1}{2} = 2, 1[/tex].

So the other x - intercept is at (1, 0)

3) Using Vietta's Theorem regarding the solutions of a quadratic

Namely, the sum of the solutions of a quadratic equation is equal to the quotient between the negative coefficient of the linear term divided by the coefficient of the quadratic term.

[tex]x_1 + x_2 = \frac{-b}{a}[/tex]

And the product between the solutions of a quadratic equation is just the quotient between the constant term and the coefficient of the quadratic term.

[tex]x_1 \cdot x_2 = \frac{c}{a}[/tex]

These relations between the solutions give us a brief idea of what the solutions should be like.

how to divide (x^2+5x-6)/(x-1)

Answers

Answer:

x+6

Step-by-step explanation:

Let's see if the numerator is factorable.

Since the coefficient of x^2 is 1 (a=1), all you have to do is find two numbers that multiply to be -6  (c) and add up to be 5 (b).

Those numbers are 6 and -1.

So the factored form of the numerator is (x+6)(x-1)

So when you divide (x+6)(x-1) by (x-1) you get (x+6) because (x-1)/(x-1)=1 for number x except x=1 (since that would lead to division by 0).

Anyways, this is what I'm saying:

[tex]\frac{(x+6)(x-1)}{(x-1)}=\frac{(x+6)\xout{(x-1)}}{\xout{(x-1)}}[/tex]

[tex]x+6[/tex]

the number of three-digit numbers with distinct digits that be formed using the digits 1,2,3,5,8 and 9 is . The probability that both the first digit and the last digit of the three-digit number are even numbers .

Answers

Answer:

a)120

b)6.67%

Step-by-step explanation:

Given:

No. of digits given= 6

Digits given= 1,2,3,5,8,9

Number to be formed should be 3-digits, as we have to choose 3 digits from given 6-digits so the no. of combinations will be

6P3= 6!/3!

      = 6*5*4*3*2*1/3*2*1

      =6*5*4

      =120

Now finding the probability that both the first digit and the last digit of the three-digit number are even numbers:

As the first and last digits can only be even

then the form of number can be

a)2n8 or

b)8n2

where n can be 1,3,5 or 9

4*2=8

so there can be 8 three-digit numbers with both the first digit and the last digit even numbers

And probability = 8/120

                          = 0.0667

                          =6.67%

The probability that both the first digit and the last digit of the three-digit number are even numbers is 6.67% !

1.

[tex]6\cdot5\cdot4=120[/tex]

2.

[tex]|\Omega|=120\\|A|=2\cdot4\cdot1=8\\\\P(A)=\dfrac{8}{120}=\dfrac{1}{15}\approx6.7\%[/tex]

Solve for x: 5 over x equals 4 over quantity x plus 3

5
3
−3
−15

Answers

Answer:

x = - 15

Step-by-step explanation:

The equation is  [tex]\frac{5}{x}=\frac{4}{x+3}[/tex]

We now cross mulitply and do algebra to figure the value of x (shown below):

[tex]\frac{5}{x}=\frac{4}{x+3}\\5(x+3)=4(x)\\5x+15=4x\\5x-4x=-15\\x=-15[/tex]

Hence x = -15

Answer:

D

Step-by-step explanation:

A jet plane travels 2 times the speed of a commercial airplane. The distance between Vancouver

and Regina is 1730 km. If the flight from Vancouver to Regina on a commercial airplane takes

140 minutes longer than a jet plane, what is the time of a commercial plane ride of this route? (please show steps:))

Answers

Answer:

The time of a commercial airplane is 280 minutes

Step-by-step explanation:

Let

x -----> the speed of a commercial airplane

y ----> the speed of a jet plane

t -----> the time that a jet airplane takes  from Vancouver to Regina

we know that

The speed is equal to divide the distance by the time

y=2x ----> equation A

The speed of a commercial airplane is equal to

x=1,730/(t+140) ----> equation B

The speed of a jet airplane is equal to

y=1,730/t -----> equation C

substitute equation B and equation C in equation A

1,730/t=2(1,730/(t+140))

Solve for t

1/t=(2/(t+140))

t+140=2t

2t-t=140

t=140 minutes

The time of a commercial airplane is

t+140=140+140=280 minutes

What is the solution of 4.5x-100>125

Answers

Answer:

x > 50

Step-by-step explanation:

[tex]4.5x-100>125\qquad\text{add 100 to both sides}\\\\4.5x-100+100>125+100\\\\4.5x>225\qquad\text{divide both sides by 4.5}\\\\\dfrac{4.5x}{4.5}>\dfrac{225}{4.5}\\\\x>50[/tex]

The solution to the inequality 4.5x - 100 > 125 is x > 50.

The given inequality is 4.5x - 100 > 125.

To solve it, first, add 100 to both sides to get 4.5x > 225. Then, divide by 4.5 to find x > 50. Therefore, the solution to the inequality is x > 50.

15.5
tons

155 tons =how many
pounds

Answers

15.5 tons=31000
155 tons=310000
(Plz
Mark brainliest)

If a fair coin is tossed 11 times, in how many different ways can the sequence of heads and tails appear?

Answers

2048 different ways can the sequence of heads and tails appear.

What is possibility?

The definition of a possibility is something that may be true or might occur, or something that can be chosen from among a series of choices.

According to the question

Fair coin is tossed 11 times

There are two possibilities for each flip (Heads or Tails). You multiply those together to get the total number of unique sequences.

Here’s an example for 2 flips: HH - HT - TT - TH. (That’s 2 × 2, or [tex]2^{2}[/tex])

Here’s 3 flips: HHH - HHT - HTH - HTT - THH - THT - TTH - TTT. (That’s

2× 2 × 2, or [tex]2^{3}[/tex]).

For ten flips, it’s [tex]2^{10}[/tex]… which is 1024.

For 11 flips, it's [tex]2^{11}[/tex].......Which is 2048

2048 different ways can the sequence of heads and tails appear.

Find out more information about possibility here

brainly.com/question/13949383

#SPJ2

Final answer:

There are 2048 different ways that a sequence of heads and tails can appear after tossing a fair coin 11 times, because each coin toss has two possible outcomes and the events are independent.

Explanation:

If a fair coin is tossed 11 times, the number of different sequences of heads and tails that can appear is calculated using the formula for the number of outcomes of binomial events. Since each toss of the coin has two possible outcomes (either a head or a tail), and we are tossing the coin 11 times, we use the power of 2 raised to the 11th power, which gives us 211 = 2048. Therefore, there are 2048 different ways a sequence of heads and tails can appear after tossing a coin 11 times.

The reason why there are so many combinations is that each coin toss is independent of the previous one, with a 50 percent chance of landing on either side. This principle is used in probability theory to calculate the possible outcomes of repeated binary events. As an interesting note, if we were to look at possibilities of a specific number of heads and tails, such as 10 heads and 1 tail or vice versa, this would be represented in Pascal's triangle, which reflects the coefficients in the binomial expansion.

Steps for solving 3x + 18 = 54 are shown.
Explain how Step 1 helps solve the equation.
3x+18 = 54
3x + 18-18 = 54 -18
3x = 36
3x_36
33
X = 12
Original equation
Step 1
Step 2
Step 3
Step 4
) A. Adding 18 to both sides undoes the subtraction.
O
B. Adding 18 to both sides combines like terms.
O
C. Subtracting 18 from both sides isolates the variable term.
O
D. Subtracting 18 from both sides isolates the variable.

Answers

C

By subtracting 18 to both sides you are separating the 3x because you are not ready to isolate the variable (x) in step 1

Answer:

WELP i got  little different answers and for me it was A

A.

Adding 18 to both sides isolates the variable term.

B.

Adding 18 to both sides isolates the variable.

C.

Subtracting 18 from both sides undoes the subtraction.

D.

Subtracting 18 from both sides combines like terms.

which of the following recursive formulas represent the same arithmetic sequence as the explicit formula an=5+(n-1)2
a. a1=5
an=an-1+2
b. a1=5
an=(an-1+2)5
c. a1=2
an=an-1+5
d. a1=2
an=an-1*5

Answers

Answer:

Choice A:

[tex]a_1=5[/tex]

[tex]a_{n}=a_{n-1}+2[/tex]

Step-by-step explanation:

[tex]a_n=5+(n-1)2[/tex]

means we looking for first term 5 and the sequence is going up by 2.

In general,

[tex]a_n=a_1+(n-1)d[/tex]

means you have first term [tex]a_1[/tex] and the sequence has a common difference of d.

So it is between the first two choices.

The explicit form of an arithmetic sequence is: [tex]a_n=a_1+(n-1)d[/tex]

An equivalent recursive form is [tex]a_n=a_{n-1}+d \text{ where } a_1 \text{ is the first term}[/tex]

So d again here is 2.

So choice a is correct.

[tex]a_1=5[/tex]

[tex]a_{n}=a_{n-1}+2[/tex]

Answer: Option a

[tex]\left \{ {{a_1=5} \atop {a_n=a_{(n-1)}+2}} \right.[/tex]

Step-by-step explanation:

The arithmetic sequences have the following explicit formula

[tex]a_n=a_1 +(n-1)*d[/tex]

Where d is the common difference between the consecutive terms and [tex]a_1[/tex] is the first term of the sequence:

The recursive formula for an arithmetic sequence is as follows

[tex]\left \{ {{a_1} \atop {a_n=a_{(n-1)}+d}} \right.[/tex]

Where d is the common difference between the consecutive terms and [tex]a_1[/tex] is the first term of the sequence:

In this case we have the explicit formula [tex]a_n=5+(n-1)*2[/tex]

Notice that in this case

[tex]a_1 = 5\\d = 2[/tex]

Then the recursive formula is:

[tex]\left \{ {{a_1=5} \atop {a_n=a_{(n-1)}+2}} \right.[/tex]

The answer is the option a.

Which graph shows the line y-2 = 2(x + 2)?
A/B/co
A. Graph A
B. Graph B
C. Graph D
D. Graph c

Answers

Answer:

The answer is Graph A.

Step-by-step explanation:

i got the answer from the teachers answer key

Graph A shows the line y-2 = 2(x + 2).

The answer is option A

What is a straight line graph?

The graph follows a straight line equation shows a straight line graph.

equation of a straight line is   y=mx+cy represents vertical line y-axis.x represents the horizontal line x-axis.     m is the slope of the line

            slope(m)=tan∅=y axis/x axis.

c represents y-intercepts (it is the point at which the line cuts on the y-axis)Straight line graphs show a linear relationship between the x and y values.

solving the equation:-

      y-2 = 2(x + 2)

        y=2x+4+2

        Y=2x+6

  y-intercepts = 6 (Graph A represents this).

Learn more about graphs here:-https://brainly.com/question/14323743

#SPJ2

What is the sum of the complex numbers below?
(5+7i)+(-2+6i)
A. -3 +13i
B. 3+13i
C. -3-13i
D. 3-13i​

Answers

Answer:

B

Step-by-step explanation:

Given

(5 + 7i) + (- 2 + 6i ) ← remove parenthesis and collect like terms

= 5 + 7i - 2 + 6i

= 3 + 13i → B

The sum of the complex number is 3 + 13i.

Option B is the correct answer.

We have,

To find the sum of the complex numbers (5+7i) and (-2+6i), you can simply add the real parts together and add the imaginary parts together separately.

Real part: 5 + (-2) = 3

Imaginary part: 7i + 6i = 13i

Combining the real and imaginary parts, we get:

Sum = 3 + 13i

Therefore,

The sum of the complex number is 3 + 13i.

Learn more about expressions here:

https://brainly.com/question/3118662

#SPJ2

write a compound inequality that represents each situations all real numbers that are greater than -8 but less than 8

Answers

Answer:

[tex]-8 < x < 8[/tex]

Step-by-step explanation:

Your compound inequality will include two inequalities.

These are:

x > -8

x < 8

Put your lowest number first, ensuring that your sign is pointed in the correct direction.

[tex]-8 < x[/tex]

Next, enter your higher number, again making sure that your sign is pointing in the correct direction.

[tex]-8 < x < 8[/tex]

Answer:

-8 < r < 8

Step-by-step explanation:

Let r = real number

Greater than  >

r>-8

less than  <

r <8

We want a compound inequality so we combine these

-8 < r < 8

If 20% of a = b, then b% of 20 is same as?

Answers

[tex]20\%\text{ of } a=b \Longleftrightarrow0.2a=b\\\\b\%\text{ of } 20 \Longleftrightarrow \dfrac{b}{100}\cdot20\\\\\dfrac{b}{100}\cdot20=\dfrac{b}{5}=\dfrac{0.2a}{5}=\boxed{\boxed{a}}[/tex]

An ant can run an inch per second. How long will it take the same ant to run a foot?​

Answers

12 seconds bc 12 in in a foor

Answer:

12 seconds.

Step-by-step explanation:

There are 12 inches in a foot so the ant can run a foot in 1 *12 = 12 seconds.

If a scalene triangle has its measures 4 m, 11 m and 8 m, find the largest angle.
A. 129.8
B. 90.0
C. 34.0
D. 16.2​

Answers

Answer:

129.8 approximately

Step-by-step explanation:

So this sounds like a problem for the Law of Cosines. The largest angle is always opposite the largest side in a triangle.

So 11 is the largest side so the angle opposite to it is what we are trying to find. Let's call that angle, X.

My math is case sensitive.

X is the angle opposite to the side x.

Law of cosines formula is:

[tex]x^2=a^2+b^2-2ab \cos(X)[/tex]

So we are looking for X.

We know x=11, a=4, and b=8 (it didn't matter if you called b=4 and a=8).

[tex]11^2=4^2+8^2-2(4)(8)\cos(X)[/tex]

[tex]121=16+64-64\cos(X)[/tex]

[tex]121=80-64\cos(X)[/tex]

Subtract 80 on both sides:

[tex]121-80=-64\cos(X)[/tex]

[tex]41=-64\cos(X)[/tex]

Divide both sides by -64:

[tex]\frac{41}{-64}=\cos(X)[/tex]

Now do the inverse of cosine of both sides or just arccos( )

[these are same thing]

[tex]\arccos(\frac{-41}{64})=X[/tex]

Time for the calculator:

X=129.8 approximately

Question 12 Multiple Choice Worth 1 points)
(03.07 LC)
Choose the equation of the horizontal line that passes through the point (-8, -7).

Answers

Answer:

linear inqution

Step-by-step explanation:

relationship

ANSWER

[tex]y = - 7[/tex]

EXPLANATION

A horizontal line that passes through (a,b) has equation

[tex]y = b[/tex]

This is because a horizontal line is a constant function.

The y-values are the same for all x belonging to the real numbers.

The given line passes through (-8,-7).

In this case, we have b=-7.

Therefore the equation of the horizontal line that passes through the point (-8, -7) is

[tex]y = - 7[/tex]

Use the intercepts from the graph below to determine the equation of the function.

A) 4x-3y=12
B) -4x-3y=12
C) 4x-3y=-12
D) -4x+3y=-12

Answers

ANSWER

C) 4x-3y=-12

EXPLANATION

The intercept form of a straight line is given by:

[tex] \frac{x}{x - intercept} + \frac{y}{y - intercept} = 1[/tex]

From the the x-intercept is -3 and the y-intercept is 4.

This is because each box is one unit each.

We substitute the intercepts to get:

[tex] \frac{x}{ - 3} + \frac{y}{4} = 1[/tex]

We now multiply through by -12 to get

[tex] - 12 \times \frac{x}{ - 3} + - 12 \times \frac{y}{4} = 1 \times - 12[/tex]

[tex]4x - 3y = -12[/tex]

The correct choice is C.

What type of angles are 1 and 5?



vertical
supplementary
corresponding
complementary

Answers

Answer:

corresponding

Step-by-step explanation:

Answer:

Corresponding

Step-by-step explanation:

I like to call corresponding angles, the copy and paste angles because you can copy and paste the top intersection over the bottom intersection; the angles that lay down on top of each other are the corresponding angles. 1 and 5 do this.

if you are paid $5.50/hour for mowing yards, and you take 3 1/3 hours to mow a yard, how much money are you owed?

Answers

[tex]\bf \begin{array}{ccll} \$&hour\\ \cline{1-2} 5.5&1\\ x&3\frac{1}{3} \end{array}\implies \cfrac{5.5}{x}=\cfrac{1}{3\frac{1}{3}}\implies \cfrac{5.5}{x}=\cfrac{1}{\frac{3\cdot 3+1}{3}}\implies \cfrac{5.5}{x}=\cfrac{1}{\frac{10}{3}}\implies \cfrac{5.5}{x}=\cfrac{\frac{1}{1}}{\frac{10}{3}} \\\\\\ \cfrac{5.5}{x}=\cfrac{1}{1}\cdot \cfrac{3}{10}\implies \cfrac{5.5}{x}=\cfrac{3}{10}\implies 55=3x\implies \stackrel{\textit{about 18 bucks and 33 cents}}{\cfrac{55}{3}=x\implies 18\frac{1}{3}=x}[/tex]

Answer:

$18.3

Step-by-step explanation:

If you are paid $5.50/hour for mowing yards, and you take 3 1/3 hours to mow a yard, you should earn $18.3.

3 1/3 hours

$5.50 and hour

$5.50 x 3 = $16.5

$5.50 / 3 = $1.8

$16.5 + $1.8 = $18.3

Therefore, you are owed $18.3.

Determine if the two figures are congruent and explain your answer.

Answers

To determine if two figures are congruent, we need to check if one can be obtained from the other through a combination of rigid transformations. The specific transformations that can be applied to one figure to make it coincide with the other need to be described to explain if the figures are congruent or not.

If two figures are congruent, we need to check if one can be obtained from the other through a combination of rigid transformations. Rigid transformations include translations, rotations, and reflections. If we can apply a series of these transformations to one figure to make it coincide exactly with the other, then the figures are congruent.

Without specific information about the figures, I can provide a general explanation of how you might approach this:

Translation (Slide): Check if one figure can be translated (slide) to coincide with the other. If you can move one figure to overlap with the other without rotating or reflecting it, they might be congruent.Rotation (Turn): Check if one figure can be rotated to match the orientation of the other. If a rotation can make the two figures coincide, they may be congruent.Reflection (Flip): Check if one figure can be reflected (flipped) to match the other. If a reflection can be applied to one figure to make it coincide with the other, they may be congruent.

To explain your answer, describe the specific transformations (translations, rotations, reflections) that can be applied to one figure to make it coincide with the other. If you can perform a sequence of these transformations to superimpose one figure onto the other, then the figures are congruent. If not, they are not congruent.


Given the function f(x) = 2x – 1 and the linear function g(x), which function has a greater value when x = 3?

A.f(x) is greater.
B.g(x) is greater.
C.f(x) and g(x) are the same when x=3
D.g(x) is undefined when x=3​

Answers

Answer:

Option B. g(x) is greater

Step-by-step explanation:

step 1

Find the value of f(x) when the value of x is equal to 3

we have

f(x)=2x-1

substitute the value of x=3

f(3)=2(3)-1=5

step 2

Find the value of g(x) when the value of x is equal to 3

Observing the graph

when x=3

g(3)=7

step 3

Compare the values

f(x)=5

g(x)=7

so

g(x) > f(x)

g(x) is greater

Answer:

Correct option is:

B. g(x) is greater

Step-by-step explanation:

Firstly, we find the value of f(x) when x=3

f(x)=2x-1

substitute the value of x=3

f(3)=2×3-1=5

On observing the graph, we see that g(x)=7 when x=3

Now, on Comparing the values of f(x) and g(x) when x=3

f(3)=5

g(3)=7

so, g(x) > f(x) when x=3

So, Correct option is:

B. g(x) is greater

Need help with this problem h+-3=4 please

Answers

Answer:

h=7

Step-by-step explanation:

[tex]h+(-3)=4[/tex]

may be rewritten as

[tex]h-3=4[/tex]

as adding a negative is the same as subtracting a positive.

To solve, add 3 to both sides.

[tex]h-3=4\\h=7[/tex]

Answer:

h=7

Step-by-step explanation:

1) Add three to both sides

2) You should get h=7

The equation of a circle in general form is ​ x2+y2+20x+12y+15=0 ​ . What is the equation of the circle in standard form?

Answers

ANSWER

[tex]{(x + 10)}^{2} + {(y + 6)}^{2} = 121[/tex]

EXPLANATION

The equation of the circle in general form is given as:

[tex] {x}^{2} + {y}^{2} + 20x + 12y + 15 = 0[/tex]

To obtain the standard form, we need to complete the squares.

We rearrange the terms to obtain:

[tex] {x}^{2} + 20x + {y}^{2} + 12y = - 15 [/tex]

Add the square of half the coefficient of the linear terms to both sides to get:

[tex]{x}^{2} + 20x +100 + {y}^{2} + 12y + 36 = - 15 + 100 + 36[/tex]

Factor the perfect square trinomial and simplify the RHS.

[tex]{(x + 10)}^{2} + {(y + 6)}^{2} = 121[/tex]

This is the equation of the circle in standard form.

PLEASE HURRY
WILL GIVE BRAINLIEST

What is the equation for the hyperbola shown?

Answers

Find the answer in the attachment.

The hyperbola's equation is x² / 3600 - y² / 121 = 1, centered at the origin (0,0). Its vertices are at (60,0), (-60,0) on the x-axis, and (0,11), (0,-11) on the y-axis.

To find the equation of the hyperbola, we need to determine its center and the distances from the center to the vertices along the x and y axes. The general equation of a hyperbola centered at (h, k) is given by:

(x - h)² / a² - (y - k)² / b² = 1

Where (h, k) is the center of the hyperbola, and 'a' and 'b' are the distances from the center to the vertices along the x and y axes, respectively.

In this case, since the hyperbola is symmetric along the x and y axes, the center is at the origin (0, 0). Also, we know the distance from the center to the vertices along the x-axis is 60 units (60 and -60) and along the y-axis is 11 units (11 and -11).

So, a = 60 and b = 11.

Now we can plug these values into the equation:

x² / (60)² - y² / (11)² = 1

Simplifying further:

x² / 3600 - y² / 121 = 1

And that's the equation of the hyperbola.

To know more about hyperbola:

https://brainly.com/question/19989302

#SPJ2

The Montanez family is a family of four people. They have used 3,485.78 gallons of water so far this month. They cannot exceed 7,250.50 gallons per month during the drought season. Write an inequality to show how much water just one member of the family can use for the remainder of the month, assuming each family member uses the same amount of water every month.

Answers

Answer:

x ≤ 3764.72

Step-by-step expl anation:

The Montanez family cannot use more than 7250.50 gallons, this means that they can use less than or equal to 7250.50 gallons, this tells you which sign to use.  The variable x can be used to describe how much water they have left to use and then you add 3,485.78 gallons to x.

x + 3485.78 ≤ 7250.50   This inequality means that the amount of water the family has yet to use added to 3485.78 gallons cannot exceed 7250.50 gallons.

Next, you simplify the inequality using the property of inequalities.

x ≤ 7250.50 - 3485.78

x ≤ 3764.72

The required inequality is x<941.18 for the Montanez family if they have used 3485.78 gallons of water.

What is inequality?

It is also a relationship between variables but this is in greater than , less than, greater than or equal to , less than or equal to is used.

How to form an inequality?

Let the water used by a member be x

so

x*4=7250.50-3485.78

4x=3764.72

x=941.18

Hence one member can only use 941.18 gallons of water in the month.

Learn more about inequality at https://brainly.com/question/11613554

#SPJ2

Kevin’s car requires 5 liters of diesel to cover 25 kilometers. How many liters of diesel will Kevin need if he has to cover 125 kilometers?

Answers

Answer: 25 litres

Step-by-step explanation: If it takes 5 litres of diesel to cover 25km, it means it will take more litres to cover 125km. So you have to divide 125km by 25km then you will get 5 which you will then multiply by 5 litres to get 25 litres of diesel.

Other Questions
For an ideal gas mixture of A and B, if the total pressure is 100 kPa and component B has a mole fraction of 0.25, calculate the partial pressure of component A 60-watt light bulb carries a current of 0.5 ampere. The total charge passing through it in one hour is: A) 3600 C B) 3000C C) 2400C D) 120 C E) 1800 C Synapomorphies are used in determining relationships among animal groups. Synapomorphies are: (A) evolutionary innovations.(B) shared, derived traits.(C) both evolutionary innovations and shared, derived traits. 6 = 3x - 9x + 4 < 1x/2 + 3 = -5 (10 points) Please help asap!! your friend has $5,000 and asked for your recommendation about placing her money in a financial institution. Based on what you learned in this module, what factors would you ask her about before making your recommendation? Which type of financial institution and type of account might you suggest? Suppose Bill HR612 is currently in Congress. One thing you know about this bill is that it A long straight wire runs up and down vertically and carries current downward. What is the direction of the magnetic field produced by this current at a location nearby and directly east of the wire? A) southwardB) downwardC) upwardD) northwardE) westward The anthropologist recognized for his work on personal space is ________. talcott parsons edward hall william i. thomas robert k. merton Change in passive voice " She has learned her lessons " Oakmont Company has an opportunity to manufacture and sell a new product for a four-year period. The companys discount rate is 17%. After careful study, Oakmont estimated the following costs and revenues for the new product:Cost of equipment needed $ 275,000 Working capital needed $ 86,000 Overhaul of the equipment in two years $ 10,000 Salvage value of the equipment in four years $ 13,000 Annual revenues and costs: Sales revenues $ 420,000 Variable expenses $ 205,000 Fixed out-of-pocket operating costs $ 87,000When the project concludes in four years the working capital will be released for investment elsewhere within the company.Calculate the net present value of this investment opportunity. The first number in a sequence is 8. If each number in the sequence is 10 less than three times the previous number, then what will the fourth term be? A rectangular coil with sides 0.10 m by 0.25 m has 500 turns of wire. It is rotated about its long axis in a magnetic field of 0.58 T directed perpendicular to the rotation axis. At what frequency must the coil be rotated for it to generate a maximum potential of 110 V? Scientists believe that the earth is millions of years older than the oldest rocks found on its surface. One reason they believe this is because Find a polynomial f(x) of degree 3 that has the following zeros.9, 0, -5Leave your answer in factored form. What translations occur when moving fromf(x) to g(x)?f(x) = sin(x)g(x) = 4 sin (3x pi) +5 Shirley is drawing triangles that have the same area. the base of each triangle inversely with the heigh. what are the possible base and height of a second triangle if the first triangles base is 12 and its height is 8. select one: a. 120 and 80 b. 10 and 10 c. 60 and 36 b. 16 and 6 Jayne stopped to get gas before going on a road trip. The tank already had 4 gallons of gas in it. Which best describes why the graph relating the total amount of gasoline in the tank, y, to the number of gallons that she added to it, x, will be continuous or discrete?A: The graph will be continuous because the amount of gas that she added to the tank does not need to be an integer amount.B: The graph will be continuous because we are not told a maximum value for the amount of gas.C: The graph will be discrete because there are already exactly 4 gallons of gas in the tank, so to fill it up will take a whole number of gallons of gas.D: The graph will be discrete because there is an end to the amount of gas she can use, as the tank will be completely full at some point.Read more on Brainly.in - https://brainly.in/question/5443625#readmore HELP ASAP PLEASE***from "Was it a Dream?"by Guy de MaupassantOn turning round I saw that all the graves were open, that all the dead bodies had emerged from them, and that all had effaced the lies inscribed-engraved or written on the gravestones by their relations, substituting the truth instead.And I saw that all had been the tormentors of their neighbors-malicious, dishonest, hypocrites, liars, rogues, calumniators, envious; that they had stolen, deceived, performed every disgraceful, every abominable action, these good fathers, these faithful wives, these devoted sons, these chaste daughters, these honest tradesmen, these men and women who were called irreproachable. They were all writing at the same time, on the threshold of their eternal abode, the truth, the terrible and the holy truth of which everybody was ignorant, or pretended to be ignorant, while they were alive.I thought that SHE also must have written something on her tombstone, and now running without any fear among the half-open coffins, among the corpses and skeletons, I went toward her, sure that I should find her immediately. I recognized her at once, without seeing her face, which was covered by the winding-sheet, and on the marble cross, where shortly before I had read:"She loved, was loved, and died."I now saw:"Having gone out in the rain one day, in order to deceive her lover, she caught cold and died."* * * * * * *It appears that they found me at daybreak, lying on the grave unconscious.Read the sentence from the passage and answer the question that follows.On turning round I saw that all the graves were open, that all the dead bodies had emerged from them, and that all had effaced the lies inscribed-engraved or written on the gravestones by their relations, substituting the truth instead.Which word, if substituted for effaced, would best retain the meaning of the passage? (5 points)Select one:a. Scratchedb. Carvedc. Printedd. Erased A cylinder 8 inches in diameter and 3 ft long is concentric with a pipe of 8.25 inches i.d. Between cylinder and pipe there is an oil film. What force is required to move the cylinder along the pipe at a constant velocity of 3 fps? The kinematic viscosity of the oil is 0.006 ft2 /s; the specific gravity is 0.92.