Help me with this please

Help Me With This Please

Answers

Answer 1

Answer:

[tex]\large\boxed{(b)\ \dfrac{x+2}{x-3}}[/tex]

Step-by-step explanation:

[tex]\dfrac{1}{x+1}+\dfrac{x}{x-3}-\dfrac{-x-5}{x^2-2x-3}=(*)\\\\x^2-2x-3=x^2-3x+x-3=x(x-3)+1(x-3)=(x-3)(x+1)\\\\(*)=\dfrac{1(x-3)}{(x+1)(x-3)}+\dfrac{x(x+1)}{(x+1)(x-3)}+\dfrac{-(-x-5)}{(x+1)(x-3)}\\\\=\dfrac{x-3+x^2+x+x+5}{(x+1)(x-3)}=\dfrac{x^2+(x+x+x)+(-3+5)}{(x+1)(x-3)}\\\\=\dfrac{x^2+3x+2}{(x+1)(x-3)}=\dfrac{x^2+2x+x+2}{(x+1)(x-3)}=\dfrac{x(x+2)+1(x+2)}{(x+1)(x-3)}\\\\=\dfrac{(x+2)(x+1)}{(x+1)(x-3)}\qquad\text{cancel (x + 1)}\\\\=\dfrac{x+2}{x-3}[/tex]


Related Questions

Louisa has a goal of collecting 100 pounds of dog food for a local shelter. She records how many pounds of food she collects
each week

Answers

Answer:

Louisa needs 28 more pounds of dog food to reach 100 pounds

Step-by-step explanation:

=100 - 20.5 + 18.75 + 32.75

=28

Answer:

Louisa needs 28 pounds more of dog food.

Step-by-step explanation:

We need to find how much dog food she had collected in three weeks. In order to do this we need to add the number of pound collected in each week.

Notice that the pounds collected are given in different notations, so we need to write them ‘‘uniformly’’, in particular we must write the mixed number of the second week in decimal notation:

[tex]18\frac{3}{4} = \frac{18\times 4+3}{4}=\frac{75}{4} = 18.75[/tex]

Now, we add the three numbers:

[tex]20.5+18.75+32.75 = 72[/tex]

Finally, as she wants to collect 100 pounds and already has 72, Louisa only has to collect 28 pound more to complete her goal.

Rachel has been watching the number of alligators that live in her neighborhood. The number of alligators changes each week.
n f(n)
1 48
2 24
3 12
4 6
Which function best shows the relationship between n and f(n)?
f(n) = 48(0.5)^n − 1
f(n) = 48(0.5)^n
f(n) = 24(0.5)^n
f(n) = 96(0.5)^n − 1

Answers

Answer:

f(x) = 48(0.5)^n - 1 ⇒ 1st answer

Step-by-step explanation:

* Lets explain how to solve the problem

- The number of alligators changes each week

∵ The number in week 1 is 28

∵ The number in week 2 is 24

∵ The number in week 3 is 12

∵ The number in week 4 is 6

∴ The number of alligators is halved each week

∴ The number of alligators each week = half the number of alligators

   of the previous week

- The number of alligators formed a geometric series in which the

  first term is 48 and the constant ratio is 1/2

∵ Any term in the geometric series is Un = a r^(n - 1), where a is the

  first term and r is the constant ratio

∴ f(n) = a r^(n - 1)

∵ a = 48 ⇒ The number of alligators in the first week

∵ r = 1/2 = 0.5

∴ f(x) = 48(0.5)^n - 1

the answer is f(x) = 48(0.5)^n - 1

Which set of numbers is included in the solution set of the compound inequalities?

Answers

Answer:

Option 1: {-7,5,18,24,32}

Step-by-step explanation:

Observing the number line we can see that the solution is

x≤18 and x>22

So we will check the options one by one

For {-7,5,18,24,32}

The number set satisfies the solution translated from the number line.

For {-9,7,15,22,26}

As this number set includes 22 which is not included in the solution so this option is not correct.

For {16,17,22,23,24}

This number set also includes 22 so the option is not correct.

For {18,19,20,21,22}

This number set includes 19,20,21,22 which is not a part of the solution. Therefore, this option is also not correct ..

The equations 3x-4y=-2, 4x-y=4, 3x+4y=2, and 4x+y=-4 are shown on a graph.

Which is the approximate solution for the system of equations 3x+4y=2 and 4x+y=-4?
A. (–1.4, 1.5)
B. (1.4, 1.5)
C. (0.9, –0.2)
D. (–0.9, –0.2)

i cant download the graph picture but please help.

Answers

Answer:

A (-1,4,1.5)

Step-by-step explanation:

Solve by graphing, the lines intersect near this point.

6 = 3x - 9 what is x

Answers

Answer:

x = 5

Step-by-step explanation:

Given

6 = 3x - 9 ( add 9 to both sides )

15 = 3x ( divide both sides by 3 )

5 = x

Answer:

x = 5

Step-by-step explanation:

6 = 3x - 9

If you add 9 to both sides 6 + 9 = 3x - 9 + 9. You would get the equation 15 = 3x because adding 9 to both sides cancels out the 9 on the right side of the equation. Then you would divide by 3 on both sides 15/3 = 3x/3 which would give you 5 = x your answer

In △ABC, m∠A=16°, m∠B=49°, and a=4. Find c to the nearest tenth.

Answers

Answer:

= 8.33 inches

Step-by-step Explanation

First add 49 + 16, which equals 65, and subtract that result from 180, since a triangle equals 180 degrees and you find out angle C is equal to 115 degrees.

Now using the formula sinA/a = sinB/b = sinC/c, plug in values and you'd get the equation sin49 x 10/sin115. After solving the equation you'd get about  8.32729886047258 inches.

= 8.33

Answer:

13.2 units

Step-by-step explanation:

∠A = 16°

∠B = 49°

∠C = 180-(16+49)

∠C = 115°

a = 4

Now, from sine rule we get

[tex]\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}[/tex]

[tex]\frac{sinA}{a}=\frac{sinC}{c}\\\Rightarrow \frac{sin16}{4}=\frac{sin115}{c}\\\Rightarrow c=\frac{sin115}{ \frac{sin16}{4}}\\\Rightarrow c=13.2[/tex]

∴ c is 13.2 units

Which linear function represents the line given by the point-slope equation y +7=-2/3(x + 6)

Answers

Answer:

y = -(2/3)*x - 11

Step-by-step explanation:

To convert a point-slop equation into a linear function, there are certain steps which have to be followed. The primary aim is to make y the subject of the equation. By making sure that y is on the left hand side of the equation and x is on the right hand side of the equation, our goal will be achieved. To do that, first of all do the cross multiplication. This will result in:

3(y+7) = -2(x+6).

Further simplification results in:

3y + 21 = -2x - 12.

Keeping the expression of y on the left hand side and moving the constant on the right hand side gives:

3y = -2x - 33.

Leaving y alone on the left hand side gives:

y = -(2/3)*x - 33/3.

Therefore, y = -(2/3)*x - 11!!!

Write the slope-intercept form of the equation that passes through the point (0,-3) and is perpendicular to the line y = 2x - 6

Answers

For this case we have that by definition, the equation of a line of the slope-intersection form is given by:

[tex]y = mx + b[/tex]

Where:

m: It's the slope

b: It is the cutoff point with the y axis

By definition, if two lines are perpendicular then the product of their slopes is -1.

We have the following line:

[tex]y = 2x-6[/tex]

Then[tex]m_ {1} = 2[/tex]

The slope of a perpendicular line will be:

[tex]m_ {1} * m_ {2} = - 1\\m_ {2} = \frac {-1} {m_ {1}}\\m_ {2} = - \frac {1} {2}[/tex]

Thus, the equation of the line will be:

[tex]y = - \frac {1} {2} x + b[/tex]

We substitute the given point and find "b":

[tex]-3 = - \frac {1} {2} (0) + b\\-3 = b[/tex]

Finally the equation is:

[tex]y = - \frac {1} {2} x-3[/tex]

Answer:

[tex]y = - \frac {1} {2} x-3[/tex]

Answer:

[tex]y=-\frac{1}{2}x -3[/tex]

Step-by-step explanation:

The slope-intercept form of the equation of a line has the following form:

[tex]y=mx + b[/tex]

Where m is the slope of the line and b is the intercept with the y axis

In this case we look for the equation of a line that is perpendicular to the line

[tex]y = 2x - 6[/tex].

By definition If we have the equation of a line of slope m then the slope of a perpendicular line will have a slope of [tex]-\frac{1}{m}[/tex]

In this case the slope of the line [tex]y = 2x - 6[/tex] is [tex]m=2[/tex]:

Then the slope of the line sought is: [tex]m=-\frac{1}{2}[/tex]

The intercept with the y axis is:

If we know a point [tex](x_1, y_1)[/tex] belonging to the searched line, then the constant b is:

[tex]b=y_1-mx_1[/tex] in this case the poin is: (0,-3)

Then:

[tex]b= -3 -(\frac{1}{2})(0)\\\\b=-3[/tex]

finally the equation of the line is:

[tex]y=-\frac{1}{2}x-3[/tex]

Find a formula for the exponential function passing through the points (-3,5/64) and (2,80)

Answers

Answer:

[tex]5(4)^{x}[/tex]

That's the exponential function.

Step-by-step explanation:

Simply just use a graphing calculator (there's plenty of apps and websites that are graphing calculators) and follow these steps.

1) Clear out calculator RAM

2) Press STAT button

3) Press ENTER on EDIT

4) Type the X's in L1 and type the Y's L2.

5) Press STAT again

6) Press the RIGHT ARROW once

7) Press 0

8) Press ENTER

9) There's your exponential function!

Final answer:

To find the formula for the exponential function passing through given points (-3,5/64) and (2,80), we assume the function to be y=ab^x, substitute both points into the equation and solve it for a and b. This will provide the desired formula.

Explanation:

To find the formula for the exponential function through given points (-3,5/64) and (2,80), we firstly assume the function to be of the form y=ab^x. After that, we substitute the given points into this assumed equation, resulting in a system of two non-linear equations and solve it for the unknowns a and b.

Using our initial guess for the formula, substitute the first point (-3,5/64), we get: 5/64=a*b^-3

Substitute the second point (2,80) into the equation we get: 80=a*b^2

Solving these equations using substitution or elimination methods we will derive the appropriate values for a and b, which we can then substitute back into the y=ab^x to get the desired formula.

Learn more about Exponential Function here:

https://brainly.com/question/37289664

#SPJ11

Match the identities to their values taking these conditions into consideration sinx=sqrt2 /2 cosy=-1/2 angle x is in the first quadrant and angle y is in the second quadrant. Information provided in the picture. PLEASE HELP

Answers

Answer:

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \cos(x+y)\quad }\longleftrightarrow \boxed{\quad \dfrac{-(\sqrt{6}+\sqrt{2})}{4}\quad }[/tex]

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \sin(x+y)\quad }\longleftrightarrow \boxed{\quad\dfrac{\sqrt{6}-\sqrt{2}}{4}\quad }[/tex]

[tex]\boxed{\quad \tan(x+y)\quad }\longleftrightarrow \boxed{\quad\sqrt{3} -2\quad }[/tex]

[tex]\boxed{\vphantom{\sqrt{3}}\quad \tan(x-y)\quad }\longleftrightarrow \boxed{\quad-(2+\sqrt{3})\quad }[/tex]

Step-by-step explanation:

To find the values of the given trigonometric identities, we first need to find the values of cos x and sin y using the Pythagorean identity, sin²x + cos²x ≡ 1.

Given values:

[tex]\sin x = \dfrac{\sqrt{2}}{2}\qquad \textsf{Angle $x$ is in Quadrant I}\\\\\\\cos y=-\dfrac{1}{2}\qquad \textsf{Angle $y$ is in Quadrant II}[/tex]

Find cos(x):

[tex]\sin^2 x+\cos^2 x=1\\\\\\\left(\dfrac{\sqrt{2}}{2}\right)^2+\cos^2 x=1\\\\\\\dfrac{1}{2}+\cos^2 x=1\\\\\\\cos^2 x=1-\dfrac{1}{2}\\\\\\\cos^2 x=\dfrac{1}{2}\\\\\\\cos x=\pm \sqrt{\dfrac{1}{2}}\\\\\\\cos x=\pm \dfrac{\sqrt{2}}{2}[/tex]

As the cosine of an angle is positive in quadrant I, we take the positive square root:

[tex]\cos x=\dfrac{\sqrt{2}}{2}[/tex]

Find sin(y):

[tex]\sin^2 y + \cos^2 y = 1 \\\\\\ \sin^2 y + \left(-\dfrac{1}{2}\right)^2 = 1 \\\\\\ \sin^2 y + \dfrac{1}{4} = 1 \\\\\\ \sin^2 y = 1-\dfrac{1}{4} \\\\\\ \sin^2 y = \dfrac{3}{4} \\\\\\ \sin y =\pm \sqrt{ \dfrac{3}{4}} \\\\\\ \sin y = \pm \dfrac{\sqrt{3}}{2}[/tex]

As the sine of an angle is positive in quadrant II, we take the positive square root:

[tex]\sin y = \dfrac{\sqrt{3}}{2}[/tex]

The tangent of an angle is the ratio of the sine and cosine of that angle. Therefore:

[tex]\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1[/tex]

[tex]\tan y=\dfrac{\sin y}{\cos y}=\dfrac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3}[/tex]

Now, we can use find the sum or difference of two angles by substituting the values of sin(x), cos(x), sin(y), cos(y), tan(x) and tan(y) into the corresponding formulas.

[tex]\dotfill[/tex]

cos(x + y)

[tex]\cos(x+y)=\cos x \cos y - \sin x \sin y \\\\\\ \cos(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) - \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\ \cos(x+y)=-\dfrac{\sqrt{2}}{4} - \dfrac{\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-\sqrt{2}-\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{2}+\sqrt{6})}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{6}+\sqrt{2})}{4}[/tex]

[tex]\dotfill[/tex]

sin(x + y)

[tex]\sin(x+y)=\sin x \cos y + \cos x \sin y \\\\\\\sin(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) + \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\\sin(x+y)=-\dfrac{\sqrt{2}}{4} + \dfrac{\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{-\sqrt{2}+\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{\sqrt{6}-\sqrt{2}}{4}[/tex]

[tex]\dotfill[/tex]

tan(x + y)

[tex]\tan(x+y)=\dfrac{\tan x + \tan y}{1-\tan x \tan y} \\\\\\ \tan(x+y)=\dfrac{1 + (-\sqrt{3})}{1-(1) (-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1 -\sqrt{3}}{1+\sqrt{3}} \\\\\\ \tan(x+y)=\dfrac{(1 -\sqrt{3})(1 -\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1-2\sqrt{3}+3}{1-\sqrt{3}+\sqrt{3}-3} \\\\\\ \tan(x+y)=\dfrac{4-2\sqrt{3}}{-2} \\\\\\ \tan(x+y)=-2+\sqsrt{3} \\\\\\ \tan(x+y)=\sqrt{3} -2[/tex]

[tex]\dotfill[/tex]

tan(x - y)

[tex]\tan(x-y)=\dfrac{\tan x - \tan y}{1+\tan x \tan y} \\\\\\\tan(x-y)=\dfrac{1 - (-\sqrt{3})}{1+(1) (-\sqrt{3})} \\\\\\\tan(x-y)=\dfrac{1 +\sqrt{3}}{1-\sqrt{3}} \\\\\\\tan(x-y)=\dfrac{(1 +\sqrt{3})(1 +\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \\\\\\ \tan(x-y)=\dfrac{1+2\sqrt{3}+3}{1+\sqrt{3}-\sqrt{3}-3} \\\\\\ \tan(x-y)=\dfrac{4+2\sqrt{3}}{-2} \\\\\\ \tan(x-y)=-2-\sqrt{3}\\\\\\\tan(x-y)=-(2+\sqrt{3})[/tex]

What is the sum of entries a32 and b32 in A and B? (matrices)

Answers

Answer:

The correct answer is option D.  13

Step-by-step explanation:

From the figure we can see two matrices A and B

To find the sum of a₃₂ and b₃₂

From the given attached figure we get

a₃₂ means that the third row second column element in the matrix A

b₃₂ means that the third row second column element in the matrix B

a₃₂ = 4 and b₃₂ = 9

a₃₂ + b₃₂ = 4 + 9

 = 13

The correct answer is option D.  13

[tex]A={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}[/tex]

So

[tex]a_{32}=4\\b_{32}=9\\\\a_{32}+b_{32}=4+9=13[/tex]

What is the midpoint of a line segment with the endpoints (-6, -3) and (9,-7)?

Answers

Answer: (1.5, -5)

Step-by-step explanation: a p e x

Help me on number 12 13 14 and 15

Answers

12. 1.625 [terminating]; 13. 0.83 [bar notation over 3 (repeating)]; 14. 900 cm = 9 m; 15. 0.23 cm = 2.3 mm

Repeating decimals are parts of decimals that have repetitive digits; terminating decimals are decimals whose digits end.

Whether you are using Metric or Imperial, you have to determine whether you are going from a small unit to a big unit or vice versa. Then perform your operation. So, in exercise 14, the smaller unit is centimeters, so you would be going from big to small. Exercise 15 has you going from small to big.

There are centimeters in one meter, so multiply 9 by to get 900 centimeters.

There are 10 millimeters in one centimeter, so divide 2.3 by 10 simply by moving the decimal point ONCE to the left [Power of 10].

small to BIG → Division

BIG to small → Multiplication

I am joyous to assist you anytime.


A triangular portion of a baseball field is marked as shown below. To the
nearest tenth, what is the length of the side labeled c?

Answers

Answer:

im say your answer is between 1 choice and last choice but I'm say last choice 2.2

Answer:

B. 1.6 yards

Step-by-step explanation:

For the given triangle ABC,

We have ∠BAC = 36° and ∠BCA = 28° and side BC = 2 yards

We have to find length of side labeled as c, so using the sine rule we can say

[tex]\frac{c}{sin28} = \frac{2}{sin36} \\\frac{c}{0.4694} = \frac{2}{0.5877}\\c = 3.4030*0.4694\\c = 1.59\\[/tex]

c is equal to 1.59 which is nearly equal to 1.6 yards so the correct option would be D.

What is 5 m in mm I would like to know please?

Answers

1 meter = 1000 mm

so then 5 meters is just 5 * 1000 = 5000 mm.

Figure 1 and figure 2 are two congruent parallelograms drawn on a coordinate grid as shown below:
gure
-10-9355321245573 9 10
Figure 2 +
Which two transformations can map figure i onto figure 2?

Answers

Answer:

See below.

Step-by-step explanation:

The first is a reflection in the y-axis.

Then a downward translation of 10 units.

The diagram represents three statements: p, q, and r. For what value is both p ∧ r true and q false?

2
4
5
9

Answers

Answer:

9

Step-by-step explanation:

From the diagram:

only p true in 8 cases;only q true in 7 cases;only r true in 6 cases;both p and q true, r false in 5 cases;both p and r true, q false in 9 cases;both q and r true, p false in 4 cases;all three p, q and r true in 2 cases.

So, correct option is 9 cases.

Answer:

The correct option is 4. For value 9 both p ∧ r true and q false.

Step-by-step explanation:

The diagram represents three statements: p, q, and r.

We need to find the value for which p ∧ r is true and q false.

p ∧ r true mean the intersection of statement p and r. It other words p ∧ r true means p is true and r is also true.

From the given venn diagram it is clear that the intersection of p and r is

[tex]p\cap r=9+2=11[/tex]

p ∧ r true and q false means intersection of p and r but q is not included.

From the given figure it is clear that for value 2 all three statements are true. So, the value for which both p ∧ r true and q false is

[tex]11-2=9[/tex]

Therefore the correct option is 4.

how does one do this? may someone teach me how to calculate and solve this problem please, thanks.​

Answers

Answer:

x=1

Step-by-step explanation:

So we are talking about parabola functions.

All parabolas (even if they aren't functions) have their axis of symmetry going through their vertex.

For parabola functions, your axis of symmetry is x=a number.

The "a number" part will be the x-coordinate of the vertex.

The axis of symmetry is x=1.

Answer:

x=1

Step-by-step explanation:

The vertex of a parabola is the minimum or maximum of the parabola.

This is the line  where the parabola makes a mirror image.

Assuming the equation for the parabola is ( since this is a function)

y= a(x-h)^2 +k

where (h,k) is the vertex

Then x=h is the axis of symmetry

y = a(x-1)^2+5

when we substitute the vertex into the equation

The axis of symmetry is x=1

Helllllllppppp plzzzzzzzzz

Answers

Answer:

Hey, You have chosen the correct answer.

the correct answer is C.

The answer is C you got it right

Evaluate the function rule for the given value. y = 15 • 3^x for x = –3

Answers

Answer:

5/9

Step-by-step explanation:

y = 15 • 3^x

Let x = -3

y = 15 • 3^(-3)

The negative means the exponent goes to the denominator

y = 15 * 1/3^3

  = 15 * 1/27

  =15/27

Divide the top and bottom by 3

 =5/9

How is the interquartile range calculated?
Minimum
Q1
Q1
Median
Median
Q3
Q3
Maximum
Maximum

Answers

Answer:

A

Step-by-step explanation:

The interquartile range is the difference between the upper quartile and the lower quartile, that is

interquartile range = [tex]Q_{3}[/tex] - [tex]Q_{1}[/tex]

Final answer:

The interquartile range (IQR) represents the spread of the middle 50 percent of a data set and is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). It also helps in identifying potential outliers in the data.

Explanation:

The interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the middle 50 percent of a data set. It is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). To elaborate:


 First Quartile (Q1): This is the median of the lower half of the data set, not including the median if the number of data points is odd.
 Third Quartile (Q3): This is the median of the upper half of the data set, not including the median if the number of data points is odd.
 The IQR is found by the formula IQR = Q3 - Q1.

If, for example, Q1 is 2 and Q3 is 9, the IQR is calculated as 9 minus 2, resulting in an IQR of 7.

In addition to providing insight into the spread of the central portion of the data set, the IQR can also be used to identify potential outliers. These are values that fall more than 1.5 times the IQR above Q3 or below Q1.

What is a true statement about a 45-45-90 triangle?

Answers

Answer:

C. The hypotenuse is √2 times long as either leg.

Step-by-step explanation:

Look at the picture.

C. The hypotenuse is √2 ties as long as either leg

For f(x)=4x+1 and g(x)=x^2-5, find (f-g)(x).

Answers

Answer:

C

Step-by-step explanation:

note (f - g)(x) = f(x) - g(x)

f(x) - g(x)

= 4x + 1 - (x² - 5) ← distribute by - 1

= 4x + 1 - x² + 5 ← collect like terms

= - x² + 4x + 6 ← in standard form → C

For this case we have the following functions:

[tex]f (x) = 4x + 1\\g (x) = x ^ 2-5[/tex]

We must find [tex](f-g) (x).[/tex] By definition we have to:

[tex](f-g) (x) = f (x) -g (x)[/tex]

So:

[tex](f-g) (x) = 4x + 1- (x ^ 2-5)[/tex]

We take into account that:

[tex]- * + = -\\- * - = +\\(f-g) (x) = 4x + 1-x ^ 2 + 5\\(f-g) (x) = - x ^ 2 + 4x + 6[/tex]

Answer:

[tex](f-g) (x) = - x ^ 2 + 4x + 6[/tex]

Option C

Please help and explain

Answers

Answer: Option A

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

Step-by-step explanation:

Use the quadratic formula to find the zeros of the function.

For a function of the form

[tex]ax ^ 2 + bx + c = 0[/tex]

The quadratic formula is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In this case the function is:

[tex]2x^2-6x+5=0[/tex]

So

[tex]a=2\\b=-6\\c=5[/tex]

Then using the quadratic formula we have that:

[tex]x=\frac{-(-6)\±\sqrt{(-6)^2-4(2)(5)}}{2(2)}[/tex]

[tex]x=\frac{6\±\sqrt{36-40}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{-4}}{4}[/tex]

Remember that [tex]\sqrt{-1}=i[/tex]

[tex]x=\frac{6\±\sqrt{4}*\sqrt{-1}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{4}i}{4}[/tex]

[tex]x=\frac{6\±2i}{4}[/tex]

[tex]x=\frac{3\±i}{2}[/tex]

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

Whats the quotient for this? ​

Answers

Answer:

Step-by-step explanation:

Divide 4378 by 15

From 4378 lets take the first two digits for division:

43/ 15

We know that 43 does not come in table of 15

So we will take 15 *2 = 30

43-30 = 13

The quotient is 3 and the remainder is 13

Now take one more number which is 7 with 13

137/15.

Now 137 does not come in table of 15

15*9 = 135

135-137 = 2

It means quotient is 9 and remainder is 2

Now take one more number which is 8 with 2

28/15

28 does not come in table of 15

15*1 = 15

28-15 = 13/15

Now the quotient is 1 and remainder is 13

Hence, the quotient of 4,378 is 291 and remainder is 13 ....

Can someone please help me on this I’ve tried but I can’t get passed it please me please Omg

Answers

Answer:

-38z

Step by step explanation:

You’d Combine Like Terms:

- 10z + -28z

= (-10z + -28z)

= -38z

Solve the equations to find the number and type of solutions
The equation 8 - 4x = 0 has
real solution(s).
DONE

Answers

Answer:

This has one real solution, x=4

Step-by-step explanation:

8 - 4x = 0

Add 4x to each side

8 - 4x+4x = 0+4x

8 =4x

Divide each side by 4

8/4 = 4x/4

2 =x

This has one real solution, x=4

Answer:

This equation has 1 real solution, x=2....

Step-by-step explanation:

8- 4x=0

Move 8 to the R.H.S

-4x=0-8

-4x=-8

Divide both sides by -4

-4x/-4 = -8/-4

x=2

Thus this equation has 1 real solution, x=2 ....

If 47400 dollars is invested at an interest rate of 7 percent per year, find the value of the investment at the end of 5 years for the following compounding methods, to the nearest cent.

(a) Annual: $______
(b) Semiannual: $ _____
(c) Monthly: $______
(d) Daily: $_______

Answers

Answer:

Part A) Annual [tex]\$66,480.95[/tex]  

Part B) Semiannual [tex]\$66,862.38[/tex]  

Part C) Monthly [tex]\$67,195.44[/tex]  

Part D) Daily [tex]\$67,261.54[/tex]  

Step-by-step explanation:

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

Part A)

Annual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=1[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{1})^{1*5}[/tex]  

[tex]A=47,400(1.07)^{5}[/tex]  

[tex]A=\$66,480.95[/tex]  

Part B)

Semiannual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=2[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{2})^{2*5}[/tex]  

[tex]A=47,400(1.035)^{10}[/tex]  

[tex]A=\$66,862.38[/tex]  

Part C)

Monthly

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=12[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{12})^{12*5}[/tex]  

[tex]A=47,400(1.0058)^{60}[/tex]  

[tex]A=\$67,195.44[/tex]  

Part D)

Daily

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=365[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{365})^{365*5}[/tex]  

[tex]A=47,400(1.0002)^{1,825}[/tex]  

[tex]A=\$67,261.54[/tex]  

The value of an investment of $47,400 at an interest rate of 7% per year was calculated at the end of 5 years for different compounding methods, reaching slightly different amounts, with the highest value obtained through daily compounding.

The value of the investment at the end of 5 years for different compounding methods would be:

(a) Annual: $62,899.68(b) Semiannual: $63,286.83(c) Monthly: $63,590.92(d) Daily: $63,609.29

For Carolina's birthday, her mom took her and 4 friends to a water park. Carolina's mom paid $40 for 5 student tickets. What was the price for one student ticket?

Answers

Answer:

The price for one student ticket is $8

The table below shows values for x and y. If y varies directly as x, what is the constant of variation?

Answers

If the table below shows values for x and y. If y varies directly as x, The constant of variation will be 4.

What is a proportional relationship?

It is defined as the relationship between two variables when the first variable increases, the second variable also increases according to the constant factor.

It is given that, The value of y and x are,

y  12  24  36  48

x   3   6    9   12

Suppose k is the constant of proportionality,

Lineae equation is defined as the relation between two variables, if we plot the graph of the linear equation we will get a straight line.

If in the linear equation, one variable is present, then the equation is known as the linear equation in one variable.

y=kx

k=12/3

k=4

Thus, if the table below shows values for x and y. If y varies directly as x, The constant of variation will be 4.

Learn more about the proportional here:

brainly.com/question/14263719

#SPJ3

Other Questions
A controlled experiment _____. is repeated many times to ensure that the results are accurate includes at least two groups, one of which does not receive the experimental treatment includes at least two groups, one differing from the other by two or more variables includes one group for which the scientist controls all variables...........biology [30 points] Help with volume! A circular swimming pool has a radius of 7 m and a depth of 1.4 meters. It is filled to the top with water. It develops a leak and loses 5 cubic meters of water every 2 hours. After how long would the water in the swimming pool be at a depth of 0.9 m?use 3.14 for pi.Volume of a cylinder pi r squared depth.Round your answer to the nearest hours.PLEASE give an explanation with your answer! A detailed answer will get Brainliest. :) Which book was used as a source for this text passage?ApartheidMandelaNelson MandelaMandela: The Authorised Biography Which object waits for and responds toan event from a GUI component?buttonlistenerGUIlisteneraction eventlistenerwindowlistener What is the name for a person who made a contract to work for a certainnumber of years in exchange for passage to the New World and a place tolive?OA. An African slave traderOB. A ship ownerC. A Native AmericanOD. An indentured servantSUBMIT I NEED HELP ASAP! Thirty patients with acne volunteer to be treated with either a medicinal lotionor a normal moisturizing cream. This type of experimental design is calleda(n)A. in vitro observationB. clinical trialc. geographical cohort studyD. general population survey Which part of the federal government is not mentioned in the Constitution but, by custom, has affected the impact of the Constitution? A. the Cabinet B. the Supreme Court C. the executive branch D. the Congress What is the role of the trigger zone? What is summation? Explain. Mercury is 0.39 AU from the sun. What is its distance from the sun in kilometers? Imagine that you want to express strong feelings about something in your daily life. Which forms of expression would you use to get your message across? Check any that apply.paintingdancingwritingdrawingplaying musictalking to a friend The process of enlisting more and larger motor units to produce a stronger contraction is called: ________ Two 1.50-V batterieswith their positive terminals in the same directionare inserted in series into the barrel of a flashlight. One battery has an internal resistance of 0.240 , the other an internal resistance of 0.180 . When the switch is closed, a current of 600 mA occurs in the lamp. (a) What is the bulb's resistance? (b) What fraction of the chemical energy transformed appears as internal energy in the batteries? % 2. Scientists often work together with other scientists. If you were working in a scientific laboratory, how could you help people in your laboratory work together in a way that is effective, and help make sure that people got fair credit for their work? What is needed for people to work together in an effective way? (10 points) APEX x^4 - 1 = A. (x+1)(x-1)(x^2+1) B. ( X+1)^2(x-1)^2 C. (X+1)^3(X-1)^1 D. (x-1)^4 SQL>QuestionYou need to start your database so you can renamesome of the data files associated with the database Youmust ensure that other users cannot connect and starttransactions. Specify the command to start the databasein the appropriate mode.Type your answer and select Done.Done Find the diagonal of a square whose sides are of the given measure. Given = 6sqrt2 What can create variations in color or structure in hair samples? Dyes The location on the scalp the sample is pulled from The length of the strand All of the above What are the coordinates of the vertex of the parabola described by the equation below? y=2(x+5)^2+3 APEX Which of the following is the measure of ZAXY if ray x bisects ZAXB,which measures 110?O A. 50O B. 55O C. 45O D. 110 max is a method that accepts two int arguments and returns the value of the larger one. Four int variables, population1, population2, population3 and population4 have already been declared and initialized. Write an expression (not a statement !) whose value is the largest of population1, population2, population3 and population4 by calling max. Assume that max is defined in the same class that calls it.