Friction factor for fluid flow in pipe does not depend upon the A. pipe length. B. pipe roughness. C. fluid density & viscosity. D. mass flow rate of fluid.

Answers

Answer 1

Answer:

C. fluid density & viscosity

Explanation:

In 1850, Darcy-Weisbach experimentally deduced an equation to calculate shear losses ("friction"), in a tube with permanent flow and constant diameter:

hf = (f x L x V^2) / (D x 2g)

where:

hf: shear losses

f:  shear loss factor (pipe roughness)

g: gravity acceleration

D: tube diameter

L: tube length  

V: fluid average speed in the tube

To calculate the loss factor “f” in the Poiseuille laminar region, he proposed in 1846 the following equation:

f = 64 / Re

Where:

Re: Reynolds number

The influence of the parameters on f is quantitatively different according to the characteristics of the current.

In any straight pipeline that transports a liquid at a certain temperature, there is a critical speed below which the regimen is laminar. This critical value that marks the transition between the two regimes, laminar and turbulent, corresponds to a Re = 2300, although in practice, between 2000 and 4000 the situation is quite inaccurate. Thus:

Re <2000: laminar regimen

2000 <Re <4000: critical or transition zone

Re> 4000: turbulent regime

Answer 2

Final answer:

The friction factor for fluid flow in a pipe does not depend upon the pipe length, pipe roughness, fluid density & viscosity, or mass flow rate of fluid.

Explanation:

The friction factor for fluid flow in a pipe does not depend upon the pipe length (A), pipe roughness (B), fluid density & viscosity (C), or mass flow rate of fluid (D).

This is because the friction factor, also known as the Darcy-Weisbach factor, is determined by the characteristics of the flow itself, such as the Reynolds number, which is a dimensionless quantity that relates the inertia of the fluid to the viscous forces acting on it.

The friction factor can be calculated using the Colebrook-White equation or obtained from Moody's diagram based on the relative roughness of the pipe and the Reynolds number.


Related Questions

How many significant figures are represented in each of the following numbers? a) 7.1 x 10^-5 b) 0.00677 c) 750

Answers

Answer:

a) 7.1 x 10⁻⁵ : 2 significant figures

b) 0.00677 : 3 significant figures  

c) 750 : 2 significant figure  

Explanation:

The significant digits or figures refers to the digits of a given number that carry meaning and also contributes to precision of the given number.

a) 7.1 x 10⁻⁵ = 0.000071 : 2 significant figures, leading zeros are not significant.

b) 0.00677 : 3 significant figures, leading zeros are not significant.          

c) 750 : 2 significant figure, trailing zeros are not significant.        

The equilibrium reaction below has the Kc = 3.93. If the volume of the system at equilibrium is increased from 2.00 liters to 8.00 liters, how and for what reason will the equilibrium shift? Be sure to calculate the value of the reaction quotient, Q, and use this to confirm your answer.

co (g) + 3H2(g) -CH4(g) + H2O (g)

Answers

Answer:

the equilibium changes since Q > Kc, by increasing the volume, therefore, the reaction will try to use some of the excess product and favor the reverse reaction to reach equilibrium.

Explanation:

CO(g) + 3H2(g) ↔ CH4(g) + H2O(g)

∴ Kc = [ H2O ] * [ CH4 ] / [ H2 ]³ * [ CO ] = 3.93.....equilibrium, V = 2.00L

PV = nRT; assuming P,T a standart conditions ( 1 atm, 298 K )

⇒ n / V = P / RT

∴ V = 8.00L

∴ R = 0.082 atm.L/K.mol

⇒ mol CO(g) = 0.327 mol = mol H2O = mol CH4

⇒ mol H2(g) = 0.327 mol CO * ( 3mol H2 / mol CO) = 0.981 mol

⇒ [ CO ] = 0.041 = [ CH4 ] = [ H2O]

⇒ [ H2 ] = 0.123 M

∴ Q =  [ H2O ] * [ CH4 ] / [ H2 ]³ * [ CO ]

⇒ Q = ( 0.041² ) / (( 0.123³ ) * ( 0.041 ))

⇒ Q = 22.03

Q > Kc

⇒ we have more product present than we would have in the equilibrium.

Answer:

Q = 62.9

Q > Kc, so the reaction will proceed to the left so that Q takes the value of Kc.

Explanation:

Let's consider the following reaction.

CO(g) + 3 H₂(g) ⇄ CH₄(g) + H₂O(g)

The equilibrium constant (Kc) is:

[tex]Kc= 3.93 =\frac{[CH_{4}].[H_{2}O]}{[CO].[H_{2}]^{3} }[/tex]

If the volume is multiplied by 4 (2.00 L → 8.00 L), the concentrations will be divided by 4. The reaction quotient (Q) is:

[tex]Q=\frac{(0.25[CH_{4}]).(0.25[H_{2}O])}{(0.25[CO]).(0.25[H_{2}])^{3} }=16\frac{[CH_{4}].[H_{2}O]}{[CO].[H_{2}]^{3} }=16Kc=16 \times 3.93 = 62.9[/tex]

Q > Kc, so the reaction will proceed to the left so that Q takes the value of Kc.

Define "Triose", "Tetrose", "Pentose", and "Hexose" and identify which of these is/are most abundant

Answers

Answer:

Monosaccharides are the simplest form of carbohydrates that cannot be hydrolyzed to smaller compounds. Monosaccharides are the basic units of carbohydrates and are also known as simple sugars.  

The monosaccharides are classified on the basis of number of carbon atoms present.

Triose is a type of monosaccharide molecule, which is composed of 3 carbon atoms.

Tetrose is a type of monosaccharide molecule, which is composed of 4 carbon atoms.

Pentose is a type of monosaccharide molecule, which is composed of 5 carbon atoms.

Hexose is a type of monosaccharide molecule, which is composed of 6 carbon atoms.

D-glucose is a hexose sugar and it is the most abundant monosaccharide in the nature.

A 2.60 gram sample of a compound know to contain only indium and chlorine is dissolved in 50.0 g of tin(IV) chloride (Kb = 9.43oC kg mol-1). The normal boiling point is raised from 114.1oC for pure SnCl4 to 116.3oC for the solution. What is the molecular weight and probable molecular formula of the solute?

Answers

Answer: 1. The molecular weight of the compound is 222.8 g/mol

2. The probable molecular formula of the solute is [tex]InCl_3[/tex]

Explanation:

Elevation in boiling point is given by:

[tex]\Delta T_b=i\times K_f\times m[/tex]

[tex]\Delta T_b=T_b-T_b^0=(116.3-114.1)^0C=2.2^0C[/tex] = elevation in boiling point

i= vant hoff factor = 1 (for non electrolyte)

[tex]K_b[/tex] = boiling point constant = [tex]9.43^0Ckg/mol[/tex]

m= molality

[tex]\Delta T_b=i\times K_b\times \frac{\text{mass of solute}}{\text{molar mass of solute}\times \text{weight of solvent in kg}}[/tex]

Weight of solvent (tin chloride)= 50.0 g =0.05 kg

Molar mass of unknown solute = M g/mol

Mass of unknown solute = 2.6 g

[tex]2.2=1\times 9.43\times \frac{2.6g}{M g/mol\times 0.05kg}[/tex]

[tex]M=222.8g/mol[/tex]

The possible formula for the compound would be [tex]InCl_3[/tex] as indium has valency of 3 and chlorine has valency of 1 has molecular mass almost equal to 222.8.

A pipe of diameter 10 cm carries water at a velocity of 5 m/s. Determine the volumetric flow rate in m'/min (2 pts) a. b. the mass flow rate in kg/min (use the density of water on Thatcher's sheet)

Answers

Explanation:

It is given that diameter of the pipe is 10 cm which is also equal to [tex]10 \times 10^{-2}m[/tex].

Velocity of water = 5 m/s

(a)   Formula to calculate volumetric flow rate is as follows.

                       Q = Area of the pipe (A) × Velocity of water (V)

                           = [tex]\frac{\pi}{4} \times 10 \times 10^{-2} \times 5 m^{3}/sec[/tex]

                           = 0.039 [/tex]m^{3}/sec[/tex]

                           = [tex]\frac{0.039 m^{3}/sec \times 60 sec}{1 min}[/tex]

                           = 2.36 [tex]m^{3} min^{-1}[/tex]

Hence, the volumetric flow rate is 2.36 [tex]m^{3} min^{-1}[/tex].

(b)    Formula to calculate mass flow rate is as follows.

                      [tex]Q \times \rho[/tex]

                     = [tex]2.36 m^{3} min^{-1} \times 1000 kg m^{-3}[/tex]

                     = 2356.19 kg/min

Therefore, the mass flow rate is 2356.19 kg/min.

when doing a problem like .3065g/138.03ml is the answer 2.220532X10(^3) g/ml or is it written differently?

Answers

Answer:

It is written differently.

Explanation:

The answer as given is not written correctly.

First, we must consider significant figures. Any non-zero number is a significant figure, and zeroes between significant figures are also significant, so 0.3065 has four significant figures and 138.03 has five significant figures. (Leading zeroes before the decimal point are not significant)

When two numbers are multiplied or divided, the answer has the same number of significant figures as the number that had the least number of significant figures. So in this case, the result will have four significant figures.

The result is written in scientific notation:

(0.3065)/(138.03) = 2.221 x 10⁻³

Write Huckel's rule below and determine how many electrons are required to make an aromatic ring with n = 0, 1, and 2.

Answers

Answer: The number of electrons for n = 0, 1 and 2 are 2, 6 and 10 respectively.

Explanation:

Huckel's rule is used to determine the aromaticity in a compound. The number of delocalized [tex]\pi-[/tex] electrons are calculated by using the equation:

[tex]\text{Number of delocalized }\pi-\text{ electrons}=4n+2[/tex]

where,

n = 0 or any whole number

Calculating the value of electrons for n = 0

Putting values in above equation, we get:

[tex]\text{Number of delocalized }\pi-\text{ electrons}=4(0)+2=2[/tex]

Calculating the value of electrons for n = 1

Putting values in above equation, we get:

[tex]\text{Number of delocalized }\pi-\text{ electrons}=4(1)+2=6[/tex]

Calculating the value of electrons for n = 2

Putting values in above equation, we get:

[tex]\text{Number of delocalized }\pi-\text{ electrons}=4(2)+2=10[/tex]

Hence, the number of electrons for n = 0, 1 and 2 are 2, 6 and 10 respectively.

Two moles of ideal He gas are contained at a pressure of 1 atm and a temperature of 300 K. 34166 J of heat are transferred to the gas, as a result of which the gas expands and does 1216 J of work against its surroundings. The process is reversible. (Note: C = 1.5R) Please calculate the final temperature of the gas

Answers

Explanation:

The given data is as follows.

       n = 2 mol,         P = 1 atm,         T = 300 K

        Q = +34166 J,         W= -1216 J (work done against surrounding)

       [tex]C_{v}[/tex] = [tex]\frac{3R}{2}[/tex]

Relation between internal energy, work and heat is as follows.

      Change in internal energy ([tex]\Delta U[/tex]) = Q + W

                                   = [34166 + (-1216)] J

                                   = 32950 J

Also,  [tex]\Delta U = n \times C_{v} \times \Delta T[/tex]

                      = [tex]3R \times (T_{2} - T_{1})[/tex]

                 32950 J = [tex]3 \times 8.314 J/mol K \times (T_{2} - 300 K)[/tex]

                [tex]\frac{32950}{24.942} = T_{2} - 300 K[/tex]

                            1321.06 K + 300 K = [tex]T_{2}[/tex]    

                                       [tex]T_{2}[/tex] = 1621.06 K

Thus, we can conclude that the final temperature of the gas is 1621.06 K.


Identify which two compounds below are constitutional isomers

(CH3)3COCH3

(CH3)2CHOCH3

(CH3)2CHOCH2CH3

Answers

Answer:

(CH₃)₃COCH3₃ and (CH₃)₂CHOCH₂CH₃

Explanation:

Isomers are compounds which have the same molecular formula. Constitutional isomers have different connectivity; the atoms are connected in different ways.

1. (CH₃)₃COCH₃

2. (CH₃)₂CHOCH3₃

3. (CH₃)₂CHOCH₂CH₃

Molecules 1 and 3 have the same formula (C₅H₁₂O) and are isomers. Molecule 2 is not an isomer. From the structural formula, it is clear that Molecules 1 and 3 have different connectivity.

A pellet of Zn of mass 10.0g is dropped into a flaskcontaining
dilute H2SO4 at a pressure of P=1.00 bar and
temperature of 298K. What is the reaction thatoccures? Calculate w
for the process.

Answers

Answer: Work done for the process is -390 J

Explanation:

The chemical equation for the reaction of zinc metal with sulfuric acid follows:

[tex]Zn+H_2SO_4\rightarrow ZnSO_4+H_2[/tex]

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Given mass of zinc = 10.0 g

Molar mass of zinc = 65.38 g/mol

Putting values in above equation, we get:

[tex]\text{Moles of zinc}=\frac{10.0g}{65.38g/mol}=0.153mol[/tex]

The equation given by ideal gas follows:

[tex]P\Delta V=nRT[/tex]

where, P = pressure of the gas

[tex]\Delta V[/tex] = Change in volume of the gas

T = Temperature of the gas = 298 K

R = Gas constant = 8.314 J/mol.K

n = number of moles of gas = 0.153 mol

Putting values in above equation, we get:

[tex]P\Delta V=0.153mol\times 8.314J/mol.K\times 298K\\\\P\Delta V=397J[/tex]

To calculate the work done, we use the equation:

[tex]\text{Work done}=-P\Delta V\\\\W=-390J[/tex]

Hence, work done for the process is -390 J

Activity of the bacterial enzyme acetoacetate decarboxylase sharply declines below pH 6, suggesting there is an ionizable catalytic residue with pKa ~ 6. Using mutagenesis, this critical catalytic residue was determined to be Lys-115. a) What is the typical pKa of a lysine side chain and what ratio of deprotonated to protonated lysine would be expected at pH 7.5 (standard pH inside a bacterium)

Answers

Answer:

The typical pka of a lysine side chain is 10.5At pH=7-5 the ratio of deprotonated to protonated lysine is 0.001

Explanation:

From literature, we know that the typical pka of a lysine side is 10.3.

Then we use the Henderson-Hasselbalch equation:

[tex]pH=pka+log\frac{[A^{-} ]}{[HA]}[/tex]

In this case, [A⁻] is the concentration of deprotonated lysine, and [HA] is the concentration of protonated lysine.

We put the data from the problem in the equation and calculate the ratio of deprotonated to protonated lysine:

[tex]7.5=10.5+log\frac{[A^{-} ]}{[HA]}\\-3.0=log\frac{[A^{-} ]}{[HA]}\\10^{-3.0}=\frac{[A^{-} ]}{[HA]}\\0.001=\frac{[A^{-} ]}{[HA]}[/tex]

A certain rock has a mass of 125 g. The rock is gently lowered into a graduated cylinder whose water level is 250 mL. When the rock is completely submerged, the water level rises to 300 mL What is the volume of the rock?

Answers

Answer:

50 mL

Explanation:

Define the terms "Aldonic Acid", "uronic Acid", and "Aldaric Acid"

Answers

Explanation:

Aldonic Acid:

Aldonic acids are suger acids.

General formula of aldonic acid = [tex]HOOC-(CHOH)_n-CH_2OH[/tex]

Aldonic acids are obtained by the oxidation of aldehydic group of suger.

So, aldonic acids have hydroxyl group at one terminal and carboxylic group at another terminal.

Gluconic acid is an example of aldonic acid.

Uronic Acid:

It is also a type of suger acid having carbonyl functional group at one terminal and carboxylic group at other terminal.

It is obtained by oxidation of hydroxyl group of the sugar.

Aldaric Acid:

Aldaric acid is also a type of sugar acid having carboxylic acid functional group at both the ends.

Both the hydroxyl group and aldehydic group are oxidized to form class of compound, called aldaric acid.

Calculate the total number of days therapy available within a 300 ml bottle of ranitidine (as hydrochloride) 75 mg/5 ml. oral solution, when it is prescribed at a dose of 300 mg at night?

Answers

Answer: This therapy is available for 15 days.

Explanation:

We are given:

Oral solution dosage = 75 mg/5 mL

To calculate the volume of oral situation for single dose per, we use unitary method:

The volume required for 75 mg of solution is 5 mL

So, the volume required for 300 mg of solution will be = [tex]\frac{5mL}{75mg}\times 300mg=20mL[/tex]

The total volume of the ranitidine bottle = 300 mL

To calculate the number of days, we divide the total volume of the bottle by the volume of dose taken per night, we get:

[tex]\text{Number of days}=\frac{\text{Total volume}}{\text{Volume of dose taken per night}}=\frac{300mL}{20mL}=15[/tex]

Hence, this therapy is available for 15 days.

Consider the titration of 100 mL of 0.200 M HCHO, with 1.00 M NaOH. The pK, of HCHO2 is 3.75. a) What is the pH before ANY NaOH is added? b) What is the pH after 5.00 mL of NaOH are added? c) After 10 mL of NaOH are added? d) What is the pH when 20 mL of NaOH have been added? What is this point in the titration called?

Answers

Answer:

a) pH = 2,23

b) pH = 3,26

c) pH = 3,74

d) pH = 7,98. Here we have the equivalence point of the titration

Explanation:

In a titration of a strong base (NaOH) with a weak acid (HCOOH) the reaction is:

HCOOH + NaOH → HCOONa + H₂O

a) Here you have just HCOOH, thus:

HCOOH ⇄ HCOO⁻ + H⁺ where ka =1,8x10⁻⁴ and pka = 3,74

When this reaction is in equilibrium:

[HCOOH] = 0,200 -x

[HCOO⁻] = x

[H⁺] = x

Thus, equilibrium equation is:

1,8x10⁻⁴ = [tex]\frac{[x][x] }{[0,200-x]}[/tex]

The equation you will obtain is:

x² + 1,8x10⁻⁴x - 3,6x10⁻⁵ = 0

Solving:

x = -0,006090675 ⇒ No physical sense. There are not negative concentrations

x = 0,005910674

As x = [H⁺] and pH = - log [H⁺]

pH = 2,23

b) Here, it is possible to use:

HCOOH + NaOH → HCOONa + H₂O

With adition of 5,00 mL of 1,00M NaOH solution the initial moles are:

HCOOH = [tex]0,100 L.\frac{0,200 mol}{L} =[/tex] = 2,0x10⁻² mol

NaOH = [tex]0,005 L.\frac{1,00 mol}{L} =[/tex] = 5,0x10⁻³ mol

HCOO⁻ = 0.

In equilibrium:

HCOOH = 2,0x10⁻² mol - 5,0x10⁻³ mol = 1,5x10⁻² mol

NaOH = 0 mol

HCOO⁻ = 5,0x10⁻³ mol

Now, you can use Henderson–Hasselbalch equation:

pH = 3,74 + log [tex]\frac{5,0x10^{-3} }{1,5x10^{-2} }[/tex]

pH = 3,26

c) With adition of 10 mL of 1,00M NaOH solution the initial moles are:

HCOOH = [tex]0,100 L.\frac{0,200 mol}{L} =[/tex] = 2,0x10⁻² mol

NaOH = [tex]0,010 L.\frac{1,00 mol}{L} =[/tex] = 1,0x10⁻² mol

HCOO⁻ = 0.

In equilibrium:

HCOOH = 2,0x10⁻² mol - 1,0x10⁻² mol = 1,0x10⁻² mol

NaOH = 0 mol

HCOO⁻ = 1,0x10⁻² mol

Now, you can use Henderson–Hasselbalch equation:

pH = 3,74 + log [tex]\frac{1,0x10^{-2} }{1,0x10^{-2} }[/tex]

pH = 3,74

d) With adition of 20 mL of 1,00M NaOH solution the initial moles are:

HCOOH = [tex]0,100 L.\frac{0,200 mol}{L} =[/tex] = 2,0x10⁻² mol

NaOH = [tex]0,020 L.\frac{1,00 mol}{L} =[/tex] = 2,0x10⁻² mol

HCOO⁻ = 0.

Here we have the equivalence point of the titration, thus, the equilibrium is:

HCOO⁻ + H₂O ⇄ HCOOH + OH⁻ kb = kw/ka where kw is equilibrium constant of water = 1,0x10⁻¹⁴; kb = 5,56x10⁻¹¹

Concentrations is equilibrium are:

[HCOOH] = x

[HCOO⁻] = 0,1667-x

[OH⁻] = x

Thus, equilibrium equation is:

5,56x10⁻¹¹ = [tex]\frac{[x][x] }{[0,01667-x]}[/tex]

The equation you will obtain is:

x² + 5,56x10⁻¹¹x - 9,27x10⁻¹³ = 0

Solving:

x = -9,628361x10⁻⁷⇒ No physical sense. There are not negative concentrations

x = 9,627806x10⁻⁷

As x = [OH⁻] and pOH = - log [OH⁻]; pH = 14 - pOH

pOH = 6,02

pH = 7,98

I hope it helps!

How much CrCl3 • 6H20 is needed to prepare 1 L of solution containing 20.0g Cr3+ per L?

Answers

Answer:

salt mass=102.5gCrCl3.6H2O

Explanation:

Hello !

To know how much CrCl3.6H2O we need, we follow the steps below

First we have to know what the mass of the compound is

Cr = 52g / mol

Cl = 35.5g / mol

H = 1g / mol

O = 16g / mol

We calculate the mass

52+ (35.5 * 3) + 6 * (2 * 1 + 16) = 266.5g

We have 20g Cr, so we calculate the amount of salt:

20gCr * (266.5g salt / 52gCr) = 102.5gCrCl3.6H2O

salt mass=102.5gCrCl3.6H2O

A sample of nitrogen gas, stored in a 2.96-L container at 32.0°C, exerts a pressure of 4.27 atm. Calculate the number of moles of nitrogen gas in the container. Enter your answer in the box provided. mol

Answers

Answer: The number of moles of nitrogen gas is 0.505 moles.

Explanation:

To calculate the number of moles of nitrogen gas, we use ideal gas equation, which is:

[tex]PV=nRT[/tex]

where,

P = pressure of the gas = 4.27 atm

V = Volume of the gas = 2.96 L

T = Temperature of the gas = [tex]32.0^oC=[32.0+273]K=305K[/tex]

R = Gas constant = [tex]0.0821\text{ L. atm }mol^{-1}K^{-1}[/tex]

n = number of moles of gas = ?

Putting values in above equation, we get:

[tex]4.27atm\times 2.96L=n\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 305K\\n=0.505mol[/tex]

Hence, the number of moles of nitrogen gas is 0.505 moles.

Explanation:

The given data is as follows.

     Volume = 2.96 L,       Temperature = [tex]32.0^{o}C[/tex] = (32 + 273) K = 305 K,

        Pressure = 4.27 atm,       n = ?

And, according to ideal gas equation, PV = nRT

           [tex]4.27atm \times 2.96 L= n \times 0.0821 Latm/mol K \times 305K[/tex]    

                n = [tex]\frac{12.64 atm L}{25.04 Latm/mol}[/tex]

                         = 0.505 mol

Thus, we can conclude that the number of moles of nitrogen gas in the container is 0.505 mol.  

Based on sulubility rules, which of the
followingwill occur when solutions of ZnSO4(aq)
andMgCl2(aq) are mixed? Write the NIE if aprecipitation
is considered likely.
A. ZnCl2 wil
precipitate;Mg2andSO42_ will be
spectatior ions.
B. ZnSO4 will precipitate;Mg2+ andCl-
will be spectator ions.
C. MgSO4 will precipitate; Zn2+and Cl-
will be spectator ions.
D. MgCl2 will precipitate; Zn2+
andSO42- will be spectator ions.
E. No precipitate will form.

Answers

Answer:

The correct option is: E. No precipitate will form.

Explanation:

A solubility chart refers to the list of solubility of various ionic compounds. It shows the solubility of the various compounds in water at room temperature and 1 atm pressure.

Also, according to the solubility rules, the salts of chlorides, bromides and iodides are generally soluble and mostly all salts of sulfate are soluble.

Since, all the compounds formed in this double replacement reaction are soluble in water. Therefore, no precipitate will be formed.

ZnSO₄ (aq) + MgCl₂ (aq) → ZnCl₂ (aq) + MgSO₄ (aq)    

Dinitrogen monoxide gas is collected at-3.0 °C in an evacuated flask with a measured volume of 5.0 L. When all the gas has been collected, the press the flask is measured to be 0.100 atm . Calculate the mass and number of moles of dinitrogen monoxide gas that were collected. Round your answer to 2 significant digits. mass: mole: nol Explanation Check 2019 McGraw-Hill Education All Rights Reserved

Answers

Answer:

0.971 grams

Explanation:

Given:

Temperature = 3.0° C = 3 + 273 = 276 K

Volume, V = 5.0 L

Pressure, P = 0.100 atm

Now, from the relation

PV = nRT

where,

n is the number of moles,

R is the ideal gas constant  = 0.082057 L atm/mol.K

thus,

0.1 × 5 = n ×  0.082057 × 276

or

n = 0.022 moles

Also,

Molar mass of the Dinitrogen monoxide gas (N₂O)

= 2 × Molar mass of nitrogen + 1 × Molar mass of oxygen

= 2 × 14 + 16 = 44 grams/mol

Therefore, Mass of 0.022 moles of N₂O = 0.022 × 44 = 0.971 grams

A 1.24g sample of a hydrocarbon, when completely burned in an excess of O2 yields 4.04g Co2 and 1.24g H20. Draw plausible structure for the hydrocarbon molecule

Answers

Answer:

Plausible structure has been given below

Explanation:

Molar mass of [tex]CO_{2}[/tex] is 44 g/mol and molar mass of [tex]H_{2}O[/tex] is 18 g/molNumber of mole = (mass/molar mass)

4.04 g of [tex]CO_{2}[/tex] = [tex]\frac{4.04}{44}moles[/tex] [tex]CO_{2}[/tex] = 0.0918 moles of [tex]CO_{2}[/tex]

1 mol of [tex]CO_{2}[/tex] contains 1 mol of C atom

So, 0.0918 moles of [tex]CO_{2}[/tex] contains 0.0918 moles of C atom

1.24 g of [tex]H_{2}O[/tex] = [tex]\frac{1.24}{18}moles[/tex] [tex]H_{2}O[/tex] = 0.0689 moles of [tex]H_{2}O[/tex]

1 mol of [tex]H_{2}O[/tex]  contain 2 moles of H atom

So, 0.0689 moles of [tex]H_{2}O[/tex] contain [tex](2\times 0.0689)moles[/tex] of [tex]H_{2}O[/tex] or 0.138 moles of [tex]H_{2}O[/tex]

Moles of C : moles of H = 0.0918 : 0.138 = 2 : 3

Empirical formula of hydrocarbon is [tex]C_{2}H_{3}[/tex]

So, molecular formula of one of it's analog is [tex]C_{4}H_{6}[/tex]

Plausible structure of [tex]C_{4}H_{6}[/tex] has been given below.

Show that 1 kJ/kg = 1000 m2/S2

Answers

Answer:

1000m2 / s2

Explanation:

Hello! In order to verify this, we have to do unit conversion. We also have to know that J (Joule) = kg * m2 / s2

Then we can start with the test.

1kJ / kg * (1000J / 1kJ) = 1000J / kg

1000J / kg = 1000kg * m2 / kg * s2

In this step we can simplify "kg".

So the result is

1000m2 / s2

Final answer:

To demonstrate that 1 kJ/kg equals 1000 m²/s², we recognize that the joule (J) is defined as kg-m²/s², and by converting kJ to J and canceling out the kg units, we affirm the equality.

Explanation:

To show that 1 kJ/kg is equal to 1000 m²/s², we start by recognizing that the unit of energy, the joule (J), is defined as 1 kilogram-meter²/second² (kg-m²/s²). Therefore, when we talk about energy per unit mass, we are effectively dividing energy by mass, leaving us with units of m²/s².

Given that 1 joule is 1 kg·m²/s², 1 kJ is 1000 joules (since the prefix 'kilo' means 1000). So when we have 1 kJ/kg, it's the same as saying 1000 J/kg. When we divide each term (kg·m²/s²) by kg, the kilograms cancel out, leaving us with m²/s². Thus, 1 kJ/kg is indeed equivalent to 1000 m²/s².

Which one of the following conditions is met at the equivalence point of the titration of a monoprotic weak acid with a strong base?A. The volume of strong base added from the buret must equal the volume of weak acid.B. The moles of strong base added must equal the moles of weak acid.C. pH

Answers

Answer:

At the equivalence point of the titration of a monoprotic weak acid with a strong base: B. the moles of strong base added must equal the moles of weak acid.

Explanation:

In every titration, the equivalence point is defined as the point where the moles of the titrant and analyte are equal. For every acid-base titration, the equivalence point is defined as the point where the moles of the base is equal to the moles of the acid.

If the solutions of the acid and base are at a different concentration the volume added from the buret will not be the same as the volume of the analyte.

4. Each time that you prepare a diluted bleach solution you will want it to have a [OH-] = 0.02. Calculate how much 1.00 M NaOH you need to add to d.1. water to get every 20 mL of this concentration of OH- ion. Express your answer in drops of 1.00 M NaOH. (Assume that there are 20 drops in 1 m.)

Answers

Answer:

8 drops of 1.00 M NaOH will be needed.

Explanation:

Concentration of [tex][OH^-][/tex] in bleach solution = 0.02 M

[tex]NaOH\rightarrow OH^-+Na^+[/tex]

[tex]NaOH=[OH^-]=0.02M[/tex]

Concentration of bleach solution we want ,[tex]M_1[/tex] = 0.02 M

Volume of the bleach solution,[tex]V_1[/tex] = 20 ml

Concentration of NaOH solution,[tex]M_2[/tex] = 1.00 M

Volume of the NaOH solution required ,[tex]V_2[/tex] = ?

[tex]M_1V_1=M_2V_2[/tex]

[tex]0.02 M\times 20 mL=1.00 M\times V_2[/tex]

[tex]V_2=\frac{0.02 M\times 20 mL}{1.00 M}=0.4 mL[/tex]

1 mL = 20 drops

0.4 mL = 0.4 × 20 drops = 8 drops

8 drops of 1.00 M NaOH will be needed.

Calculate the freezing temperature of the following solution of 0.50 M glucose (a covalent compound). Assume that the molality of the solution is 0.50 m. (The molar and molal concentrations of dilute aqueous solutions are often identical to two significant figures.) Enter your answer in the provided box. 0.50 m glucose (a covalent compound) °C

Answers

Answer:

-0.93 °C

Explanation:

Hello,

The freezing-point depression is given by:

[tex]T_f-T_f^*=-iK_{solvent}m_{solute}[/tex]

Whereas [tex]T_f[/tex] is the freezing temperature of the solution, [tex]T_f^*[/tex] is the freezing temperature of the pure solvent (0 °C since it is water), [tex]i[/tex] the Van't Hoff factor (1 since the solute is covalent), [tex]K_{f,solvent}[/tex] the solvent's freezing point depression point constant (in this case [tex]1.86 C\frac{kg}{mol}[/tex]) and [tex]m_{solute}[/tex] the molality of the glucose.

As long as the unknown is [tex]T_f[/tex], solving for it:

[tex]T_f=T_f^*-iK_fm\\T_f=0C-1*1.86C\frac{kg}{mol}*0.5\frac{mol}{kg}  \\T_f=-0.93C[/tex]

Best regards.

Enter your answer in the provided box. Calculate the number of g of CO2 produced from the combustion of 5.24 mol of CzHg. The balanced equation is: C3H2(g) + 502(g) → 3CO2(g) + 4H2O(g). g CO2

Answers

Answer:

691.84g

Explanation:

I'm assuming that by CzHg, you mean C3H2

First, use the mole ratio in the equation to find the moles of CO2

n (CO2)= n ( C3H2) × 3

= 5.24 × 3

= 15.72

To find the mass of CO2 produced in grams, complete the following calculation

m= n × MM

where

m = mass

n= moles

MM= molecular mass

m= 15.72 × (12.01 +( 16×2))

m =691.8372

m= 691.84g

AG' for the isomerization reaction glucose-1-phosphate (GIP) $ glucose-6-phosphate (G6P) is -7.1 kJ/mol. Calculate the equilibrium ratio of [G1P] to (G6P) at 25°C. Read this carefully to make sure you solve for the correct ratio! SHOW WORK! [G1P][G6P] =

Answers

Answer:

The ratio [G1P]/[G6P] = 5.7 . 10⁻².

Explanation:

Let us consider the reaction G1P ⇄ G6P, with ΔG° = -7.1 kJ/mol. According to Hess's Law, we can write the inverse reaction, and Gibbs free energy would have an opposite sign.

G6P ⇄ G1P        ΔG° = 7.1 kJ/mol

This is the reaction for which we want to find the equilibrium constant (the equilibrium ratio of [G1P] to [G6P]):

[tex]Kc=\frac{[G1P]}{[G6P]}[/tex]

The equilibrium constant and Gibbs free energy are related by the following expression:

[tex]Kc=e^{-\Delta G\si{\textdegree}/R.T } } =e^{-7.1kJ/mol/8.314.10^{-3}kJ/mol.K.298K} } }=5.7.10^{-2}[/tex]

where,

R is the ideal gas constant (8.314 . 10⁻3 kJ/mol.K)

T is the absolute temperature (in kelvins)

Final answer:

To calculate the equilibrium ratio of [G1P] to [G6P], the Gibbs free energy equation is used with ΔG', universal gas constant R, and the temperature T substituted. The result is that the concentration of G6P is approximately 1.331 times that of G1P at equilibrium and at 25°C.

Explanation:

The student is asking about the equilibrium ratio of concentrations of glucose-1-phosphate ([G1P]) to glucose-6-phosphate ([G6P]) at 25°C when the standard free energy change (ΔG') for the isomerization reaction is given as -7.1 kJ/mol. To calculate this ratio, we can use the Gibbs free energy equation for the equilibrium constant (Keq):

ΔG' = -RT ln(Keq)

Where ΔG' is the standard free energy change, R is the universal gas constant (8.314 J/mol K), T is the temperature in Kelvin (25°C + 273.15 = 298.15 K), and Keq is the equilibrium constant which for this reaction is [G6P]/[G1P].

Substituting the values into the equation we get:

-7100 J/mol = -(8.314 J/mol K)(298.15 K) ln([G6P]/[G1P])

Now, we solve for ln([G6P]/[G1P]):

ln([G6P]/[G1P]) = ΔG' / (-R * T)

ln([G6P]/[G1P]) = -7100 J/mol / (-(8.314 J/mol K)(298.15 K))

ln([G6P]/[G1P]) = 0.286

Exponentiating both sides to remove the natural logarithm, we get:

[G6P]/[G1P] = e0.286 = 1.331

Therefore, at equilibrium and at 25°C, the concentration of G6P is approximately 1.331 times that of G1P.

If atom X has an atomic mass of 12, and atom Y has an atomic mass of 1, what would be the mass of 4.18 moles of the compound X7Y11, in grams? Please report your answer to the nearest whole gram.

Answers

Answer:

397 g

Explanation:

From the information given in the question ,

the atomic mass of X = 12 ,

and , the atomic mass of Y = 1 .

For the molecular formula , X₇Y₁₁ , the molecular mass is given as -

X₇Y₁₁ = 7 * atomic mass of X  +  11 *  atomic mass of Y

         = 7 * 12 + 11 * 1

         = 84 + 11  = 95 g / mol

Hence , molecular mass of X₇Y₁₁ = 95 g / mol .

Moles is denoted by given mass divided by the molecular mass ,

Hence ,

n = w / m

n = moles ,

w = given mass ,

m = molecular mass .

From question ,

moles n = 4.18 mol

and ,

m = molecular mass of X₇Y₁₁ = 95 g / mol .

To find the mass of the compound X₇Y₁₁   , the above formula can be used , and putting the respective values ,

n = w / m  

4.18 = w / 95

w = 4.18 * 95 = 397 g

A space shuttle moves through the atmosphere on its return from space. At point 1 on its wing, the air temperature and pressure are measured to be T1 = 300°C and p1 = 10,000 Pa while at point 2 they are T, = 700°C and p2 = 575,000 Pa. Calculate the air density in kg/m3 at both points 1 and 2.

Answers

Answer:

The air density in at points 1 is [tex]60.7 kg/m^3[/tex] and 2 is [tex]2060 kg/m^3[/tex].

Explanation:

Average molecular weight of an air ,M= 28.97 g/mol

[tex]PV=nRT[/tex]

or [tex] PM=dRT[/tex]

P = Pressure of the gas

n = moles of gas

T = Temperature of the gas

d = Density of the gas

M = molar mass of the gas

R = universal gas constant

Density at point-1 = [tex]d_1[/tex]

[tex]P_1 = 10,000 Pa=0.0986 atm[/tex]

[tex]1 Pa=9.86923\times 10^{-6} atm[/tex]

[tex]T_1 = 300^oC = 573.15 K[/tex]

M = 28.97 g/mol

[tex]d_1=\frac{PM}{RT}=\frac{0.0986 atm\times 28.97 g/mol}{0.0821 atm L/ mol K\times 573.15 K}[/tex]

[tex]d_1 =0.0607 g/ml[/tex]

1 g = 0.001 kg

[tex]1 mL = 10^{-6} m^3[/tex]

[tex]d_1=\frac{0.0607\times 0.001 kg}{10^{-6} m^3}=60.7 kg/m^3[/tex]

Density at point-2 = [tex]d_2[/tex]

[tex]P_2 = 575,000 Pa=5.67 atm[/tex]

[tex]T_2 = 700^oC = 973.15 K[/tex]

M = 28.97 g/mol

[tex]d_2=\frac{PM}{RT}=\frac{5.67 atm\times 28.97 g/mol}{0.0821 atm L/ mol K\times 973.15 K}[/tex]

[tex]d_2 =2.06 g/ml=2060 kg/m^3[/tex]

Assume that the NO, concentration in a house with a gas stove is 150 pg/m°. Calculate the equivalent concentration in ppm at STP.

Answers

Explanation:

It is known that for [tex]NO_{2}[/tex], ppm present in 1 [tex]mg/m^{3}[/tex] are as follows.

                      1 [tex]\frac{mg}{m^{3}}[/tex] = 0.494 ppm

So, 150 [tex]pg/m^{3}[/tex] = [tex]\frac{150}{1000} mg/m^{3}[/tex]

                       = 0.15 [tex]mg/m^{3}[/tex]

Therefore, calculate the equivalent concentration in ppm as follows.

             [tex]0.15 \times 0.494 ppm[/tex]

              = 0.074 ppm

Thus, we can conclude that the equivalent concentration in ppm at STP is 0.074 ppm.  

The specific reaction rate of a reaction at 492k is 2.46 second inverse and at 528k 47.5 second inverse.find activation energy and ko.

Answers

Answer:

Ea = 177x10³ J/mol

ko = [tex]1.52x10^{19}[/tex] J/mol

Explanation:

The specific reaction rate can be calculated by Arrhenius equation:

[tex]k = koxe^{-Ea/RT}[/tex]

Where k0 is a constant, Ea is the activation energy, R is the gas constant, and T the temperature in Kelvin.

k depends on the temperature, so, we can divide the k of two different temperatures:

[tex]\frac{k1}{k2} = \frac{koxe^{-Ea/RT1}}{koxe^{-Ea/RT2}}[/tex]

[tex]\frac{k1}{k2} = e^{-Ea/RT1 + Ea/RT2}[/tex]

Applying natural logathim in both sides of the equations:

ln(k1/k2) = Ea/RT2 - Ea/RT1

ln(k1/k2) = (Ea/R)x(1/T2 - 1/T1)

R = 8.314 J/mol.K

ln(2.46/47.5) = (Ea/8.314)x(1/528 - 1/492)

ln(0.052) = (Ea/8.314)x(-1.38x[tex]10^{-4}[/tex]

-1.67x[tex]10^{-5}[/tex]xEa = -2.95

Ea = 177x10³ J/mol

To find ko, we just need to substitute Ea in one of the specific reaction rate equation:

[tex]k1 = koxe^{-Ea/RT1}[/tex]

[tex]2.46 = koxe^{-177x10^3/8.314x492}[/tex]

[tex]1.61x10^{-19}ko = 2.46[/tex]

ko = [tex]1.52x10^{19}[/tex] J/mol

Other Questions
Methane is burned to complete combustion with 30% excess air.The air enters at 25oC and 1 atm (absolute) at 50%relative humidity.a) Calculate the flow of O2 per mole of methaneentering the process.b) Calculate the flow of N2 per mole of methaneentering the process.c) Calculate the mole fraction of H2O in the humidair stream entering the process.d) Calculate the flow of H2O per mole of methaneentering the process. Please help! Solving polynomial equations with factoring *algebra* If you're currently using text, display, and video ads but also want to more specifically control spending on ads that appear when someone searches on Google, which additional campaign type would you choose? a. Search Network b. Search Network with Display opt-in c. Universal App d. Display Network A certain stock exchange designates each stock with a one-, two-, or three-letter code, where each letter is selected from the 26 letters of the alphabet. If the letters may be repeated and if the same letters used in a different order constitute a different code, how many different stocks is it possible to uniquely designate with these codes? Shelly offers to sell Jane goods that Shelly, but not Jane, knows are stolen. Jane accepts the offer, and agrees to pay for the goods. Later, Jane refuses to accept or pay for the goods. If knowledge is not an element of this crime, and Shelly sues Jane for breach of contract, what is the probable result? Experimental studies reveal that double-stranded DNA can exist in three different helical forms known as A, B, and Z DNA. Why do molecular biologists primarily focus on B DNA? Solving an Equation with Absolute value |x-3|=5 . Equation 1: Dante always hated having his diaper changed but he loved cookies. Dante's father decided to use classical conditioning to make diaper changes less miserable. Every time he changed Dante's diaper, he would play the same song and give Dante a small cookie. Now, as soon as Dante hears the song, he is happy to have his diaper changed. What is the conditioned response in this example? Capitalism was controlled by the people not the King or Queen. What else was a component of Capitalism? A professor computing the sample average exam score of 20 students and using it to estimate the average exam score for the 1,500 students taking the exam is an example of inferential statistics.True / False. A circle has end points (-2,1) and (8,3).A) find its centerB) find the radius of the circleC) find the equation of the circle Nadia sat at the piano, tapping her shoe to keep time with the rhythm of the song she had been practicing for a month. Her dog Lucky, her biggest fan, lay near her feet. At first, Nadia had to shoo him away and distract him with his favorite toy, a blue rubber ball. But now, Lucky had found the ideal spot on the floor; close enough to be near Nadia, but far enough away that he wouldnt disturb her playing.2Nadia had practically perfected this particular song, but she had to perform it at the school talent show and was relentless in her practicing. Before she started to play, she had a routine to prepare herself. First, she would stretch and wiggle her fingers to get them loose for playing. Then, she would take a few deep breaths to relax and clear her mind from the days activities. Finally, she would close her eyes and imagine herself playing the song; she envisioned her hands moving along the keys.After Nadia performed this routine, the song seemed to flow freely from her fingertips. Of course, she knew well enough that hours of practicing had resulted in her playing the song so well. Still, her routine allowed her to clear her mind and quiet the butterflies in her stomach.4Nadia knew those butterflies would be worse once she had to play the song in front of her entire school. When she decided to participate in the school talent show, she had chosen a more complicated piece of classical music. Nadia had been playing the piano since she was seven, and she truly wanted to challenge herself.When the big night finally arrived, Nadia prepared backstage. She watched her classmates display their own various talents. Then came the moment that both excited and terrified her; she was up next.6The audiences applause sounded like ocean waves and made her feel welcome. Still, she could feel those butterflies fluttering in her belly, and she felt her palms start to sweat. Nadia had already performed her routine backstage, but it seemed as if it hadnt worked this time! She sat down on the piano bench and looked at the black and white keys, which seemed unfamiliar now.7For a moment, she panicked and glanced at the audience in front of her. Nadia spotted her mother in the first row. Seeing her mother made her think of home and Lucky. This time, when she looked down at the piano keys, she imagined she was at home with Lucky beside her. In that moment, her nerves settled as she forgot about the audience eagerly awaiting her performance. Now that it was just her and Lucky, she struck the first note, and the other notes just fell in line with ease. When Nadia hit the last note, she turned to the audience and smiled. Just as she did, the audience erupted in applause.1. Why is Nadia so dedicated to practicing one song on the piano? 2. What is the theme of this story? 3. How did Nadia overcome her stage fright on the night of the performance? How do children and many Native American cultures spend their days Find the coordinates of point G An insurance company crashed four cars of the same model at 5 miles per hour. The costs of repair for each of the four crashes were $436, $403, $479, and $249 . Compute the mean, median, and mode cost of repair. Compute the mean cost of repair. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mean cost of repair is $ nothing. (Round to the nearest cent as needed.) B. The mean does not exist. (please answer fast) can someone write and solve a word problem, while using two key word's for either addition, subtraction, multiplication, or division? thank you. During a laboratory experiment, you discover that an enzyme-catalyzed reaction has a G of -20 kcal/mol. If you double the amount of enzyme in the reaction, what will be the G for the new reaction? Umar has 5 dimes in his right pocket and three dimes in his left pocket how much money does Omar have? What is the hidden question? What is database design? A rocket sled used in old Air Force test could accelerate a volunteer at rates of 90m/s^2. With this acceleration being constant, how long would it take for one of these rocket sleds to travel the length of a one kilometer test track if it starts from rest? A) 11.1sec B) 22.2sec C)4.71sec D) 32.2sec