[For Questions 1 & 2]
There was once a crooked but witty man Douglas charged for the crime of
felony. He was kept in a prison cell which was guarded by a hefty officer. The
cell was situated at the beginning of a long straight corridor partitioned by five
doors. The doors operated on different time switches so that the first, which
separated the cell from the corridor, opened every 1 minute 45 seconds, the
second every 1 minute 10 seconds, the third every 2 minutes 55 seconds, the
fourth every 2 minutes 20 seconds, and the fifth, which was at the end of the
corridor, every 35 seconds. Every once in a while, the five doors opened
simultaneously. When this happened, the guard arrived, looked down the
corridor to check the cell, and then left. Douglas calculated that in making his
escape it would take 20 seconds to cover the distance between consecutive
doors, which was longer than the amount of time a door stayed open. He also
knew that if he stayed in the corridor for longer than two and a half minutes, at a
stretch, an alarm would sound. So he had to escape in the shortest possible time.
Given that Douglas was smart enough to keep the track of all time.
Question 1:How much time had already passed when Douglas started
moving?
A. 18m 40sec B. 19m 15sec C 19m 50sec D. Prisoner cannot escape
Question 2:How long before the guard returned does Douglas cleared the
last door?
12m 50sec
B 13m 25sc
D. Douglas

Answers

Answer 1

Answer:

B. 19 min 15 sec

B. 13 min 25 sec

Step-by-step explanation:

Door 1 opens every 1 min 45 sec, or 105 sec.

Door 2 opens every 1 min 10 sec, or 70 sec.

Door 3 opens every 2 min 55 sec, or 175 sec.

Door 4 opens every 2 min 20 sec, or 140 sec.

Door 5 opens every 35 sec.

The greatest common factor is 35 seconds, so we can measure the time in units of 35 seconds.

Door 1 opens every 3 units.

Door 2 opens every 2 units.

Door 3 opens every 5 units.

Door 4 opens every 4 units.

Door 5 opens every 1 unit.

The least common multiple of 3, 2, 5, 4, and 1, is 60.  So every 60 units, all five doors will open, and the guard will look down the corridor to check on the prisoner.  Douglas must escape before this time.

In order to escape in the shortest time possible, Douglas should time his escape so that each door opens 1 unit after the door before it.  It takes Douglas 20 seconds to move from one door to another, so he will have enough time to get to the next door before it opens.

Let's say Douglas starts moving when Door 1 opens for the nth time.  In other words, 3n units have passed before he starts moving.  That means Door 2 should open after 3n + 1 units.  Door 3 should open after 3n + 2 units.  Door 4 should open after 3n + 3 units.  And Door 5 should open after 3n + 4 units.

Since Door 2 opens every 2 units, 3n + 1 should be a multiple of 2.

Since Door 3 opens every 5 units, 3n + 2 should be a multiple of 5.

Since Door 4 opens every 4 units, 3n + 3 should be a multiple of 4.

Since Door 5 opens every 1 unit, 3n + 4 should be a multiple of 1.

By trial and error, n = 11.

So Douglas starts moving after 33 units, or 1155 seconds, or 19 min 15 sec.

Douglas clears the fifth door after 37 units, which leaves 23 units to spare, or 805 seconds, or 13 min 25 sec.


Related Questions

What do common multiples of 4 and 6 mean

Answers

Answer:

so the common multiple of 4 and 6 is 2  i hope this helps!   :)

Step-by-step explanation:

well the common multiples of 4 and 6 is 2

2 * 2 = 4

2 * 3 = 6

so there has to be a certain number that goes into both of the numbers you are working with

Answer:

Common multiples of 4 and 6 are 12, 24, 36, 48, 60, 72, 84, 96...

factor the expression completely 40-5x

Answers

Answer:

5(8-x)

Step-by-step explanation:

Fact using the GCF (Greatest Common Factor) of 40 and 5

Factors of 5:

1,5

Factors of 40:

1,2,4,5,8,10,20,40

The greatest factor they both have is 5

Factor by distributing out a 5

40-5x

5(8-x)

The GCF (Greatest Common Factor) of 40 and 5 is 5!

Divide both numbers by 5.

40 / 5 = 8

-5x / 5 = -x

Rewrite the expression using the distributive property.

5(8 - x)

Best of Luck!

You would like to determine if there is a higher incidence of smoking among women than among men in a neighborhood. Let men and women be represented by populations 1 and 2, respectively. The relevant hypotheses are constructed as....a) h0: p1-p2 ≥ 0 h1: p1-p2 < 0b) h0: p1-p2≤ 0 h1: p1-p2 > 0

Answers

Answer:

For this case we want to test if there is a higher incidence of smoking among women than among men in a neighborhood (alternative hypothesis). And we define p1 for men and p2 for women, so for this case the best system of hypothesis are:

Null hypothesis:[tex] p_1- p_2 \geq 0[/tex]

Alternative hypothesis: [tex]p_1 -p_2 <0 [/tex]

And the best option would be:

a) h0: p1-p2 ≥ 0 h1: p1-p2 < 0

Step-by-step explanation:

Previous concepts

A hypothesis is defined as "a speculation or theory based on insufficient evidence that lends itself to further testing and experimentation. With further testing, a hypothesis can usually be proven true or false".  

The null hypothesis is defined as "a hypothesis that says there is no statistical significance between the two variables in the hypothesis. It is the hypothesis that the researcher is trying to disprove".  

The alternative hypothesis is "just the inverse, or opposite, of the null hypothesis. It is the hypothesis that researcher is trying to prove".  

Solution to the problem

For this case we want to test if there is a higher incidence of smoking among women than among men in a neighborhood (alternative hypothesis). And we define p1 for men and p2 for women, so for this case the best system of hypothesis are:

Null hypothesis:[tex] p_1- p_2 \geq 0[/tex]

Alternative hypothesis: [tex]p_1 -p_2 <0 [/tex]

And the best option would be:

a) h0: p1-p2 ≥ 0 h1: p1-p2 < 0

I don’t know how to do this. Care to explain?

Answers

Answer:

y=6x+7

Step-by-step explanation:

−6x+y=7

Step 1: Add 6x to both sides

y=6x+7

Answer:

y=6x+7

Step-by-step explanation:

whenever you solve for a letter you have to get it by itself. That means it has to be alone on the opposite side of the equation

move the -6x to the other side of the equation

that -6 changes to a  positive 6 because, your moving it to the other side of the equation

your left with y=6x+7

pls mark me brainliest

The following sample data are from a normal population: 10, 8, 12, 15, 13, 11, 6, 5.
a. What is the point estimate of the population mean?10 b. What is the point estimate of the population standard deviation (to 2 decimals)?3.46 c. With confidence, what is the margin of error for the estimation of the population mean (to 1 decimal)?2.9 d. What is the confidence interval for the population mean (to 1 decimal)?

Answers

Answer:

10

3.4641

2.8965  

12.8965  

Step-by-step explanation:

Given: 10, 8, 12, 15, 13, 11, 6, 5  

c = 95%

a. The point estimate of the population mean is the sample mean. The mean is the sum of all values divided by the number of values:

x = 10 + 8 + 12 + 15 + 13 + 11 + 6 + 5 /8

  = 80/8

  = 10

b. The point estimate of the population standard deviation is the sample standard deviation. The variance is the sum of squared deviations from the mean divided by n - 1. The standard deviation is the square root of the variance:  

s = /(10 – 10)^2 +.... + (5– 10)^2/8 – 1  

s = 3.4641

c. Determine the t-value by looking in the row starting with degrees of freedom df = n-1 = 8 –1 = 7 and in the column with [tex]\alpha[/tex] = (1 – c)/2 = 0.025 in table :  

t_[tex]\alpha[/tex]/2 = 2.365  

The margin of error is then:  

E = t_[tex]\alpha[/tex]/2 * s/√n

  = 2.365 x s 3.4641/ √8

  = 2.8965  

d. The confidence intent)] then becomes:  

7.1035 = 10 – 2.8965 = x – E <u<x +E= 10 + 2.8965 = 12.8965  

The point estimate of the population mean will be 10.

How to calculate the point estimate?

The point estimate of the population mean will be calculated thus:

= (10 + 8 + 12 + 15 + 13 + 11 + 11 + 6 + 5) / 8

= 80/8

= 10

Also, the margin of error will be:

= 2.365 × 3.4641/✓8

= 2.8965

In conclusion, the margin of error is 2.8965.

Learn more about population on:

https://brainly.com/question/25630111



Add together 8.03 m 1.26 m 0.5 m 4.09 m 3.5 m

Answers

Answer:

17.38m

Step-by-step explanation:

Answer:

17.38m

Step-by-step explanation:

An instructor who taught two sections of Math 161A, the first with 20 students and the second with 30 students, gave a midterm exam. After all the students had turned in their exam pa- pers, the instructor randomly ordered them before grading. Consider the first 15 graded exam papers. (a) Find the probability that exactly 10 of these are from the second section. Find the probability that at least 10 of these are from the second section. Find the probability that at least 10 of these are from the same section?

Answers

Answer:

The answers are for option (a) 0.2070  (b)0.3798  (c) 0.3938

Step-by-step explanation:

Given:

Here Section 1 students = 20

Section 2 students = 30

Here there are 15 graded exam papers.

(a )Here Pr(10 are from second section) = ²⁰C₅ * ³⁰C₁₀/⁵⁰C₁₅= 0.2070

(b) Here if x is the number of students copies of section 2 out of 15 exam papers.

 here the distribution is hyper-geometric one, where N = 50, K = 30 ; n = 15

Then,

Pr( x ≥ 10 ; 15; 30 ; 50) = 0.3798

(c) Here we have to find that at least 10 are from the same section that means if x ≥ 10 (at least 10 from section B) or x ≤ 5 (at least 10 from section 1)

so,

Pr(at least 10 of these are from the same section) = Pr(x ≤ 5 or x ≥ 10 ; 15 ; 30 ; 50) = Pr(x ≤ 5 ; 15 ; 30 ; 50) + Pr(x ≥ 10 ; 15 ; 30 ; 50) = 0.0140 + 0.3798 = 0.3938

Note : Here the given distribution is Hyper-geometric distribution

where f(x) = kCₓ)(N-K)C(n-x)/ NCK in that way all these above values can be calculated.

Look at the number line below. The letters f, g, h, and i all represent integers. Write two inequalities to compare f and g.

Answers

Final answer:

Without the provided number line, we cannot determine the exact relationship between f and g. Inequalities f < g or f > g represent f being less than or greater than g, respectively. To write the correct inequality, one must refer to the positions of f and g on the number line.

Explanation:

Since the number line is not provided, we cannot see the exact positions of f and g. However, we can discuss how to write inequalities to compare two integers based on their positions on a number line. If f is located to the left of g on the number line, it means that f is less than g. The inequality for this scenario would be f < g. On the other hand, if f is located to the right of g, then f is greater than g, and the corresponding inequality would be f > g.

You can use an inequality symbol to show how two metric measurements are related. If two numbers are the same, the inequality symbol would be the equal sign, representing they are equivalent. However, without the number line, we cannot determine the exact relationship between f and g, so one must look at the number line to ascertain the correct inequality to use.

Jay was reaching into her purse and accidentally spilled her coin purse. 10 pennies fell on the floor. Jay noticed that only 2 of the pennies landed on heads. What is the theoretical probability of this happening?

Answers

Answer:

The theoretical probability of landing on 2 heads, when 10 coins are tossed is 0.0439 or 4.39%.

Step-by-step explanation:

Number of coins that fell on the floor = 10

Number of coins that landed on heads = 2

We have to find the theoretical probability of getting 2 coins landing of heads when 10 coins are tossed.

Notice that there are only 2 possible outcomes: Either that coin will land on head or it won't. Landing of each coin is independent of the others coins. Probability of each coin landing on head is constant i.e. 0.5 or 1/2. Number of trials, i.e. the number of times the experiment will be done is fixed, which is 10.

All the 4 conditions for an experiment to be considered a Binomial Experiment are satisfied. So we will use Binomial Probability to solve this problem.

Probability of success = Probability of coin landing on head = 0.5

Number of trials = n = 10

Number of success = r = 2

The formula for Binomial Probability is:

[tex]P(X = x) =^{n}C_{r}(p)^{r}(1-p)^{n-r}[/tex]

Using the values, we get:

[tex]P(X=2)=^{10}C_{2}(0.5)^2(0.5)^8=0.0439[/tex]

Thus, the theoretical probability of landing on 2 heads, when 10 coins are tossed is 0.0439 or 4.39%.

The weekly amount of money spent on maintenance and repairs by a company was observed, over a long period of time, to be approximately normally distributed with mean $490 and standard deviation $10. How much should be budgeted for weekly repairs and maintenance so that the probability the budgeted amount will be exceeded in a given week is only 0.1?

Answers

Answer:

[tex]z=1.28<\frac{a-490}{10}[/tex]

And if we solve for a we got

[tex]a=490 +1.28*10=502.8[/tex]

So the value of height that separates the bottom 90% of data from the top 10% is 502.8.  

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the weeknly amount of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(490,10)[/tex]  

Where [tex]\mu=490[/tex] and [tex]\sigma=10[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

For this part we want to find a value a, such that we satisfy this condition:

[tex]P(X>a)=0.1[/tex]   (a)

[tex]P(X<a)=0.9[/tex]   (b)

Both conditions are equivalent on this case. We can use the z score again in order to find the value a.  

As we can see on the figure attached the z value that satisfy the condition with 0.9 of the area on the left and 0.1 of the area on the right it's z=1.28. On this case P(Z<1.28)=0.9 and P(z>1.28)=0.1

If we use condition (b) from previous we have this:

[tex]P(X<a)=P(\frac{X-\mu}{\sigma}<\frac{a-\mu}{\sigma})=0.9[/tex]  

[tex]P(z<\frac{a-\mu}{\sigma})=0.9[/tex]

But we know which value of z satisfy the previous equation so then we can do this:

[tex]z=1.28<\frac{a-490}{10}[/tex]

And if we solve for a we got

[tex]a=490 +1.28*10=502.8[/tex]

So the value of height that separates the bottom 90% of data from the top 10% is 502.8.  

Final answer:

The company should budget approximately $502.80 for weekly repairs and maintenance to ensure that the probability of exceeding this amount is only 0.1.

Explanation:

We want to find how much should be budgeted for weekly repairs and maintenance so that the probability the budgeted amount will be exceeded in a given week is only 0.1.

Since the weekly amount of money spent is normally distributed with a mean of $490 and a standard deviation of $10, we can find the amount by looking up the z-score that corresponds to the 90th percentile

(since 100% - 10% = 90%) in a standard normal distribution table or using a calculator.

Let the z-score for the 90th percentile be denoted as z.

Looking up the standard normal distribution table or using a calculator, we find that z ≈ 1.28 for 0.9 cumulative probability.

We then use the z-score formula:

z = (X - mean) / standard deviation

Plugging in our z-score and the parameters, we can solve for X:

1.28 = (X - 490) / 10

X - 490 = 12.8

X = $502.80

Therefore, the company should budget approximately $502.80 for weekly repairs and maintenance to ensure that the probability of exceeding this amount is only 0.1.

What is the slope of this line?
(1,4) (6,-1)

Answers

Answer:

The slope is -1

Step-by-step explanation:

Let's find the slope between your two points.

(1,4);(6,−1)

(x1,y1)=(1,4)

(x2,y2)=(6,−1)

Use the slope formula:

m= y2−y1/x2−x1  = −1−4/6−1

= −5/5

= −1

Hope this is a better explanation :)

Hope it helps!!!!!!!!!

A survey of top executives revealed that 35% of them regularly read Time magazine, and 40% read U.S. News & World Report. Ten percent read both Time and U.S. News & World Report. What is the probability that a particular top executive reads either Time or U.S. News & World Report regularly? Select one: a. 0.85 b. 0.75 c. 1 d. 0.65

Answers

Answer:

Option D) 0.65    

Step-by-step explanation:

We are given the following in the question:

Percentage of executives who read Time magazine = 35%

[tex]P(M) = 0.35[/tex]

Percentage of executives who read U.S. News & World Report = 40%

[tex]P(N) = 0.4[/tex]

Percentage of executives who read both Time magazine and U.S. News & World Report = 10%

[tex]P(M\cap N) = 0.1[/tex]

We have to find the probability that a particular top executive reads either Time or U.S. News & World Report regularly.

Thus, we have to evaluate,

[tex]P(M\cup N) = P(M) + P(N) -P(M\cap N)[/tex]

Putting values, we get,

[tex]P(M\cup N) = 0.35 + 0.4 - 0.1=0.65[/tex]

0.65 is the probability that a particular top executive reads either Time or U.S. News & World Report regularly.

Thus, the correct answer is

Option D) 0.65

What inequality is represented by this graph? A number line going from 1 to 9. An open circle is at 6. Everything to the left of the circle is shaded. x greater-than 6 x less-than-or-equal-to 6 x less-than 6 x greater-than-or-equal-to 6

Answers

x less-than-or-equal-to 6 is the inequality which is represented by the graph.

How to solve the problem?

The problem can be solved by following steps

It is given that

A number line going from 1 to 9.An open circle is at 6.Everything to the left of the circle is shaded.

According to above statement a graph is drawn below

The shaded part of the left side describes the value of x which are less than 6 or equal to 6

Hence , The inequality that is represented in the graph is x is less than or equal to 6

Learn more about inequality here

https://brainly.com/question/24372553

#SPJ2

Answer: B

Step-by-step explanatii got it right on edge

HELP ME PLEASE HURRY: Wade has claims that quadrilateral ABCD is a square because he has found that all four sides are congruent as shown below:

AB = 8.3 units

BC = 8.3 units

CD= 8.3 units

AD = 8.3 units

Explain in at least two sentences why Wade is incorrect and what else he needs to show for ABCD to be a square. Be specific!

Answers

Answer:

At first we should know that:

The properties of the square are:

It has four equal sides.All angles are right angles or equal to 90º.The sum of its all angles is 360ºIt has two pairs of perpendicular lines.It has two pairs of parallel lines.

The properties of Rhombus

It has equal four sides.The opposite sides are of the same length.It has two acute angles and two obtuse angles.The sum of its all angles is 360ºIt has zero pairs of perpendicular lines.It has two pairs of parallel lines.

So, Wade is incorrect because the quadrilateral may be Rhombus

And the quadrilateral to be a square, she needs to show that It has two pairs of perpendicular lines.

When rolling two fair 6 sided dice, what is the probability that the total is at most 10?



Answers

Answer:

[tex]\frac{33}{36}[/tex]

Step-by-step explanation:

Combinations greater than a 10

5 - 5

5 - 6

6 - 5

There are total 36 combinations (6 * 6).

3 of these combinations are higher than 10.

So 36 - 3 combinations are less than 10.

Use this information to answers Questions 1 through 7. The U.S. government provides money to each state to maintain the interstate highway system in the state. The U.S. can revoke or reduce the money if the states do not safely maintain the highways. The U.S. government is particularly concerned about the speed of traffic on Kansas highways. If there is convincing evidence that the average speed of all interstate highway vehicles in Kansas exceeds the posted speed limit of 70 mph, the federal government will reduce the amount of funding it provides. If there is not convincing evidence, then the government will not reduce the funding.

Kansas Highway Patrol recorded the speed of 450 interstate vehicles and found the mean speed of 70.2 mph with standard deviation 1.6 mph. The U.S. government will use this information to conduct a hypothesis test at significance level 0.01 to decide whether or not to reduce to money sent to Kansas.

Suppose that mu is the true mean speed of all vehicles on the Kansas interstate highway system.

1. What are the null and alternative hypotheses that the U.S. government should test?
2. What is the value of the test statistic?

Answers

Answer:

1. Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex]  70 mph

  Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 70 mph

2. Value of test statistics is 2.652.

Step-by-step explanation:

We are given that Kansas Highway Patrol recorded the speed of 450 interstate vehicles and found the mean speed of 70.2 mph with standard deviation 1.6 mph.

We have to conduct a hypothesis test at significance level 0.01 to decide whether or not to reduce the money sent to Kansas.

Let [tex]\mu[/tex] = true mean speed of all vehicles on the Kansas interstate highway system.

SO, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex]  70 mph   {means that the federal government will not reduce the amount of funding it provides as the speed limit is less than or equal to 70 mph}

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 70 mph   {means that the federal government will reduce the amount of funding it provides as the speed limit exceed 70 mph}

The test statistics that will be used here is One-sample t test statistics as we don't know about the population standard deviation;

                        T.S.  = [tex]\frac{\bar X -\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean speed limit of 450 interstate vehicles = 70.2 mph

             s = sample standard deviation = 1.6 mph

             n = sample of vehicles = 450

So, test statistics  =   [tex]\frac{70.2-70}{\frac{1.6}{\sqrt{450} } }[/tex]  ~ [tex]t_4_4_9[/tex]

                               =  2.652

Hence, the value of test statistics is 2.652.

Use the given information to bound the p-value of the F statistic for a one-tailed test with the indicated degrees of freedom. F = 4.23, df1 = 4, df2 = 5 p-value < 0.005 0.005 < p-value < 0.010 0.010 < p-value < 0.025 0.025 < p-value < 0.050 0.050 < p-value < 0.100 p-value > 0.100

Answers

Answer:

The range of the p-value is: 0.050 < p-value < 0.100.

Step-by-step explanation:

For checking the equivalence of two population variances of independent samples, we use the f-test.

The test statistic is given by:

[tex]F=\frac{S_{1}^{2}}{S_{2}^{2}}\sim F_{\alpha, (n_{1}-1)(n_{2}-1)}[/tex]

It is provided that the hypothesis test is one-tailed.

The computed value of the test statistic is:

F = 4.23.

The degrees of freedom of the numerator and denominator are:

[tex]df_{1}=4\\df_{2}=5[/tex]

Use MS-Excel to compute the p-value as follows:

Step 1: Select function fX → F.DIST.RT.

Step 2: A dialog box will open. Enter the values of f-statistic and the two degrees of freedom.

*See the attachment below.

Step 3: Press OK.

The p-value is, 0.0728.

The range of the p-value is:

0.050 < p-value < 0.100

A study of bulimia among college women studied the connection between childhood sexual abuse and a measure of family cohesion​ (the higher the​ score, the greater the​ cohesion). The sample mean on the family cohesion scale was 1.9 for 13 sexually abused students ​(sequals2.1​) and 5.2 for 17 nonabused students ​(sequals3.5​). a. Find the standard error for comparing the means. b. Construct a​ 95% confidence interval for the difference between the mean family cohesion for sexually abused students and​ non-abused students. Interpret.

Answers

Answer: a) 1.029, b) (-5.318, -1.282).

Step-by-step explanation:

Since we have given that

[tex]n_1=13\\\\n_2=17\\\\\bar{x_1}=1.9\\\\\bar{x_2}=5.2[/tex]

and

[tex]s_1=2.1\\\\s_2=3.5[/tex]

So, the standard error for comparing the means :

[tex]SE=\sqrt{\dfrac{s^2_1}{n_1}+\dfrac{s^2_2}{n_2}}\\\\SE=\sqrt{\dfrac{2.1^2}{13}+\dfrac{3.5^2}{17}}\\\\SE=\sqrt{1.0598}\\\\SE=1.029[/tex]

At 95% confidence interval, z = 1.96

So, Confidence interval would be

[tex]\bar{x_1}-\bar{x_2}\pm z\times SE\\\\=(1.9-5.2)\pm 1.96\times 1.0294\\\\=-3.3\pm 2.017624\\\\=(-3.3-2.018,-3.3+2.018)\\\\=(-5.318,-1.282)[/tex]

Hence, a) 1.029, b) (-5.318, -1.282).

Evaluate \dfrac p4 +pq
4
p

+pqstart fraction, p, divided by, 4, end fraction, plus, p, q when p=8p=8p, equals, 8 and q=6q=6q, equals, 6.

Answers

The value is 50

what is fraction?

A fraction represents a part of a whole or, more generally, any number of equal parts.

Given:

p/4 + pq

As, p= 8, q= 6

We have,

8/4 + 8*6

= 2 + 48

= 50

Hence, p/4 + pq= 50

Learn more about fraction here:

https://brainly.com/question/10354322

#SPJ2

The equation results to get 50.

To evaluate the expression p/4 + pq when p = 8 and q = 6, follow these steps:

First, substitute the given values of p and q into the expression.Calculate p/4: p/4 = 8/4 = 2.Next, calculate pq: pq = 8 × 6 = 48.Add the two results together: p/4 + pq = 2 + 48 = 50.

Therefore, the value of the expression when p = 8 and q = 6 is 50.

The complete question is:

Evaluate p/4 +pq when p=8 and q=6

x g(x)
−2 1/4
-1 1/2
0 1
1 2
3 8

Consider that f(x) = x + 2, while the table represents y = g(x). Which statement is true when comparing the rate of change for the functions?
A) The rate of increase for the functions is the same.
B) f(x) has a greater rate of increase than function g(x).
C) g(x) has a greater rate of increase than function f(x).
D) g(x) has a greater rate of decrease than function f(x).

Answers

Answer:

A

Step-by-step explanation:

Cause I know

Answer: C!!

Step-by-step explanation:

USA Test Prep told me! :)

A study is conducted to investigate whether customer satisfaction is greater among computer companies that offer tech support versus those that do not offer tech support. A random sample of 50 customers are selected from among those that purchased computers that offer tech support. A separate random sample of 40 customers are selected from among those that purchased computers that do not offer tech support.
The study found that the mean satisfaction rating was significantly greater among customers that purchased computers that offer tech support.
Which of the following is the best description of this study?
(A) An experiment using a completely randomized design.
(B) An experiment using a randomized block design.
(C) An experiment using a matched pairs design
(D) An observational study using a simple random sample.

Answers

Answer:

The correct answer is (E).

This is not an experiment because no treatment is being imposed upon the customers. Additionally, this study used a stratified sample because independent random samples were selected from two distinct populations of customers.

Step-by-step explanation:

The correct answer is (E) An observational study using a stratified sample.

What is stratified sample?

Stratified sampling is also known as stratified random sampling. The stratified sampling process starts with researchers dividing a diverse population into relatively homogeneous groups called strata, the plural of stratum. Then, they draw a random sample from each group (stratum) and combine them to form their complete representative sample.

Given that a data of a survey, the study found that the mean satisfaction rating was significantly greater among customers that purchased computers that offer tech support.

We need to find which is the best description of this study,

This study used a stratified sample because independent random samples were selected from two distinct populations of customers.

This is not an experiment because no treatment is being imposed upon the customers.

Hence, the best description is an observational study using a stratified sample.

Learn more about Stratified sampling click;

https://brainly.com/question/20544692

#SPJ2

The complete question is attached.

Penalty Shots in World Cup Soccer A study1 of 138 penalty shots in World Cup Finals games between 1982 and 1994 found that the goalkeeper correctly guessed the direction of the kick only 41% of the time. The article notes that this is ‘‘slightly worse than random chance." We use these data as a sample of all World Cup penalty shots ever. Test at a 5% significance level to see whether there is evidence that the percent guessed correctly is less than 50%. The sample size is large enough to use the normal distribution. The standard error from a randomization distribution under the null hypothesis is SE=0.043. 1St.John, A., ‘‘Physics of a World Cup Penalty-Kick Shootout - 2010 World Cup Penalty Kicks," Popular Mechanics, June 14, 2010.

Answers

Final answer:

To test whether the percentage of correctly guessed penalty shots is less than 50% in World Cup Soccer, we can use a one-sample proportion test. Using a significance level of 0.05, we find that the test statistic is -2.09. Comparing this to the critical value from the standard normal distribution (-1.645), we reject the null hypothesis and conclude that there is evidence to suggest that the percentage of correctly guessed penalty shots is less than 50%.

Explanation:

To test whether there is evidence that the percentage of correctly guessed penalty shots is less than 50% in World Cup Soccer, we can use a one-sample proportion test. We will assume that the null hypothesis is true and that the goalkeeper's correct guesses are no better than random chance. The alternative hypothesis would be that the goalkeeper's correct guesses are significantly less than 50%. Using a significance level of 0.05, we can calculate the test statistic and compare it to the critical value from the standard normal distribution.

Null hypothesis (H0): The percentage of correctly guessed penalty shots is 50%.

Alternative hypothesis (Ha): The percentage of correctly guessed penalty shots is less than 50%.

Test statistic: We can use the z-test statistic since the sample size is large enough. The formula for the z-test statistic is z = (p - P0) / SE, where p is the sample proportion, P0 is the hypothesized proportion, and SE is the standard error. In this case, since the standard error is given as 0.043, we can plug in the values to calculate the test statistic.

Calculate the z-test statistic: z = (0.41 - 0.5) / 0.043 = -2.09

Find the critical value: Since our alternative hypothesis is that the percentage is less than 50%, we will use a one-tailed test. With a significance level of 0.05, the critical value from the standard normal distribution is -1.645.

Compare the test statistic to the critical value: Since the test statistic (-2.09) is less than the critical value (-1.645), we can reject the null hypothesis. There is evidence to suggest that the percentage of correctly guessed penalty shots is less than 50% in World Cup Soccer.

Qual o valor que Z assume?
-Cz+ 6z = Tz+ 83

Answers

Answer:

[tex]\large \boxed{z = \dfrac{83}{6 - C - T}}[/tex]

Step-by-step explanation:

[tex]\begin{array}{rccl}-Cz + 6z & = & Tz + 83 & \\6z -Cz - Tz &= & 83 & \text{Subtracted Tz from each side}\\z(6 - C - T) & = & 83 & \text{Removed the common factor}\\z& = & \mathbf{\dfrac{83}{6 - C - T}} &\text{Divided each side by 6 - C - T}\\\end{array}\\\\\large \boxed{\mathbf{z = \dfrac{83}{6 - C - T}}}[/tex]

Need help with this please

Answers

Answer:A

Go from the dark blue to light green flips on y and down 1

Step-by-step explanation:

Suppose 70 different survey organizations visit eastern Tennessee to estimate the average number of years of schooling completed among adults age 25 and over. Each organization surveys 400 people and reports a 90% confidence interval.

Of these 70 intervals, how many of these intervals would you expect to contain the true population average?

Answers

Answer:

63 intervals would be expected to contain the true population average.

Step-by-step explanation:

90% confidence interval:

Mean that we are 90% sure that the interval contains the true population mean. That is, 90% of the intervals are expected to contain the true population average.

Of these 70 intervals, how many of these intervals would you expect to contain the true population average?

Following the explained logic

0.9*70 = 63

63 intervals would be expected to contain the true population average.

Show that (2, 1) is a solution of the system of equations.
x + 3y = 5,
y = –x + 3

1. Substitute (2, 1) into x + 3y = 5 to get .____
Options: 1 + 32 = 5, 1 + 3(2) = 5, 2 + 31 = 5, 2 + 3(1) = 5

2. Simplify the equation to get ____
Options: 5 = 5 is true, 7 = 7 is true, 7 = 5 is false, 33 = 5 is false

3. Substitute (2, 1) into y = –x + 3 to get ____
Options: 1 = -(2) + 3, 1 = -(2 + 3), 2 = -(1) + 3, 2 = -(1 + 3)

4. Simplify the equation to get .____
Options: 1 = 1 is true, 1 = -1 is false, 2 = 2 is true, 2 = -2 is false

Answers

Answer: The answer is 1. Substitute (2,1) into x+3y=5

Step-by-step explanation: Remember, (2,1) 2 is substituted for x and 1 is used as the y substitute

Answer:

1. 2+3(1)=5

2. 5=5 is true

3. 1=-(2)+3

4. 1=1 is true

Thirty-four college students were asked how much money they spent on textbooks for the current semester. Their responses are shown in the following stemplot.


1 2 3 3 4 5 5 6 7 8
2 1 2 3 4 5 6 8 8 9 9 9
3 1 2 2 7 8 9
4 1 4 5 7
5 1 3
6 2
7
8 1

Key: 1|2 = $120

a. Describe a procedure for identifying potential outliers, and use the procedure to decide whether there are outliers among the responses for the money spent on textbooks.
b. Based on the stemplot, write a few sentences describing the distribution of money spent on textbooks for the 34 students.

Answers

Answer:

(a) The outlier in the data is $810.

(b) The distribution of money spent on textbooks for the 34 students is right skewed.

Step-by-step explanation:

The data provided for the amount of money 34 college students spent on books is:

S = {120, 130, 130, 140, 150, 150, 160, 170, 180, 210, 220, 230, 240, 250, 260, 280, 280, 290, 290, 290, 310, 320, 320, 370, 380, 390, 410, 440, 450, 470, 510, 530, 620, 810}

(a)

An outlier of a data set is a value that is very different from the other values of a data set. It is either too large or too small.

The most common way to determine whether a data set consists of any outliers of not is,

Data value that less than Q₁ - 1.5 IQR are outliers.Data values that are more than Q₃ + 1.5 IQR are outliers.

Here

Q₁ = first quartile

Q₃ = third quartile

IQR = Inter-quartile range = Q₃ - Q₁.

The first quartile is the value that is more than 25% of the data values. The first quartile is the median of the first half of the data.

Compute the value of first quartile as follows:

First half of data: {120, 130, 130, 140, 150, 150, 160, 170, 180, 210, 220, 230, 240, 250, 260, 280, 280}

There are 17 values.

The median of an odd data set is the middle value.

The middle value is: 180

The first quartile is Q₁ = 180.

The third quartile is the value that is more than 75% of the data values.

Compute the value of first quartile as follows:

Second half of data: {290, 290, 290, 310, 320, 320, 370, 380, 390, 410, 440, 450, 470, 510, 530, 620, 810}

There are 17 values.

The median of an odd data set is the middle value.

The middle value is: 390

The third quartile is Q₃ = 390.

Compute the inter-quartile range as follows:

IQR = Q₃ - Q

      = 390 - 180

      = 210

Compute the value of [Q₁ - 1.5 IQR] as follows:

[tex]Q_{1}-1.5\ IQR =180-(1.5\times 210)=-135[/tex]

Compute the value of [Q₃ + 1.5 IQR] as follows:

[tex]Q_{3}+1.5\ IQR =390+(1.5\times 210)=705[/tex]

There are no values that are less than [Q₁ - 1.5 IQR]. But there is one value that is more than [Q₃ + 1.5 IQR].

X = 810 > [Q₃ + 1.5 IQR] = 705

Thus, the outlier in the data is $810.

(b)

A distribution is known as to be skewed to the right, or positively skewed, when maximum of the data are collected on the left of the distribution.

In the stem plot above, it is shown that maximum of the data values are collected on the left of the chart. This implies that the distribution is positively skewed.

Thus, the distribution of money spent on textbooks for the 34 students is right skewed.

Outliers are data elements that are relatively far from other data elements

The outlier of the dataset is $810The distribution of the stem-plot is right skewed.

(a) The outlier

From the plot, the stems are given as:

Stems: 1 2 3 4 5 6 7 8

However, stem 7 does not have any leaf

Using the above highlight, the next entry after 620 is 810

810 is relatively far from the other datasets.

Hence, 810 is an outlier

(b) The distribution

The data on the stem-plot is more concentrated at the top, and it reduces as the stem increases.

When there are more data elements at the top or left, then the distribution is right skewed.

Hence, the distribution is right skewed.

Read more about stem-plots at:

https://brainly.com/question/8913125

According to an NRF survey conducted by BIGresearch, the average family spends about $237 on electronics (computers, cell phones, etc.) in back-to-college spending per student. Suppose back-to-college family spending on electronics is normally distributed with a standard deviation of $54. If a family of a returning college student is randomly selected, what is the probability that: (a) They spend less than $160 on back-to-college electronics

Answers

Answer:

7.64% probability that they spend less than $160 on back-to-college electronics

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 237, \sigma = 54[/tex]

Probability that they spend less than $160 on back-to-college electronics

This is the pvalue of Z when X = 160. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{160 - 237}{54}[/tex]

[tex]Z = -1.43[/tex]

[tex]Z = -1.43[/tex] has a pvalue of 0.0763

7.64% probability that they spend less than $160 on back-to-college electronics

Fertilizer: A new type of fertilizer is being tested on a plot of land in an orange grove, to see whether it increases the amount of fruit produced. The mean number of pounds of fruit on this plot of land with the old fertilizer was pounds. Agriculture scientists believe that the new fertilizer may change the yield. State the appropriate null and alternate hypotheses.

Answers

Answer:

Step-by-step explanation:

The null hypothesis is the hypothesis that is assumed to be true. It is an expression that is the opposite of what the researcher predicts.

The alternative hypothesis what the researcher expects or predicts. It is the statement that is believed to be true if the null hypothesis is rejected.

From the given situation,

The mean number of pounds of fruit on this plot of land with the old fertilizer was 416 pounds. This is the null hypothesis.

H0 : µ = 416

Agriculture scientists believe that the new fertilizer may decrease the yield. This is the alternative hypothesis.

H0 : µ < 416

Need help with this please thank you!

Answers

AC is 4 because of the side angle side postulate

Answer:

4

Step-by-step explanation:

AC = AE = 4 cm

Other Questions
Describe the location of the four chambers of the heart. Why are time zones necessary At a Noodles & Company restaurant, the probability that a customer will order a nonalcoholic beverage is .51.Find the probability that in a sample of 10 customers, at least 7 will order a nonalcoholic beverage. An open box with a square base is to be made from a square piece of cardboard 24 inches on a side by cutting out a square from each corner and turning up the sides. If the volume V of the box is a function of the length x of the side of the square cut from each corner, for what value of x is V the largest What does the statement I a I= 5 mean? A a is equal to 5.B a is equal to 5.C a is 5 units from 0.D You cannot tell without knowing the value of a. The area of a trapezoid is 39 square millimeters. The height of the trapezoid is 8 millimeters. One of the base lengths of the trapezoid is 5 millimeters. What is the length of the other base of the trapezoid? Which of the following became true of the arms race during the Cold War? A). neither sides developed enough bombs to threaten the other B). both sides had enough bombs to destroy each other many times over C) the Soviet Union developed the hydrogen bomb while the United States did not D) the Soviet Union and the United States agreed to cease developing new weapons Bill deposits $100 at the end of each year for thirteen years into fund A. Seth deposits $100 at the end of each year for thirteen years into fund B. Fund A earns an annual effective rate of 15% for the first five years and an annual effective rate of 6% thereafter. Fund B earns an annual effective rate of i throughout the thirteen years. The two funds have equal accumulated values at the end of the thirteen years. Find i. Write a program that asks the user for a CSV of the NYC Open Data Film Permits: There is a sample file for June 2019 film permits on github. Your program should then print out: the total number of permits in the file, the count of permits for each borough, and the five most popular locations (stored in the column: "Parking Held"). SY manufacturer (SYM) is producing T-shirt in three colors: blue, red, and white. The monthly demand for each color is 3000 units. Each shirt requires 0.5 pound of raw cotton that is imported from LuftGeshfet-Textile (LGT) Company in Brazil. The purchasing price per pound is $2.5 (paid only when the cotton arrives at SYMs facilities) and transportation cost by sea is $o.2 per pound. The traveling time from LGTs facilty in Brazil to SYM facility in the United States is two weeks. The cost of placing a cotton order, by SYM, is $100 and the annual interst rate that SYM is facing is 20 percent. a. What is the optimal order quantity of cotton? b. How frequently should the company order cotton? c. What is the resulting annual holding cost? d. What is the resulting annual ordering cost? How does Hussein demonstrate this in this excerpt of the war As a condition of his probation, Stefan must check in daily with a nonresidential community corrections program that blends high levels of control with the delivery of specific services that Stefan needs. Stefan is participating in a(n) ________ program. Blake drew a circle with a circumference of 37.68 cm. What is the diameter of that circle? Decide if the following sentence is grammatically CORRECT or INCORRECT. Vayas a la tienda. what are all the functions that have no real number solution4x^2+100=03x^2-9=0x^2+1=06x^2-216=0x^2-49=0 THIS IS URGENT HELPPPPP!!!!!!!!What is the minimum value for g(x)=x^218x+79? Answer as a power of 6 "Describe how increasing the stimulus frequency affected the force developed by the isolated whole skeletal muscle in this activity. How well did the results compare with your prediction how do you write a quadratic equation in standard form? What are the most common cells in the blood?Ored blood cellswhite blood cellsplateletsneurons