Georgia Votes 2000 ~ The 2000 presidential election between Al Gore and George W. Bush was the closest presidential election in the history of the United States. A social historian is investigating the relationship between race and voting results. For a random sample of 50 counties in the state of Georgia, the historian obtains the percentage of county residents who were African American (AA), and the percentage of ballots cast for Al Gore. Percentage AA is the X variable and Percentage vote for Al Gore is the Y variable in this scenario. Using the sample data, the historian finds the equation of the estimated regression line for predicting the Y variable to be yˆ = 25.4495 + 0.6956 x 44.0954% of Georgia's Baker county residents are African Americans. What is the estimated/predicted Percentage vote for Al Gore for this county? Give your answer to 4 decimal places. Note: Numbers are randomized for each instance of this question. Use the numbers given above.

Answers

Answer 1

Answer:

The predicted percentage vote for Al Gore for the county with 44.0954% African Americans is 25.76%.

Step-by-step explanation:

The least square regression line is used to determine the relationship between a response variable (or dependent variable) and an explanatory variable (or independent variable).

The least square regression line can be used to predict the future value or estimate the past value of the dependent variable based on the independent variable.

The general form of a least square regression line is:

[tex]y=\alpha +\beta x[/tex]

Here,

y = response variable

x = explanatory variable

α = intercept

β = slope

The least square regression line for predicting the percentage vote for AI Gore (y) from the percentage of county residents who were African American (x) is given by:

[tex]\hat y=25.4495+0.6956 x[/tex]

Compute the predicted value of y for x = 44.0954% = 0.440954 as follows:

[tex]\hat y=25.4495+0.6956 x[/tex]

  [tex]=25.4495+0.6956 \times 0.440954\\=25.4495+0.3067276024\\=25.7562276024\\\approx 25.76[/tex]

Thus, the predicted percentage vote for Al Gore for the county with 44.0954% African Americans is 25.76%.

Answer 2
Final answer:

Using the equation of the estimated regression line, the predicted percentage vote for Al Gore in Baker County, Georgia is approximately 56.3555% based on a population that was 44.0954% African American.

Explanation:

In this scenario, we have a linear regression line of the form y^ = 25.4495 + 0.6956x, where y^ represents the estimated percentage vote for Al Gore, and x represents the percentage of county residents who are African American. We are given that in Baker County, Georgia, 44.0954% of residents are African American. By substituting this x value into the equation, we can find the predicted y value:

y^ = 25.4495 + 0.6956*(44.0954)

This gives an estimated vote for Al Gore in Baker County as y^ = 56.3555 approximately, to four decimal places. This implies that the model predicts that about 56.3555% of the vote in Baker County went to Al Gore.

Learn more about Linear Regression here:

https://brainly.com/question/36829492

#SPJ12


Related Questions

Identify the range of the function shown in the graph.


NEED HELP ASAP!!!!

Answers

Answer:

B - -5 < y < 5

Step-by-step explanation:

Range is highest and lowest y value the graph goes to.

You can see on the graph that it does not pass 5 and -5

In how many ways can Susan arrange 7 books into 5 slots on her bookshelf?

Answers

Answer:

2520

Step-by-step explanation:

This is permutation question

The formula for it:

N = b!/(b-s)!, where N- number of ways, b- number of books, s- number of slots

Finding the answer:

N = 7!/(7-5)! = 7!/2! = 7*6*5*4*3 = 2520

WILL GIVE BRAINLIEST

Answers

It would be 120 for the under start

In each​ part, find the area under the standard normal curve that lies between the specified​ z-score, sketch a standard normal​ curve, and shade the area of interest.

a. minus1 and 1
b. minus2 and 2
c. minus3 and 3

Answers

Answer:

a) [tex] P(-1<Z<1)= P(Z<1) -P(Z<-1)= 0.841-0.159= 0.682[/tex]

b) [tex] P(-2<Z<2)= P(Z<2) -P(Z<-2)= 0.977-0.0228= 0.954[/tex]

c) [tex] P(-3<Z<3)= P(Z<3) -P(Z<-3)= 0.999-0.0013= 0.998[/tex]

The results are on the fogure attached.

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Part a

For this case we want to find this probability:

[tex] P(-1<Z<1)[/tex]

And we can find this probability with this difference:

[tex] P(-1<Z<1)= P(Z<1) -P(Z<-1)[/tex]

And if we find the probability using the normal standard distribution or excel we got:

[tex] P(-1<Z<1)= P(Z<1) -P(Z<-1)= 0.841-0.159= 0.682[/tex]

Part b

For this case we want to find this probability:

[tex] P(-2<Z<2)[/tex]

And we can find this probability with this difference:

[tex] P(-2<Z<2)= P(Z<2) -P(Z<-2)[/tex]

And if we find the probability using the normal standard distribution or excel we got:

[tex] P(-2<Z<2)= P(Z<2) -P(Z<-2)= 0.977-0.0228= 0.954[/tex]

Part c

For this case we want to find this probability:

[tex] P(-3<Z<3)[/tex]

And we can find this probability with this difference:

[tex] P(-3<Z<3)= P(Z<3) -P(Z<-3)[/tex]

And if we find the probability using the normal standard distribution or excel we got:

[tex] P(-3<Z<3)= P(Z<3) -P(Z<-3)= 0.999-0.0013= 0.998[/tex]

Final answer:

The question asks to find the area under the standard normal curve for specific z-score ranges. Using the empirical rule, we conclude that respective areas for those ranges are approximately 68%, 95%, and 99.7%. The exact areas can be found using a Z-table.

Explanation:

The question involves finding the area under the standard normal curve between specified z-scores. This is a fundamental concept in statistics, often used to find probabilities related to normally distributed data.

For a z-score between -1 and 1, approximately 68% of the area under the standard normal curve is contained since the empirical rule states that about 68 percent of values lie within one standard deviation of the mean in a normal distribution.For a z-score between -2 and 2, approximately 95% of the area under the curve is contained, as about 95% of the values lie within two standard deviations of the mean.For a z-score between -3 and 3, about 99.7% of the area is contained, reflecting the fact that about 99.7% of values in a normal distribution lie within three standard deviations of the mean.

To find the exact areas based on the z-scores, we can refer to the Z-table of Standard Normal Distribution. This table lists the cumulative probabilities from the mean up to a certain z-score. By looking up the area to the left of each positive z-score and doubling it, we can get the approximate area between the negative and positive z-scores mentioned above.

The locations, given in polar coordinates, for two ships are (8 mi, 639) and (8 mi, 1239). Find the distance between the two
ships,
a. 64 8 mi
C. 11.31 mi
b. 3600.00 mi
d. 4.14 mi
Please select the best answer

Answers

Answer:

A. [tex]\sqrt{64}=8[/tex] miles

Step-by-step explanation:

Given two Cartesian coordinates [tex](x_1,y_1)\&(x_2,y_2)[/tex], the distance between the points is given as:

[tex]d = \sqrt{((x_1-x_2)^2+(y_1-y_2)^2)}[/tex]

Converting to polar coordinates

[tex](x_1,y_1) = (r_1 cos \theta_1, r_1 sin \theta_1)\\(x_2,y_2) = (r_2 cos \theta_2, r_2 sin \theta_2)[/tex]

Substitution into the distance formula gives:

[tex]\sqrt{((r_1 cos\theta_1-r_2 cos \theta_2)^2+(r_1 sin \theta_1-r_2 sin \theta_2)^2}\\=\sqrt{(r_1^2+r_2^2-2r_1r_2(cos \theta_1 cos \theta_2+sin\theta_1 sin \theta_2) }\\= \sqrt{r_1^2+r_2^2-2r_1r_2cos (\theta_1 -\theta_2)}[/tex]

In the given problem,

[tex](r_1,\theta_1)=(8 mi, 63^0) \:and\: (r_2,\theta_2)=(8 mi, 123^0 ).[/tex]

[tex]Distance=\sqrt{8^2+8^2-2(8)(8)cos (63 -123)}\\=\sqrt{128-128cos (-60)}\\=\sqrt{64}=8 mile[/tex]

The closest option is  A. [tex]\sqrt{64}=8[/tex] miles

A sample of 56 fish (Mogul liza species) were tested for zinc concentration (Environmental Monitoring and Assessment, 1993). The interval from 8.8 mg/g to 9.5 mg/g is the 95% confidence interval for the population mean zinc concentration. (The sample mean was 9.15.) Which following statements is the best interpretation for the meaning of this confidence interval? The probability that this confidence interval (8.8, 9.5) contains the true population mean is 0.95. In repeated sampling from this fish population, about 95% of the confidence intervals calculated from these samples will contain 9.15. We can be 95% sure that the true population mean zinc concentration is between 8.8 mg/g and 9.5 mg/g. The probability that this confidence interval (8.8, 9.5) contains the sample mean is 0.95. In repeated sampling from this fish population, about 95% of the confidence intervals calculated will contain 95% of the zinc concentrations of the fish. We can be sure that 95% of all Mogul liza species will have zinc concentrations between 8.8 mg/g and 9.5 mg/g.

Answers

Answer:

We can be 95% sure that the true population mean zinc concentration is between 8.8 mg/g and 9.5 mg/g.

Step-by-step explanation:

Given that

N = Sample = 56

Confidence Interval = 95%

Mean Interval = 8.8 mg/g to 9.5 mg/g

UB = Upper Bound = 9.5mg/g

LB = Lower Bound = 8.8mg/g

The sample mean was 9.15mg/g

The sample mean is gotten from ½(UB + LB)

Sample Mean = ½(8.8 + 9.5)

Sample Mean = ½ * 18.3

Sample Mean = 9.15mg/g

From the definition of confidence Interval;

"Confidence Interval is a range of values so defined that there is a specified probability that the value of a parameter lies within it"

This means that the best interpretation of the data given is "the mean value of the 56 sample of fishes is between 8.8mg/g and 9.5mg/g;"

With 8.8mg/g as the lower bound and 9.9mg/g as the upper bound.


100 POINTS!!!!! HELP ME PLEASE DONT HAVE A LOT OF TIME!!!!! HELP!!!!!


The school wants to order a new counter top for the teacher’s lounge. The shape of the counter top that they are replacing is shown below.

A countertop can be broken into 2 rectangles. 1 rectangle has a base of 70 inches and height of 20 inches. The other rectangle has a base of 20 inches and height of 30 inches.
If the new countertop costs $0.75 per square inch, what is the price of the replacement countertop?
$1,500
$1,800
$2,000
$2,400

Answers

Answer:

A. $1500

Step-by-step explanation:

We need to find the countertop area, so let's calculate the areas of the rectangles that the problem broke the countertop into:

1. "1 rectangle has a base of 70 inches and height of 20 inches"

The area of a rectangle is denoted by: A = bh, where b is the base and h is the height. Here, b = 70 and h = 20, so the area is: A = 70 * 20 = 1400 inches squared

2. "The other rectangle has a base of 20 inches and height of 30 inches"

Again, use A = bh: b = 20 and h = 30, so A = 20 * 30 = 600 inches squared

Add up these two areas: 1400 + 600 = 2000 inches squared.

The problem says that the cost is $0.75 per square inch, so multiply this by 2000 to get the total cost of 2000 square inches:

2000 * 0.75 = $1500

Thus, the answer is A.

Hope this helps!

Answer:

$1500

Step-by-step explanation:

You can divide this figure into 2 rectangle with dimensions:

1) 70 × 20

2) 20 × (50-20: 20 × 30

Area:

(70×20) + (20×30)

1400 + 600

2000 in²

Cost per in²: 0.75

2000in² cost:

2000 × 0.75

$1500

A teacher used the change of base formula to determine whether the equation below is correct.


(log Subscript 2 Baseline 10) (log Subscript 4 Baseline 8) (log Subscript 10 Baseline 4) = 3


Which statement explains whether the equation is correct?

Answers

Answer:

The equation is correct

Step-by-step explanation:

The equation, written as:

[log_2 (10)][log_4 (8)][log_10 (4)] = 3

Consider the change of base formula:

log_a (x) = [log_10 (x)]/ [log_10 (a)]

Applying the change of base formula to change the expressions in base 2 and base 4 to base 10.

(1)

log_2 (10) = [log_10 (10)]/[log_10 (2)]

= 1/[log_10 (2)]

(Because log_10 (10) = 1)

(2)

log_4 (8)  = [log_10 (8)]/[log_10 (4)]

Now putting the values of these new logs in base 10 into the left-hand side of original equation to verify if we have 3, we have:

[log_10 (2)][log_8 (4)][log_10 (4)]

= [1/ log_10 (2)][log_10 (8) / log_10 (4)][log_10 (4)]

= [1/log_10 (2)] [log_10 (8)]

= [log_10 (8)]/[log_10 (2)]

= [log_10 (2³)]/[log_10 (2)]

Since log_b (a^x) = xlog_b (a)

= 3[log_10 (2)]/[log_10 (2)]

= 3 as required

Therefore, the left hand side of the equation is equal to the right hand side of the equation.

Answer:

B on E2020.

Step-by-step explanation:

The time needed to complete a final examination in a particular college course is normally distributed with a mean of 80 minutes and a standard deviation of 10 minutes. If students have only 90 minutes to complete the exam, what percentage of the class will not finish the exam in time?

Answers

Answer:

Hence total of 10 students are not able to complete the exam.

Step-by-step explanation:

Given:

Mean for completing exam =80 min

standard deviation =10 min.

To find:

how much student will not complete the  exam?

Solution:

using the Z-table score we can calculate the required probability.

Z=(Required time -mean)/standard deviation.

A standard on an avg class contains:

60 students.

consider for 70 mins and then 90 mins (generally calculate ±  standard deviation of mean)(80-10 and 80+10).

1)70 min

Z=(70-80)/10

Z=-1

Now corresponding p will be

P(z=-1)

=0.1587

therefore

Now for required 90 min will be

Z=(90-80)/10

=10/10

z=1

So corresponding value of p is

P(z<1)=0.8413

this means 0.8413 of 60 students are able to complete the exam.

0.8413*60

=50.47

which approximate 50 students,

total number =60

and total number student will able to complete =50

Total number of student will not complete =60-50

=10.

Final answer:

About 15.87% of college students are expected not to finish the final examination within the 90-minute time limit, based on the properties of the normal distribution with a mean of 80 minutes and a standard deviation of 10 minutes.

Explanation:

The student's question involves using the properties of the normal distribution to determine the percentage of students who will not finish a final examination in the given time frame.

To compute this, we need to calculate the z-score that corresponds to the 90-minute time limit. The z-score formula is:

Z = (X - μ) / σ

where X is the value of interest, μ (mu) is the mean, and σ (sigma) is the standard deviation. Plugging in the numbers:

Z = (90 - 80) / 10 = 1

A z-score of 1 corresponds to a percentile of approximately 84.13%, meaning about 84.13% of students will finish within 90 minutes. To find the percentage that will not finish in time, we subtract this from 100%:

100% - 84.13% = 15.87%

Therefore, approximately 15.87% of the class will not finish the exam in time.

What is the selling price if the original cost is $145 and the markup is 150%? PLEASE HELP!! :(

Answers

Answer:

$362.50

Profit: $217.50

Step-by-step explanation:

-1.9+4+(-1.6) simplify the expression

Answers

Answer:

.5

Step-by-step explanation:

-1.9+4=2.1

2.1+(-1.6)=.5

The mean crying time of infants during naptime at a local preschool is 12 mins. The school implements a new naptime routine in a sample of 25 infants and records an average crying time of 8 ± 4.6 (M ± SD) minutes. Test whether this new naptime routine reduced crying time at a 0.05 level of significance.A) The new naptime routine significantly reduced crying time, t(24) = ?4.35, p <0.05.B) The new naptime routine did not reduce crying time, t(24) = ?4.35, p < 0.05.C) The new naptime routine did not reduce crying time, t(24) = 0.92, p > 0.05.D) The new naptime routine significantly reduce crying time, t(24) = 0.92, p < 0.05.

Answers

Answer:

Step-by-step explanatio n: ummmoirnd iehcn

What’s .24 in two equivalent forms

Answers

I think it’s 24% and 24/100

.24 is equivalent to

24%

24/100

6/25

12/50, and more!

Hope this helped

Let V be the set of functions f:R→R. For any two functions f,g in V, define the sum f+g to be the function given by (f+g)(x)=f(x)+g(x) for all real numbers x. For any real number c and any function f in V, define scalar multiplication cf by (cf)(x)=cf(x) for all real numbers x.

Answers

Answer:

To check that V is a vector space it suffice to show

1. Associativity of vector addition.

2. Additive identity

3. Existence of additive identity

4. Associativity of scalar multiplication

5. Distributivity of scalar sums

6.  Distributivity of vector sums

7. Existence of scalar multiplication identity.

Step-by-step explanation:

To see that V is a vector space we have to see that.

1. Associativity of vector addition.

This property is inherited from associativity of the sum on the real numbers.

2. Additive identity.

The additive identity in this case, would be the null function f(x)=0 . for every real x.   It is inherited from the real numbers that the null function will be the additive identity.

3. Existence of additive inverse for any function f(x).

For any function f(x), the function -f(x) will be the additive inverse. It is in inherited from the real numbers that f(x)-f(x) = 0.

4. Associativity of scalar multiplication.

Associativity of scalar multiplication  is inherited from associativity of the real numbers

5. Distributivity of scalar sums:

Given any two scalars r,s and a function f, it will be inherited from the distributivity of the real numbers that

(r+s)f(x) = rf(x) + sf(x)

Therefore, distributivity of scalar sums is valid.

5. Distributivity of vector sums:

Given scalars r  and two functions f,g, it will be inherited from the distributivity of the real numbers that

r (f(x)+g(x)) = r f(x) + r g(x)

Therefore, distributivity of vector sums is valid.

6. Scalar multiplication identity.

The scalar 1 is the scalar multiplication identity.

 

a survey amony freshman at a certain university revealed that the number of hours spent studying the week before final exams was normally distributed with mean 25 and standard deviation 15. a sample of 36 students was selected. what is the probability that the average time spent studying for the sample was between 29.0 and 30 hours studying?

Answers

Answer:

Probability that the average time spent studying for the sample was between 29 and 30 hours studying is 0.0321.

Step-by-step explanation:

We are given that the number of hours spent studying the week before final exams was normally distributed with mean 25 and standard deviation 15.

A sample of 36 students was selected.

Let [tex]\bar X[/tex] = sample average time spent studying

The z-score probability distribution for sample mean is given by;

          Z = [tex]\frac{ \bar X-\mu}{\frac{\sigma}{\sqrt{n} } }} }[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = population mean hours spent studying = 25 hours

            [tex]\sigma[/tex] = standard deviation = 15 hours

            n = sample of students = 36

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

Now, Probability that the average time spent studying for the sample was between 29 and 30 hours studying is given by = P(29 hours < [tex]\bar X[/tex] < 30 hours)

    P(29 hours < [tex]\bar X[/tex] < 30 hours) = P([tex]\bar X[/tex] < 30 hours) - P([tex]\bar X[/tex] [tex]\leq[/tex] 29 hours)

      

    P([tex]\bar X[/tex] < 30 hours) = P( [tex]\frac{ \bar X-\mu}{\frac{\sigma}{\sqrt{n} } }} }[/tex] < [tex]\frac{ 30-25}{\frac{15}{\sqrt{36} } }} }[/tex] ) = P(Z < 2) = 0.97725

    P([tex]\bar X[/tex] [tex]\leq[/tex] 29 hours) = P( [tex]\frac{ \bar X-\mu}{\frac{\sigma}{\sqrt{n} } }} }[/tex] [tex]\leq[/tex] [tex]\frac{ 29-25}{\frac{15}{\sqrt{36} } }} }[/tex] ) = P(Z [tex]\leq[/tex] 1.60) = 0.94520

                                                                    

So, in the z table the P(Z [tex]\leq[/tex] x) or P(Z < x) is given. So, the above probability is calculated by looking at the value of x = 2 and x = 1.60 in the z table which has an area of 0.97725 and 0.94520 respectively.

Therefore, P(29 hours < [tex]\bar X[/tex] < 30 hours) = 0.97725 - 0.94520 = 0.0321

Hence, the probability that the average time spent studying for the sample was between 29 and 30 hours studying is 0.0321.

In simplest radical form, what are the solutions to the quadratic equation 6 = x2 – 10x?
Quadratic formula: x =
x = 5
x = 5
x = 5
x = 5

Answers

Answer:

Step-by-step explanation:

quadratic equation: ax² + bx + c =0

x' = [-b+√(b²-4ac)]/2a   and x" =  [-b-√(b²-4ac)]/2a  

6 = x² – 10x ; x² - 10x -6 =0

(a=1, b= - 10 and c = - 6

x' = [10+√(10²+4(1)(-6)]/2(1)  and x" = [10-√(10²+4(1)(-6)]/2(1)

x' =5+√31  and x' = 5-√31

Megan finds a bag of 24 craft bows at the store. The bag indicates that 23 of the bows are striped. Megan wants to know the number of bows in the package that are striped. Select ALL the statements that are true. A Megan can divide the number 3 by 24 and then multiply the result by 2 to find the number of striped bows. B Megan can divide the number 24 by 3 and then multiply the result by 2 to find the number of striped bows. C Megan can multiply the number 24 by 2 and then divide the result by 3 to find the number of striped bows. D Megan can multiply the number 24 by 3 and then divide the result by 2 to find the number of striped bows. E The number of striped bows in the package is 36. F The number of striped bows in the package is 16.

Answers

Answer:

B

Step-by-step explanation:

Check all that apply?

Answers

Answer:

–11 and 2

Step-by-step explanation:

observe

x² + 9x – 22 = 0

(x + 11)(x – 2) = 0

x = –11 or x = 2

A new car can go 490 miles on 10 gallons of gas. How many miles can it go on 55 gallons of gas?

Answers

Answer:

2695 miles

Step-by-step explanation:

The car can travel 2,695 miles on 55 gallons of gas.

To determine how many miles a car can go on 55 gallons of gas if it can go 490 miles on 10 gallons, we need to find the car's miles per gallon (mpg) and then use that to calculate the distance for 55 gallons.

First, calculate the miles per gallon (mpg):

mpg = 490 miles / 10 gallons = 49 miles per gallon

Now, use the mpg to find the distance the car can travel on 55 gallons:

Distance = 49 miles per gallon * 55 gallons = 2,695 miles

Therefore, the car can go 2,695 miles on 55 gallons of gas.

The fictional rocket ship Adventure is measured to be 65 m long by the ship's captain inside the rocket.When the rocket moves past a space dock at 0.5c. As rocket ship Adventure passes by the space dock, the ship's captain flashes a flashlight at 2.00-s intervals as measured by space-dock personnel. Part A How often does the flashlight flash relative to the captain

Answers

Answer:

a) t₀ =  1.73205 s

b) 1.0 C

Step-by-step explanation:

(A)

The time dilation (t) observed by an observer at rest relative to the time (t₀) measured by observer in motion is;

[tex]t = \frac{t_0}{\sqrt{1 - \frac{V^2}{C^2}}}[/tex]

[tex]t_0 = t \sqrt{1 - \frac{V^2}{C^2}}[/tex] time measured by captain

⇒ [tex]t_0 = 2.0 \sqrt{1 - \frac{0.5^2C^2}{C^2}}[/tex]             V = 0.5 c

⇒ t₀ =  1.73205 s

(B)

Speed of the light never exceeds by its real value. The speed of the light in any frame of reference is constant.

∵ It will be "1.0C" or just "C"

The divisor of 0.004 is almost zero. What does this tell you about the quotient?

Answers

Answer:

  Its magnitude will be larger than 0.004.

Step-by-step explanation:

When a divisor is less than 1, the quotient will be greater than the dividend.

When the divisor is "almost zero", the quotient will be much greater than the dividend. Here, the dividend may be considered to be "almost zero", so we cannot say anything about the actual quotient except to say its magnitude will be greater than the dividend.

_____

The dividend is positive, so the quotient will have the same sign as the divisor. (Negative divisors can be "almost zero," too.)

Consider the following function. f(x) = 1/x, a = 1, n = 2, 0.6 ≤ x ≤ 1.4 (a) Approximate f by a Taylor polynomial with degree n at the number a. T2(x) = (b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) ≈ Tn(x) when x lies in the given interval. (Round your answer to eight decimal places.) |R2(x)| ≤ 7.71604938 Incorrect: Your answer is incorrect. (c) Check your result in part (b) by graphing |Rn(x)|.

Answers

Final answer:

The Taylor polynomial approximation to f(x) = 1/x up to degree 2 about x=a was calculated. It was mentioned that Taylor's inequality could be used to estimate the accuracy of this approximation. However, due to the lack of necessary information, an exact error bound or graphical check couldn't be determined.

Explanation:

To begin the solution, we'll need to find the first couple of derivatives for the function f(x) = 1/x. The first derivative is f'(x) = -1/x² and the second derivative is f''(x) = 2/x³. These derivatives will be used to form the Taylor series approximation.

The Taylor series polynomial of degree 2 is given by the formula T₂(x) = f(a) + f'(a)*(x-a) + f''(a)*(x-a)²/2!, where a is the point we are approximating about and n is the degree of the Taylor polynomial. Substituting the given values, we get: T₂(x) = 1/1 - 1/1² * (x-1) + 2/1³ * (x-1)²/2!.

To estimate the accuracy of this approximation, we use Taylor's Inequality which provides an upper bound for the absolute error. The remainder term in Taylor's series is given by |R₂(x)| ≤ M * |x - a|³ / (3!*n), where M is the maximum value of the absolute third derivative on the interval [a, x]. After applying Taylor's inequality, we can get an accuracy estimate but unfortunately, the information provided doesn't give enough specifics for an exact calculation.

Finally, to verify the result graphically, you would plot |R₂(x)|, but without the explicit remainder term, this cannot be done.

Learn more about Taylor Series Approximation here:

https://brainly.com/question/34375801

#SPJ12

Many urban zoos are looking at ways to effectively handle animal waste. One zoo has installed a facility that will transform animal waste into electricity. To estimate how many pounds of waste they may have to fuel the new facility they began keeping meticulous records. They discovered that the amount of animal waste they were disposing of daily is approximately Normal with a mean of 348.5 pounds and a standard deviation of 38.2 pounds. Amounts over 350 pounds would generate enough electricity to cover what is needed to for the entire aquarium that day. Approximately what proportion of the days can the zoo expect to obtain enough waste to cover what is needed to run the entire aquarium for the day (A) 0.484 (B) 0.499 (C) 0.516 (D) 0.680 (E) 0.950

Answers

Answer:

Option A: 0.484

Explanation:

The amount of animal waste one zoo is diposing daily is approximately normal with:

mean, μ = 348.5 lbsstandard deivation, σ = 38.2 lbs

The proportion of waste over 350 lbs may be found using the table for the area under the curve for the cumulative normal standard probability.

First, find the z-score for 350 lbs:

      [tex]z-score=\dfrac{X-\mu}{\sigma}[/tex]

      [tex]z-score=\dfrac{350lbs-348.5lbs}{38.2lbs}\approx0.04[/tex]

There are tables for the cumulative areas (probabilities) to the left and for the cumulative areas to the right of the z-score.

You want the proportion of the days when the z-score is more than 0.04; then, you can use the table for the values to the rigth of z = 0.04.

From such table, the area or probability is 0.4840.

The attached image shows a portion of the table with that value: it is the cell highlighted in yellow.

Hence, the answer is the option (A) 0.484.

By calculating the z-score for 350 pounds of waste and consulting the standard normal distribution, the proportion of days the zoo can expect to have enough animal waste to power the entire aquarium is approximately 0.484.

To determine the proportion of days the zoo can expect to generate enough animal waste to run the entire aquarium, we can use z-scores in a normal distribution. Given the mean (μ = 348.5) and standard deviation (σ = 38.2), we want to find the proportion of the data that is above 350 pounds.

First, we calculate the z-score for 350 pounds:

z = (X - μ) / σ = (350 - 348.5) / 38.2 ≈ 0.04

Now we need to find the probability that the z-score is greater than 0.04. Consulting a standard normal distribution table or using a calculator, this gives us a probability of approximately 0.484.

Therefore, the proportion of the days the zoo can expect to obtain enough waste to cover the energy demands for the entire aquarium is 0.484.

The measurement of a side of a square is found to be 10 centimeters, with a possible error of 0.07 centimeter. (a) Approximate the percent error in computing the area of the square. % (b) Estimate the maximum allowable percent error in measuring the side if the error in computing the area cannot exceed 2.7%. %

Answers

Answer:

a) [tex]\delta = 1.4\,\%[/tex], b) [tex]\delta_{max} = 1.35\,\%[/tex]

Step-by-step explanation:

a) The area formula for a square is:

[tex]A =l^{2}[/tex]

The total differential for the area is:

[tex]\Delta A = \frac{\partial A}{\partial l}\cdot \Delta l[/tex]

[tex]\Delta A = 2\cdot l \cdot \Delta l[/tex]

The absolute error for the area of the square is:

[tex]\Delta A = 2\cdot (10\,cm)\cdot (0.07\,cm)[/tex]

[tex]\Delta A = 1.4\,cm^{2}[/tex]

Thus, the relative error is:

[tex]\delta = \frac{\Delta A}{A}\times 100\,\%[/tex]

[tex]\delta = \frac{1.4\,cm^{2}}{100\,cm^{2}} \times 100\,\%[/tex]

[tex]\delta = 1.4\,\%[/tex]

b) The maximum allowable absolute error for the area of the square is:

[tex]\Delta A_{max} = \left(\frac{\delta}{100} \right)\cdot A[/tex]

[tex]\Delta A_{max} = \left(\frac{2.7}{100} \right)\cdot (100\,cm^{2})[/tex]

[tex]\Delta A_{max} = 2.7\,cm^{2}[/tex]

The maximum allowable absolute error for the length of a side of the square is:

[tex]\Delta l_{max}= \frac{\Delta A_{max}}{2\cdot l}[/tex]

[tex]\Delta l_{max} = \frac{2.7\,cm^{2}}{2\cdot (10\,cm)}[/tex]

[tex]\Delta l_{max} = 0.135\,cm[/tex]

Lastly, the maximum allowable relative error is:

[tex]\delta_{max} = \frac{\Delta l_{max}}{l}\times 100\,\%[/tex]

[tex]\delta_{max} = \frac{0.135\,cm}{10\,cm} \times 100\,\%[/tex]

[tex]\delta_{max} = 1.35\,\%[/tex]

Mollie is training for a race. She will swim, bike and run during the race. One week, she swims 1 2/4 miles and bikes 22 3/4 miles. She also runs during rhe week. The total distance she swims, bikes, and runs during the week is 30 2/4 miles. How far does she run during the week?

Answers

this should be answer! hope this helps (-:

Now focus on the boundary of D, and solve for y2. Restricting f(x,y) to this boundary, we can express f(x,y) as a function of a single variable x. What is this function and its closed interval domain?

Answers

Answer:

At critical point in D

a

     [tex](x,y) = (0,0)[/tex]

b

[tex]f(x,y) = f(x) =11 -x^2[/tex]

where [tex]-1 \le x \le 1[/tex]

c

maximum value 11

minimum value  10

Step-by-step explanation:

Given [tex]f(x,y) =10x^2 + 11x^2[/tex]

At critical point

[tex]f'(x,y) = 0[/tex]

 =>  [tex][f'(x,y)]_x = 20x =0[/tex]

=>   [tex]x =0[/tex]

Also

[tex][f'(x,y)]_y = 22y =0[/tex]

=>   [tex]y =0[/tex]

Now considering along the boundary

       [tex]D = 1[/tex]

=>  [tex]x^2 +y^2 = 1[/tex]

=>  [tex]y =\pm \sqrt{1- x^2}[/tex]

Restricting [tex]f(x,y)[/tex] to this boundary

      [tex]f(x,y) = f(x) = 10x^2 +11(1-x^2)^{\frac{2}{1} *\frac{1}{2} }[/tex]

                            [tex]= 11-x^2[/tex]

At boundary point D = 1

Which implies that [tex]x \le 1[/tex]  or [tex]x \ge -1[/tex]

So the range of  x is

                  [tex]-1 \le x \le 1[/tex]

Now along this this boundary the critical point is at

            [tex]f'(x) = 0[/tex]

=>         [tex]f'(x) = -2x =0[/tex]

=>         [tex]x=0[/tex]

Now at maximum point [tex](i.e \ x =0)[/tex]

            [tex]f(0) =11 -(0)[/tex]

                   [tex]= 11[/tex]

For the minimum point x = -1 or x =1

              [tex]f(1) = 11 - 1^2[/tex]

                      [tex]=10[/tex]

              [tex]f(-1) = 11 -(-1)^2[/tex]

                         [tex]=10[/tex]

           

             

Analyze the diagram below and complete the instructions that follow.



and are similar. Find the value of x.

A.
5
B.
15
C.
60
D.
240



Please select the best answer from the choices provided


A
B
C
D

Answers

A

Durhsvsn its a I try

$1500 is invested at a rate of 3% compounded monthly. Write a compound interest function to model this situation. Then find the
balance after 5 years.

Answers

Answer:

Equation:  [tex]F=1500(1.0025)^{12t}[/tex]

The balance after 5 years is:  $1742.43

Step-by-step explanation:

This is a compound growth problem . THe formula is:

[tex]F=P(1+\frac{r}{n})^{nt}[/tex]

Where

F is future amount

P is present amount

r is rate of interest, annually

n is the number of compounding per year

t is the time in years

Given:

P = 1500

r = 0.03

n = 12 (compounded monthly means 12 times a year)

The compound interest formula modelled by the variables is:

[tex]F=1500(1+\frac{0.03}{12})^{12t}\\F=1500(1.0025)^{12t}[/tex]

Now, we want balance after 5 years, so t = 5, substituting, we get:

[tex]F=1500(1.0025)^{12t}\\F=1500(1.0025)^{12*5}\\F=1500(1.0025)^{60}\\F=1742.43[/tex]

The balance after 5 years is:  $1742.43

Kelsey’s bank changed her $17.50

Answers

Then that means she owes the bank $17.50
She owes the bank $17.50

Which is a correct first step for solving this equation?
2 + 7 = 2x + 5 – 4x

Answers

Step-by-step explanation:

Bringing like terms on one side

2 + 7 - 5 = 2x - 4x

9 - 5 = - 2x

4 = - 2x

4/ - 2 = x

- 2 = x

Other Questions
e Arlington Motor Pool Internal Service Fund had the following transactions and events during January 2018. Using the "Additional Information" provided below. Prepare journal entries to record the following transactions: January 2018 transactions: 1. Paid salaries for the month in cash (1/12 of $80,000) 2. Paid $600 cash for fuel and maintenance expenses 3. Recorded depreciation expense for the month 4. Recorded insurance expense for the month 5. Accrued benefits expense for the month 6. Billed for motor vehicle services as follows: General Fund, 80 trips; Golf Course Enterprise Fund, 10 trips My dog Barney dropped his tennis ball at my feet so I kicked it across the yard for him retrieve.Where should a comma be placed in the sentence above? A. after "ball" B. after "feet" C. after "yard" D. after "so" A little help please? To write a polynomial in standard form write the _____ of the terms in descending order. Based on the dartboard shown below, what is P(pink and even) Write the equation of the line containing points (2, 1) and (3, 4) in slopeintercept form. It takes Ernesto 3 minutes to jog a lap around the school track. How many laps can Ernesto complete in 15 minutes? Look at the cahrt below The number of satisfied customers is given below each month on the x axis select an appropriate scale for the y axis of the graph please answer quick Carbon dioxide (CO2) is a greenhouse gas. It traps the heat in the atmosphere. Humans have used fossil fuels for only the last few hundred years. When burned, fossil fuels release CO2 into the atmosphere. Why do you think our fossil fuel use is a concern for environmental scientists? g (Locate the largest element) Write the following method that returns the location of the largest element in a two-dimensional array: public static int [] locateLargest(double [][] a) The return value is a one-dimensional array that contains two elements. These two elements indicate the row and column indices of the largest element in the two-dimensional array. Write a test program (the main method) that prompts the user to enter a two-dimensional array and displays the location of the largest element of the array. American Statistical Association budget is distributed normally with a mean spending of $45.67 and a standard deviation of $5.50. What is the probability that the spending is more than $42.35 A quadrilateral has two angles that measure 135 and 120. The other two angles are in aratio of 3:4. What are the measures of those two angles? Yuri has $220 in a savings account. If the savings account pays simple interest of 5%, how much interest will Yuri earn in 3 years? The table shows the number of apples and oranges sold at a grocery store over a 6 day period. Which statement is TRUE? A)The range of oranges is 43 more than the range of apples. B)The range of apples is 43 more than the range of oranges. C)The range of oranges is 76 more than the range of apples. D)The range of apples is 76 more than the range of oranges Consider the Telnet example discussed in Slide 78 in Chapter 3. A few seconds after the user types the letter C, the user types the letter R. After typing the letter R, how many segments are sent, and what is put in the sequence number and acknowledgement fields of the segments? What is it called when you make a reference in the text of a document alerting the reader that you are using information from another source? Can u guys PLEASE ANSWER this question ASAP solve the simultaneous equations using the substitution method3x+4y=11 and 7x-2y=3 Factor this expression: 40-100m Which of the values {1, 2, 3, 4} is the solution to the equation 3x + 3 = 15? Group of answer choices 3 1 4 2 Which sentence uses the correct form of the verb? Our neighbor don't have a key to our house.. Our neighbor does have a key to our house. Our neighbor do have a key to our house. a person run 21.0 km west then runs 10.0 km east what is the persons distance