If a body travels half it’s total path in the last 1.10s if it’s fall from rest, find the total time of its fall (in seconds)

Answers

Answer 1

Answer:

3.75s

Explanation:

We can use the equations for constant acceleration motion. Let's call x, the total length of the path, then x/2 will be half of path. After falling from rest and reaching the half of its total path, the velocity of the body will be:

[tex]v_f^2 =v_0^2 + 2a(x/2)[/tex]

vf is the final velocity, v0 is the initial velocity, 0m/s because the body starts from rest. a is the acceleration, gravity = 9.81m/s^2 in this case. Now, clearing vf we get:

[tex]v_f=\sqrt{(0m/s)^2 + 2g(x/2)}\\v_f = \sqrt{g*x}

In the second half:

[tex]x/2 = \frac{1}{2}gtx^{2}  + v_ot[/tex]

[tex]x/2 = \frac{1}{2}g*(t)^2 + \sqrt{g*x}*(t)[/tex]

[tex](\frac{1}{2}\frac{(x-gt^2)}{\sqrt{g}t})^2 = x\\\\\frac{1}{4gt^2}(x^2 - 2xgt^2 + g^2t^4) = x\\\\\frac{1}{4gt^2}x^2 - (\frac{2gt^2}{4gt^2}+1)x + \frac{g^2t^4}{4gt^2} = 0\\ \frac{1}{4gt^2}x^2 - \frac{3}{2}x + \frac{gt^2}{4} = 0\\[/tex]

[tex]0.0211 x^2 - 1.5x + 2.97 = 0\\[/tex]

Solving for x, you get that x is equal to 69.2 m or 2.03m. The total time of the fall would be:

[tex]x = \frac{1}{2}gt^2\\t=\sqrt{(2x/g)}[/tex]

Trying both possible values of x:

[tex]t_1 = 3.75 s\\t_2 = 0.64 s[/tex]

t2  is lower than 1.1s, therefore is not a real solution.

Therefore, the path traveled will be 69.2m and the total time 3.75s


Related Questions

At the same moment, one rock is dropped and one is thrown downward with an initial velocity of 29m/s from the top of a building that is 300 m tall. How much earlier does the thrown rock strike the ground? Neglect air resistance. Please show all work and formulas used thanks

Answers

Answer:

The thrown rock strike 2.42 seconds earlier.

Explanation:

This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

[tex]x=vo*t+\frac{1}{2} a*t^2\\where\\x=distance\\vo=initial velocity\\a=acceleration[/tex]

So now we have an equation and unkown value.

for the thrown rock

[tex]\frac{1}{2}(9.8)*t^2+29*t-300=0[/tex]

for the dropped rock

[tex]\frac{1}{2}(9.8)*t^2+0*t-300=0[/tex]

solving both equation with the quadratic formula:

[tex]\frac{-b\±\sqrt{b^2-4*a*c} }{2*a}[/tex]

we have:

the thrown rock arrives on t=5.4 sec

the dropped rock arrives on t=7.82 sec

so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)

Final answer:

The thrown rock hits the ground approximately 1.89 seconds earlier than the dropped rock when released simultaneously from a height of 300 meters.

Explanation:

To determine how much earlier the thrown rock strikes the ground compared to the dropped rock, we need to use the kinematic equation Projectile motion that relates displacement (Δx), initial velocity (vi), acceleration (a), and time (t): Δx = vi * t + 0.5 * a * t₂.

Since we're dealing with gravity, acceleration due to gravity (a) is 9.8 m/s². For the rock that is dropped, the initial velocity (vi) is 0 m/s, while the rock thrown downward has an initial velocity of 29 m/s.

First, we'll find the time it takes for the dropped rock to hit the ground:

0 = vi * t + 0.5 * a * t₂ - Δx0 = 0 * t + 0.5 * 9.8 * t₂ - 3000 = 4.9 * t₂ - 300t₂ = 61.22t ≈ √61.22 ≈ 7.83 seconds

Next, we use the same equation to find the time for the thrown rock:

0 = vi * t + 0.5 * a * t₂ - Δx0 = 29 * t + 0.5 * 9.8 * t₂ - 3000 = 29 * t + 4.9 * t₂ - 300

This forms a quadratic equation in the form of at₂ + bt + c = 0. To solve for t, we use the quadratic formula. We only need the positive root since time cannot be negative:

t = (-b ± √(b2 - 4ac))/(2a)t ≈ (5.94 seconds)

Finally, the difference in time between when the two rocks hit the ground is:

Time difference = Time for dropped rock - Time for thrown rockTime difference ≈ 7.83 s - 5.94 s ≈ 1.89 seconds

Therefore, the thrown rock hits the ground approximately 1.89 seconds earlier than the dropped rock.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ2

A glider moves along an air track with constant acceleration a. It is projected from the start of the track (x = 0 m) with an initial velocity of v0. At time t = 8s, it is at x = 100 cm and is moving along the track at velocity vt = − 0.15 m/s. Find the initial velocity v0 and the acceleration a.

Answers

Answer:

vo = 0.175m/s

a = -0.040625 m/s^2

Explanation:

To solve this problem, you will need to use the equations for constant acceleration motion:

[tex]x = \frac{1}{2}at^2 +v_ot+x_o \\v_f^2 - v_o^2 = 2(x-x_o)a[/tex]

In the first equation you relate final position with the time elapsed, in the second one, you relate final velocity at any given position. In both equations, you will have both the acceleration a and the initial velocity vo as variables. We can simplify with the information we have:

1. [tex]x = \frac{1}{2}at^2 +v_ot+x_o\\0.1m = \frac{1}{2}a(8s)^2 +v_o(8s)+0m \\0.1 = 32a + 8v_o[/tex]

2. [tex]v_f^2 - v_o^2 = 2(x-x_o)a\\(-0.15m/s)^2 - v_o^2 = 2(0.1m-0m)a\\0.0225 - v_o^2 = 0.2a\\a = \frac{0.0225 - v_o^2}{0.2} = 0.1125 - 5v_o^2[/tex]

Replacing in the first equation:

[tex]0.1 = 32(0.1125 - 5v_o^2) + 8v_o\\0.1 = 3.6 - 160v_o^2 + 8v_o\\160v_o^2 - 8v_o - 3.5 = 0[/tex]

[tex]v_0 = \frac{-(-8) +- \sqrt{(-8)^2 - 4(160)(-3.5)}}{2(160)} \\ v_o = 0.175 m/s | -0.125 m/s[/tex]

But as you are told that the ball was projected om the air track, it only makes sense for the velocity to be positive, otherwise it would have started moving outside the air track, so the real solution is 0.175m/s. Then, the acceleration would be:

[tex]a = 0.1125 - 5v_o^2\\a = -0.040625  m/s^2[/tex]

If a wave vibrates up and down twice each second and travels a distance of 20 m each second and travels a distance of 20 m each second, what is its frequency? Its wave speed?

Answers

Answer:

Frequency is 0.5 Hz and the wave speed is 10 m/s.

Explanation:

As we know that frequency is defined as the how many times the no of cycles repeat in one second so if the wave is vibrating up and down  twice during 1 second then the frequency in 1 second is

[tex]f=\frac{1}{2} hz\\F=0.5hz[/tex]

Therefore frequency is 0.5 Hz.

Now the distance of wawe in each second is,

[tex]d=20m[/tex]

Now the wave velocity is,

[tex]v=fd[/tex]

Here, f is frequency, d is the distance, v is the wave velocity.

Substitute all the variables

[tex]v=0.5\times 20\\v=10m/s[/tex]

Therefore the wave speed is 10 m/s.

Final answer:

In the given question, the wave's frequency is 2 Hertz (Hz), which means it oscillates twice per second. The wave speed, or distance covered by the wave per second, is identified as 20 m/s. These are fundamental concepts in the Physics of wave mechanics.

Explanation:

In this question, we're dealing with the topics of wave frequency and wave speed. The frequency of a wave relates to how many cycles of the wave occur per unit of time - in this case, the wave is oscillating twice per every second, meaning that its frequency is 2 Hertz (Hz).

The wave speed is the speed at which the wave is travelling. Given that the wave travels a distance of 20 m each second, the speed of the wave is 20 m/s (meters per second).

It's important to note that these two properties are interconnected. In general, the speed of a wave (v) is calculated by multiplying its wavelength (λ) by its frequency (f). So, using the relationship v = λf, the properties of a wave can be determined if the other two are known.

Learn more about Wave Mechanics here:

https://brainly.com/question/24459019

#SPJ3

A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to provide a 2-V voltage. Sketch the circuit. Assuming exact-valued resistors, what output voltage (measured to ground) and equivalent output resistance result? If the resistors used are not ideal but have a ±5% manufacturing tolerance, what are the extreme output voltages and resistances that can result?

Answers

Answer:

circuit sketched in first attached image.

Second attached image is for calculating the equivalent output resistance

Explanation:

For calculating the output voltage with regarding the first image.

[tex]Vout = Vin \frac{R_{2}}{R_{2}+R_{1}}[/tex]

[tex]Vout = 5 \frac{2000}{5000}[/[tex]

[tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V[/tex]

For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.

so.

[tex]R_{out} = R_{2} || R_{1}\\R_{out} = 2000||3000 = \frac{2000*3000}{2000+3000} = 1200[/tex]

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.  

if the -5% is applied to both resistors the Voltage is still 5V because the quotient  has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:

[tex]Vout = 5 \frac{1900}{4900}\\Vout = 5 \frac{19}{49} = 1.93 V[/tex]

[tex]Vout = 5 \frac{2100}{5100}\\Vout = 5 \frac{21}{51} = 2.05 V[/tex]

[tex]R_{out} = R_{2} || R_{1}\\R_{out} = 1900||2850= \frac{1900*2850}{1900+2850} = 1140[/tex]

[tex]R_{out} = R_{2} || R_{1}\\R_{out} = 2100||3150 = \frac{2100*3150 }{2100+3150 } = 1260[/tex]

so.

[tex]V_{out} = {1.93,2.05}V\\R_{1} = {1900,2100}\\R_{2} = {2850,3150}\\R_{out} = {1140,1260}[/tex]

A world-class sprinter accelerates to his maximum speed in 3.8 s. He then maintains this speed for the remainder of a 100-m race, finishing with a total time of 9.3 s . What is the runner's average acceleration during the first 3.8 s ?
What is his average acceleration during the last 5.5 s ?
What is his average acceleration for the entire race?

Answers

Answer:

Explanation:

Given

sprinter achieve maximum speed in 3.8 sec

Let v be the maximum speed and a be the acceleration in first 3.8 s

[tex]a=\frac{v-0}{3.8}[/tex]

distance traveled in this time span

[tex]x=ut+\frac{1}{2}at^2[/tex]

here u=0

[tex]x=\frac{1}{2}\times \frac{v-0}{3.8}\times 3.8^2[/tex]

[tex]x=\frac{3.8}{2}v[/tex]

remaining distance traveled in 9.3-3.8 =5.5 s

[tex]100-x=v\times 5.5[/tex]

put value of x

[tex]100-\frac{3.8}{2}v=5.5v[/tex]

100=1.9v+5.5v

100=7.4v

[tex]v=\frac{100}{7.4}=13.51 m/s[/tex]

Thus average acceleration in first 3.8 sec

[tex]a_{avg}=\frac{0+a}{2}[/tex]

and [tex]a=\frac{13.51}{3.8}=3.55 m/s^2[/tex]

[tex]a_{avg}=\frac{3.55}{2}=1.77 m/s^2[/tex]

Average acceleration during last 5.5 sec will be zero as there is no change in velocity.

Average acceleration for the entire race[tex]=\frac{13.51}{9.3}=1.45 m/s^2[/tex]

Final answer:

The average acceleration in the first 3.8 seconds would be the final speed divided by 3.8 s. During the next 5.5 seconds, the average acceleration is zero because there is no change in velocity. The average acceleration for the entire race can be calculated as the final velocity divided by total time.

Explanation:

The average acceleration is calculated by the change in velocity divided by the change in time. In this case, for the first 3.8 seconds, the sprinter was accelerating, so the average acceleration was the final speed (which we do not know yet) divided by 3.8 s. However, in the remaining 5.5 seconds, the sprinter did not accelerate or decelerate, so the average acceleration is zero.

For the first part, we first need to calculate the steady speed. This is given by the distance covered (100 m minus the distance covered in first 3.8 seconds) divided by the time for this (5.5 seconds). We will assume a uniform acceleration in the first 3.8 seconds. His average speed in this period will then be half his maximum speed. So, maximum speed = (2 * distance in first 3.8 secs) / 3.8. Finally, the average acceleration for entire race can be calculated by the total change in velocity (which is the final velocity) divided by the total time (which is 9.3 s).

Learn more about average acceleration here:

https://brainly.com/question/33442003

#SPJ3

Suppose you exert a 400-N force on a wall but the wall does not move. The work you are doing on the wall is : unknown, because the mass of the wall is not given
zero, because the wall is not moving
3920 J
400 J

Answers

Answer:

W = 0 :The work done on the wall is zero,because the wall is not moving

Explanation:

Work theory

Work is the product of a force applied to a body and the displacement of the body in the direction of this force.

W= F*d Formula (1)

W: Work (Joules) (J)

F: force applied (N)

d=displacement of the body (m)

The work is positive (W+) if the force goes in the same direction of movement.

The work is negative (W-)if the force goes in the opposite direction to the movement

Data

F= 400-N

d= 0

Problem development

We apply formula (1) to calculate the work done on the wall:

W= 400*0

W=0

The Mariana Trench in the western Pacific Ocean includes the greatest known ocean depth at approximately 6.8 miles. The atmosphere exerts a pressure of 14.7 lbf/in.2 at the ocean surface. Modeling the ocean seawater as static and assuming constant local acceleration of gravity of 32.1 ft/s2 and constant seawater density of 64.2 lb/ft3 , determine the absolute pressure, in lbf/in.2 , at this depth

Answers

Final answer:

The absolute pressure at the bottom of the Mariana Trench is calculated by adding the atmospheric pressure to the hydrostatic pressure due to the water column, resulting in approximately 509,367.85 lbf/in.².

Explanation:

To calculate the absolute pressure at the bottom of the Mariana Trench, we start by understanding that pressure in a static fluid increases linearly with depth. The increase in pressure, ΔP, due to the water column can be calculated using the formula ΔP = ρgh, where ρ is the density of seawater, g is the acceleration due to gravity, and h is the depth. Given the constants, ρ = 64.2 lb/ft³, g = 32.1 ft/s², and h = 6.8 miles (35,856 ft), we first convert the depth into feet as pressure calculations require consistent units. The calculation is as follows: ΔP = 64.2 lb/ft³ * 32.1 ft/s² * 35,856 ft = 73,346,473.6 lb/ft². Converting this to lbf/in.², we divide by 144 (since 1 ft² = 144 in.²), resulting in ΔP approximately 509,353.15 lbf/in.². Adding the atmospheric pressure of 14.7 lbf/in.² at the surface, the absolute pressure at the bottom of the Mariana Trench in lbf/in.² is approximately 509,367.85 lbf/in.².

The absolute pressure at the depth of the Mariana Trench is approximately [tex]\(7.42 \times 10^9 \, \text{lbf/in}^2\),[/tex]calculated using the hydrostatic pressure formula.

To find the absolute pressure at the depth of the Mariana Trench, we can use the hydrostatic pressure formula:

[tex]\[ P = P_0 + \rho \cdot g \cdot h \][/tex]

Where:

-  P is the absolute pressure at the depth,

-  P0  is the atmospheric pressure at the surface (given as 14.7 lbf/in²),

-  rho  is the density of seawater (given as 64.2 lb/ft³),

-  g  is the acceleration due to gravity (given as 32.1 ft/s²), and

-  h  is the depth of the trench (given as 6.8 miles).

First, let's convert the depth from miles to feet:

[tex]\[ 6.8 \text{ miles} \times 5280 \text{ ft/mile} = 35904 \text{ ft} \][/tex]

Now, we can plug in the values into the formula:

[tex]\[ P = 14.7 \text{ lbf/in}^2 + (64.2 \text{ lb/ft}^3) \times (32.1 \text{ ft/s}^2) \times (35904 \text{ ft}) \][/tex]

Let's calculate this value.

To find the absolute pressure at the depth of the Mariana Trench, we'll first calculate the pressure due to the water column using the hydrostatic pressure formula:

[tex]\[ P = P_0 + \rho \cdot g \cdot h \][/tex]

Where:

- [tex]\( P_0 = 14.7 \, \text{lbf/in}^2 \)[/tex] is the atmospheric pressure at the surface,

-[tex]\( \rho = 64.2 \, \text{lb/ft}^3 \)[/tex] is the density of seawater,

- [tex]\( g = 32.1 \, \text{ft/s}^2 \)[/tex] is the acceleration due to gravity, and

- [tex]\( h = 6.8 \, \text{miles} \times 5280 \, \text{ft/mile} = 35904 \, \text{ft} \)[/tex]is the depth of the trench in feet.

Plugging in the values:

[tex]\[ P = 14.7 + (64.2 \times 32.1 \times 35904) \][/tex]

Let's calculate this.

[tex]\[ P = 14.7 + (64.2 \times 32.1 \times 35904) \][/tex]

[tex]\[ P = 14.7 + (64.2 \times 32.1 \times 35904) \][/tex]

[tex]\[ P = 14.7 + (206368.8 \times 35904) \][/tex]

[tex]\[ P = 14.7 + 7417798272 \][/tex]

[tex]\[ P ≈ 7417798286.7 \, \text{lbf/in}^2 \][/tex]

Therefore, the absolute pressure at the depth of the Mariana Trench is approximately [tex]\( 7.42 \times 10^9 \, \text{lbf/in}^2 \).[/tex]

A banked circular highway is designed for traffic moving
at60km/h. The radius of the curve is 200m. Traffic ismoving along
the highway at 40km/h on a rainy day. What isthe minimum
coefficient of friction between tires and road thatwill allow cars
to negotiate the turn without sliding off theroad?

Answers

Answer:

0.063

Explanation:

velocity of the car, v = 40 km/h = 11.11 m/s

radius, r = 200 m

Let the coefficient of friction is μ.

The coefficient of friction relates to the velocity on banked road is given by

[tex]\mu =\frac{v^{2}}{rg}[/tex]

where, v is the velocity, r be the radius of the curve road and μ is coefficient of friction.

By substituting the values, we get

[tex]\mu =\frac{11.11^{2}}{200\times 9.8}[/tex]

μ = 0.063

Magnetic field is measured in SI units of a tesla (T), and a current through a wire generates a field around the wire. The largest fields that we can make with most normal conducting materials carrying current are limited by the resistance of the wire and are around 1 tesla. For comparison, Earth's magnetic field is roughly 50 micro tesla You may have heard of a field unit called a gauss. It takes 10,000 G to make 1 T. What would be the maximum force on a wire 0.1 m long carrying a current of 80 A in a uniform magnetic field of 1 T? 8 N when the wire is perpendicular to the field
80 N when the wire is perpendicular to the field
8 N when the wire is parallel to the field
80 N when the wire is parallel to the field

Answers

Answer:

The answer is 8 N

Explanation:

The Lorentz force for a current carrying wire is

f = I * L x B

So, for magnetic forces to manifest the current must not be parallel to the magnetic field. So the cases where the wire is parallel to the field would result in a force of zero applied on the wires  by the magnetic field because the cross product becomes zero.

For the perpendicular cases:

f = I * L * B

f = 80 * 0.1 * 1 = 8 N

Two point charges of -7uC and 4uC are a distance of 20
cmapart. How much work does it take to move these charges outto a
separation of 90 cm apart @ a constant speed?

Answers

Answer:

Approximately 0.979 J.

Explanation:

Assume that the two charges are in vacuum. Apply the coulomb's law to find their initial and final electrical potential energy [tex]\mathrm{EPE}[/tex].

[tex]\displaystyle \mathrm{EPE} = \frac{k \cdot q_1 \cdot q_2}{r}[/tex],

where

The coulomb's constant [tex]k = 8.99\times 10^{9}\; \rm N\cdot m^{2} \cdot C^{-2}[/tex],[tex]q_1[/tex] and [tex]q_2[/tex] are the sizes of the two charges, and[tex]r[/tex] is the separation of (the center of) the two charges.

Note that there's no negative sign before the fraction.

Make sure that all values are in SI units:

[tex]q_1 = -7\rm \;\mu C = -7\times 10^{-6}\; C[/tex];[tex]q_2 = 4\rm \;\mu C = 4\times 10^{-6}\; C[/tex];Initial separation: [tex]\rm 20\; cm = 0.20\; cm[/tex];Final separation: [tex]\rm 90\; cm = 0.90\; cm[/tex].

Apply Coulomb's law:

Initial potential energy:

[tex]\begin{aligned} \frac{k \cdot q_1 \cdot q_2}{r} &= \frac{8.99\times 10^{9}\times (-7\times 10^{-6})\times 4\times 10^{-6}}{0.20}\\&= \rm -1.2586\; J\end{aligned}[/tex].

Final potential energy:

[tex]\begin{aligned} \frac{k \cdot q_1 \cdot q_2}{r} &= \frac{8.99\times 10^{9}\times (-7\times 10^{-6})\times 4\times 10^{-6}}{0.90}\\&= \rm -0.279689\; J\end{aligned}[/tex].

The final potential energy is less negative than the initial one. In other words, the two particles gain energy in this process. The energy difference (final minus initial) will be equal to the work required to move them at a constant speed.

[tex]\begin{aligned}\text{Work required} &= \text{Final EPE} - \text{Initial EPE}\\&= \rm  -0.279689\; J - (-1.2586\; J)\\&\approx 0.979\; J\end{aligned}[/tex].

Answer:

Answer is c

Explanation:

trust me.

Create a mathematical model for the pressure variation as a function of position and time for a sound wave, given that the wavelength of the wave is λ = 0.190 m and the maximum pressure variation is ΔPmax = 0.270 N/m2. Assume the sound wave is sinusoidal. (Assume the speed of sound is 343 m/s. Use the following as necessary: x and t. Assume ΔP is in Pa and x and t are in m and s, respectively. Do not include units in your answer.)

Answers

Answer:

The equation of position and time for a sound wave is [tex]\Delta p=0.270(33.06 x-11342.40 t)[/tex].

Explanation:

Given that,

Wavelength = 0.190 m

Maximum pressure [tex]\Delta P_{max}= 0.270 N/m^2[/tex]

We know that,

The function of position and time for a sound wave,

[tex]\Delta p=\Delta p_{max}(kx-\omega t)[/tex]....(I)

We need to calculate the frequency

Using formula of frequency

[tex]f=\dfrac{v}{\lambda}[/tex]

Put the value into the formula

[tex]f=\dfrac{343}{0.190}[/tex]

[tex]f=1805.2\ Hz[/tex]

We need to calculate the angular frequency

Using formula of angular frequency

[tex]\omega =2\pi f[/tex]

Put the value into the formula

[tex]\omega=2\pi\times1805.2[/tex]

[tex]\omega=11342.40\ rad/s[/tex]

We need to calculate the wave number

Using formula of wave number

[tex]k = \dfrac{2\pi}{\lambda}[/tex]

Put the value into the formula

[tex]k=\dfrac{2\pi}{0.190}[/tex]

[tex]k=33.06[/tex]

Now, put the value of k and ω in the equation (I)

[tex]\Delta p=0.270(33.06 x-11342.40 t)[/tex]

Hence, The equation of position and time for a sound wave is [tex]\Delta p=0.270(33.06 x-11342.40 t)[/tex].

Final answer:

The mathematical model for the pressure variation of a sound wave involves sine functions with specific parameters. To find the frequency and speed of the sound wave, formulas relating wavelength, speed, and frequency are utilized.

Explanation:

The mathematical model for the pressure variation of a sound wave is given by the equation: ΔP = ΔPmax * sin((2π / λ) * x - (2πf) * t). In this equation, ΔPmax is the maximum pressure variation, λ is the wavelength, x is the position, t is the time, and f is the frequency.

To find the frequency of the sound wave, you can use the formula: f = v / λ, where v is the speed of sound. Substituting the given values allows you to calculate the frequency.

The speed of the sound wave can be determined using the formula: v = f * λ. By substituting the frequency and wavelength values, you can find the speed of the sound wave.

A student walks (2.9±0.1)m, stops and then walks another (3.9 ±0.2)m in the same directionWith the given uncertainties, what is the smallest distance the student could possibly be from the starting point?

Answers

Answer:

The smallest distance the student that the student could be possibly be from the starting point is 6.5 meters.

Explanation:

For 2 quantities A and B represented as

[tex]A\pm \Delta A[/tex] and [tex]B\pm \Delta B[/tex]

The sum is represented as

[tex]Sum=(A+B)\pm (\Delta A+\Delta B)[/tex]

For the the values given to us the sum is calculated as

[tex]Sum=(2.9+3.9)\pm (0.1+0.2)[/tex]

[tex]Sum=6.8\pm 0.3[/tex]

Now the since the uncertainity inthe sum is [tex]\pm 0.3[/tex]

The closest possible distance at which the student can be is obtained by taking the negative sign in the uncertainity

Thus closest distance equals [tex]6.8-0.3=6.5[/tex]meters

Two 1.0 g spheres are charged equally and placed 2.2 cm apart. When released, they begin to accelerate at 180 m/s^2 . What is the magnitude of the charge on each sphere?

Answers

Answer:

[tex]q=9.83\times 10^{-8}\ C[/tex]

Explanation:

Given that,

Mass of the two spheres, m₁ = m₂ = 1 g = 0.001 kg

Distance between spheres, d = 2.2 cm = 0.022 m

Acceleration of the spheres when they are released, [tex]a=180\ m/s^2[/tex]

Let q is the charge on each spheres. The force due to motion is balanced by the electrostatic force between the spheres as :

[tex]ma=k\dfrac{q^2}{d^2}[/tex]

[tex]q=\sqrt{\dfrac{mad^2}{k}}[/tex]

[tex]q=\sqrt{\dfrac{0.001\times 180\times (0.022)^2}{9\times 10^9}}[/tex]

[tex]q=9.83\times 10^{-8}\ C[/tex]

So, the magnitude of charge on each sphere is [tex]9.83\times 10^{-8}\ C[/tex]. Hence, this is the required solution.

Final answer:

To find the magnitude of the charge on the spheres, we utilize Coulomb's Law and Newton's Second Law, set up an equation, and solve for the charge q. Ensure consistency in the units while solving.

Explanation:

To find the magnitude of the charge on the spheres, we start by using Coulomb's Law, which is expressed as F = k*q1*q2/r^2. Here, F is the force, k is Coulomb's constant (8.99 * 10^9 N m^2/C^2), q1 and q2 are the charges, and r is the separation. Given that the spheres are charged equally (q1 = q2), we can refer to them just as q.

The spheres start accelerating once released, and the only force in operation is the electrostatic force. Thus, according to Newton's second law (F = ma), the force can also be expressed as F = 2*(mass*acceleration) because two spheres are involved.

By equating both expressions for F, we have 2*(mass*acceleration) = k*q^2/r^2. From this equation, we can solve for q = sqrt((2*mass*acceleration*r^2)/k). Substituting given values, we have q = sqrt((2 * 1.0 g * 180 m/s^2 * (2.2 cm)^2)/(8.99 * 10^9 N m^2/C^2)).

Remember to convert grams to kilograms and centimeters to meters to maintain consistency in the units while solving.

Learn more about Electrostatic Force here:

https://brainly.com/question/31042490

#SPJ3

A jetliner rolls down the runway with constant acceleration from rest, it reaches its take off speed of 250 km/h in 1 min. What is its acceleration? Express in km/h^2, does this result make sense?

Answers

Answer:

Acceleration, [tex]a=14970.05\ km/h^2[/tex]

Explanation:

Given that,

Initially, the jetliner is at rest, u = 0

Final speed of the jetliner, v = 250 km/h

Time taken, t = 1 min = 0.0167 h

We need to find the acceleration of the jetliner. The mathematical expression for the acceleration is given by :

[tex]a=\dfrac{v-u}{t}[/tex]

[tex]a=\dfrac{250}{0.0167}[/tex]

[tex]a=14970.05\ km/h^2[/tex]

So, the acceleration of the jetliner is [tex]14970.05\ km/h^2[/tex]. Hence, this is the required solution.

If the electron has a speed equal to 9.10 x 10^6 m/s, what is its wavelength?

Answers

Answer:

[tex]\lambda=8.006\times 10^{-11}\ m[/tex]

Explanation:

Given that,

The speed of an electron, [tex]v=9.1\times 10^6\ m/s[/tex]

We need to find the wavelength of this electron. It can be calculated using De -broglie wavelength concept as :

[tex]\lambda=\dfrac{h}{mv}[/tex]

h is the Planck's constant

[tex]\lambda=\dfrac{6.63\times 10^{-34}}{9.1\times 10^{-31}\times 9.1\times 10^6}[/tex]

[tex]\lambda=8.006\times 10^{-11}\ m[/tex]

So, the wavelength of the electron is [tex]8.006\times 10^{-11}\ m[/tex]. Hence, this is the required solution.

A total charge of 4.70 is distributed on two metal spheres. When the spheres are 10 cm apart, they each feel a repulsive force of 4.7 x 10^11 N. How much charge is on the sphere and which has the lower amount of charge?

Answers

Answer:0.114 C

Explanation:

Given

Total 4.7 C is distributed in two spheres

Let [tex]q_1[/tex] and [tex]q_2[/tex] be the charges such that

[tex]q_1+q_2=4.7[/tex]

and Force between charge particles is given by

[tex]F=\frac{kq_1q_2}{r^2}[/tex]

[tex]4.7\times 10^11=\frac{9\times 10^9\times q_1\cdot q_2}{0.1^2}[/tex]

[tex]q_1\cdot q_2=0.522[/tex]

put the value of [tex]q_1[/tex]

[tex]q_2\left ( 4.7-q_2\right )=0.522[/tex]

[tex]q_2^2-4.7q_2+0.522=0[/tex]

[tex]q_2=\frac{4.7\pm \sqrt{4.7^2-4\times 1\times 0.522}}{2}[/tex]

[tex]q_2=0.114 C[/tex]

thus [tex]q_1=4.586 C[/tex]

A charge 4q is at the origin, and a charge of -3q is on the positive x-axis at x = a. Where would you place a third charge so it would experience zero net electric force? (Note: Either enter your answer as an unevaluated expression, e.g., (3/2 + sqrt(3))a, or if evaluated, use 2 decimal places.) Your expression should be in terms of the given variable.

Answers

Answer:

6.45 a

Explanation:

Charge on O, q1 = 4q

Charge on A, q2 = - 3 q

OA = a

Let the net force is zero at point P, where AP = x , let a charge Q is placed at P.

The force on point P due to the charge q1 = The force on point P due to the  

                                                                          charge q2

By using Coulomb's law

[tex]\frac{Kq_{1}Q}{OP^{2}}=\frac{Kq_{2}Q}{AP^{2}}[/tex]

[tex]\frac {K4qQ}{(a+x)^{2}}= \frac {K3qQ}{x^{2}}[/tex]

[tex]\frac{a+x}{x}=\sqrt{\frac{4}{3}}[/tex]

[tex]\frac{a+x}{x}=1.155[/tex]

a + x = 1.155 x

0.155 x = a

x = 6.45 a

Thus, the force is zero at x = 6.45 a.

Explain why two equipotential lines cannot cross each other.

Answers

Answer:

Explained

Explanation:

Equipotential lines cannot cross each other because. The equipotential at a given point in space is has single value of potential throughout. If two equipotential lines intersect with each other, that would mean two values of potential, that would not mean equipotential line. Hence two equipotential lines cannot cross each other.

Final answer:

Equipotential lines are imaginary lines that connect points with the same electric potential. Two equipotential lines cannot cross each other because that would mean two different points on the same line have the same electric potential, which is not possible.

Explanation:

Equipotential lines are imaginary lines that connect points with the same electric potential. Two equipotential lines cannot cross each other because that would mean two different points on the same line have the same electric potential, which is not possible.

For example, imagine a hill with contour lines representing lines of equal height. If two contour lines were to cross each other, it would mean that two different points on the hill have the same height, which is not possible.

In electricity, the electric potential difference between two points on an equipotential line is zero. If two equipotential lines were to cross, it would create a contradiction, as the potential difference between the two points of intersection would be both zero and non-zero.

Learn more about Electric potential here:

https://brainly.com/question/32897214

#SPJ6

A glass vessel that can be repeatedly filled with precisely the same volume of liquid is called a pycnometer. A certain pycnometer, when empty and dry, weighed 25.296 g. When filled with water at 25 oC the pycnometer and water weighed 34.914 g. When filled with a liquid of unknown composition the pycnometer and its contents weighed 33.485 g. At 25 oC the density of water is 0.9970 g/ml. What is the density of the unknown liquid?

Answers

Answer:

density of liquid 0.848 g/ml

Explanation:

from the information given in the question

mass of water = 34.914 - 25.296 = 9.618 g

volume of pycnometer = volume of water

which will be equal to [tex]= \frac{ mass}{density}[/tex]

[tex]= \frac{9.618}{0.9970} = 9.646 ml[/tex]

mass of liquid =33.485-25.296 = 8.189 ml

density of liquid[tex]= \frac{mass}{volum\ of\ liquid}[/tex]

                           = [tex]\frac{8.189}{9.646} =0.848 g/ml[/tex]

An object carries a charge of -6.1 µC, while another carries a charge of -2.0 µC. How many electrons must be transferred from the first to the second object so that both objects have the same charge?

Answers

Final answer:

To equalize the charges of two objects, the number of electrons transferred from the first object to the second is calculated by dividing the total charge needed (-4.1 x 10^-6 C) by the charge per electron (-1.602 x 10^-19 C/e).

Explanation:

To balance the charges of the two objects, we must first calculate how many electrons represent the disparity in charge between the two objects. This disparity is of 4.1 µC (-6.1 µC - (-2.0 µC) = -4.1 µC). When we convert this to the fundamental unit of charge (Coulombs), we get -4.1 x 10-6 C.

The charge on an electron is -1.602 x 10-19 C. Therefore, the number of electrons that must be transferred to balance the charges can be found by dividing the total charge needed by the charge per electron. That gives us -4.1 x 10-6 C ÷ -1.602 x 10-19 C/e

The result of this calculation denotes how many electrons must be transferred from the first object to the second to make their charges equal.

Learn more about Charge Balance here:

https://brainly.com/question/13344069

#SPJ12

Which, if any, of the following statements concerning the work done by a conservative force is NOT true? All of these statements are true. It can always be expressed as the difference between the initial and final values of a potential energy function. None of these statements are true. It is independent of the path of the body and depends only on the starting and ending points. When the starting and ending points are the same, the total work is zero.

Answers

Final answer:

The false statement among the provided ones about conservative forces is 'None of these statements are true'. Conservative forces rely on the starting and ending points, not the path taken, and the work done on any closed path is always zero. These forces also have a close relationship with potential energy.

Explanation:

The statements provided about conservative forces generally hold true however the false statement is 'None of these statements are true', as all other statements presented are indeed accurate. A conservative force is a type of force where the work done is independent of the path. That is, the work it does only depends on the starting and ending points, not the route taken. This implies that during any closed path or loop, the total work done by a conservative force is zero.

Consider a simple example, such as the gravitational force. If you lift an object to a certain height and then back to its original position, the total work done by the gravitational force is zero as the starting and ending points are the same.

An important concept related to the conservative force is potential energy. When work is done against a conservative force, potential energy is accumulated. Conversely, the component of a conservative force, in a particular direction, equals the negative of the derivative of the potential energy for that force, with respect to a displacement in that direction.

Learn more about Conservative Forces here:

https://brainly.com/question/31849659

#SPJ12

A car enters a freeway with initial velocity of 15.0 m/s and with con stant rate of acceleration, reaches a velocity of 22.5 m/s in a time interval of 3.50 s. a) Determine the value of the car's acceleration. b) Determine the distance traveled by the car in this 3.50 s time interval. c) Determine the average velocity of the car over this 3.50 s time interval.

Answers

Answer:

a) The acceleration is 2.14 m/s^{2}

b) The distance traveled by the car is 65.61 m

c) The average velocity is 18.75 m/s

Explanation:

Using the equations that describe an uniformly accelerated motion:

a) [tex]a=\frac{v_f - v_o}{t} =\frac{22.5m/s - 15.0 m/s}{3.50s}[/tex]

b) [tex]d= d_0 + v_0 t + \frac{1}{2} a t^{2} = 0 +15.0 x 3.5 + \frac{2.14x3.50^{2} }{2} = 65.61 m[/tex]

c) [tex]v_m =\frac{d}{t}=\frac{65.61}{3.5}  =18.75 m/s[/tex]

Which is true concerning the acceleration due to Earth's gravity (ge) ? It decreases with increasing altitude. B. It is different for different objects in free fall. C. It is a fundamental quantity. D. It increases with increasing altitude. E. all of these

Answers

Answer:

Option A decreases with increase in altitude

Explanation:

This can be explained as the value of gravitational acceleration, 'g' is not same everywhere.

It has its maximum value at poles of the Earth and minimum on its equator.

Thus a person will weigh more at poles than equator.

This variation is in accordance to:

[tex]g = \frac{GM_{E}}{radius^{2}}[/tex]

Thus the gravitational acceleration changes as inverse square of the Radius of the Earth.

Thus as we move away from the Earth's center, gravitational acceleration, g decreases.

A 4.0 µC point charge and a 3.0 µC point charge are a distance L apart. Where should a third point charge be placed so that the electric force on that third charge is zero? (Use the following as necessary: L.)

Answers

Answer:

Q must be placed at 0.53 L

Explanation:

Given  data:

q_1 = 4.0 μC , q_2 = 3.0μC

Distance between charge is L

third charge q be placed at  distance x cm from q1

The force by charge q_1 due to q is

[tex]F1 = \frac{k q q_1}{x^2}[/tex]

[tex]F1 = \frac{k q ( 4.0 μC )}{ x^2}[/tex]                  ----1

The force by charge q_2 due to q is

[tex]F2 =  \frac{k q q_2}{(L-x)^2}[/tex]

[tex]F2 = \frac{kq (3.0 μC)}{(L-x)^2}[/tex]                   --2

we know that net electric force is equal to zero

F_1 = F_2

[tex]\frac{k q ( 4.0 μC )}{x^2}   =\frac{k q ( 3.0 μC )}{(l-x)^2}[/tex]

[tex]\frac{4}{3}*(L-x)^2 = x^2[/tex]

[tex]x = \sqrt{\frac{4}{3}*(L - x)[/tex]

[tex]L-x = \frac{x}{1.15}[/tex]

[tex]L = x + \frac{x}{1.15} = 1.86 x[/tex]

x = 0.53 L

Q must be placed at 0.53 L

Final answer:

The third charge should be placed either between the two charges or on the extended line of the two charges to make the electric force on that charge zero. The exact position depends on the charges involved and can be calculated using the principle of superposition and Coulomb's Law.

Explanation:

The problem deals with the principle of superposition in electrostatics and the force on a charge due to other charges nearby. The force on any charge due to a number of other charges is simply the vector sum of the forces due to individual charges. Starting from this principle, we can try to figure out where the third charge must be placed so that the net force on it is zero.

The two possible positions along the line of the charges are on either side of the two given charges, let's call them 4.0 µC (charge_1) and 3.0 µC (charge_2). These positions can be calculated using the formula of force between two point charges (Coulomb's Law): F = k(q1 x q2)/r² where F is force, k is Coulomb's constant, q1 and q2 are charges and r is distance between charges.

 

Learn more about Electric Force here:

https://brainly.com/question/20935307

#SPJ11

two punds of water vapor at 30 psia fill the 4ft3 left chmaber of a partitioned system. The right chmaber has twice the volume of the left and is initially evacuated. Detrmine the pressure of water after the paertiion has been removed nd enough heat has been transfered so that the temperature of the water is 40F.

Answers

Answer:

pressure of water will be 49.7 atm

Explanation:

given data

pressure = 30 psi = 2.04 atm

water = 2 pound = 907.18

mole of water vapor = 907.19 /2 = 50.4 mole

volume = 4 ft³ = 113.2 L

temperature = 40 F = 277.59 K

to find out

pressure of water

solution

we will apply here ideal gas condition

that is

PV = nRT  .......................1

put here all value and here R = 0.0821 , T temperature and V volume and P pressure and n is no of mole

and we get here temperature

PV = nRT  

2.04 × 113.2 = 50.4×0.0821×T

solve it and we get

T = 55.8 K

so we have given right chamber has twice the volume of the left chamber i.e

volume = twice of volume + volume

volume = 2(113.2) + 113.2

volume = 339.6 L

so from equation 1 pressure will be

PV = nRT

P(339.6) = 50.4 × ( 0.0821) × (277.59)

P = 3.3822 atm = 49.7 atm

so pressure of water will be 49.7 atm

a bicyclist is riding to the left with a velocity of 14m/s after a steady gust of wind that lasts 3.5m/s the bicyclist its moving to the left with a velocity of 21m/s

Answers

Final answer:

To find the speed and direction of the wind as observed by a stationary observer when a cyclist is traveling southeast along a road and there is a wind blowing from the southwest, we can use vector addition. By breaking down the velocities of the cyclist and the wind into their components and adding them together, we can determine that the speed of the wind is 15 km/h in the direction of 135°.

Explanation:

The question is asking for the speed and direction of the wind as observed by a stationary observer when a cyclist is traveling southeast along a road at 15 km/h and there is a wind blowing from the southwest at 25 km/h. To calculate the speed and direction of the wind, we can use vector addition. The velocity of the cyclist is given as 15 km/h in the southeast direction. The velocity of the wind is given as 25 km/h in the southwest direction. To find the speed and direction of the wind, we need to add the velocities of the cyclist and the wind.

We can represent the velocity vectors as follows:

Velocity of cyclist = 15 km/h (southeast)

Velocity of wind = 25 km/h (southwest)

To add these vectors, we can break them down into their components:

Velocity of cyclist = 15 km/h * sin(45°) (south) + 15 km/h * cos(45°) (east)

Velocity of wind = 25 km/h * sin(225°) (south) + 25 km/h * cos(225°) (west)

Adding the components of the velocities:

Velocity of cyclist + Velocity of wind = (15 km/h * sin(45°) + 25 km/h * sin(225°)) (south) + (15 km/h * cos(45°) + 25 km/h * cos(225°)) (east)

Calculating the components:

Velocity of cyclist + Velocity of wind = (-10.61 km/h) (south) + (-10.61 km/h) (east)

To find the speed and direction of the wind, we can use the Pythagorean theorem and trigonometry:

Speed of wind = sqrt((-10.61 km/h)^2 + (-10.61 km/h)^2) = 15 km/h

Direction of wind = atan2((-10.61 km/h), (-10.61 km/h)) = 135°

Therefore, the speed of the wind as observed by the stationary observer is 15 km/h in the direction of 135°.

A traveler covers a distance of 217 miles in a time of 8 hours 32 minutes. (a) What is the average speed for this trip?

Answers

Answer:

Average speed, v = 11.37 m/s

Explanation:

Given that,

The distance covered by the traveler, d = 217 miles = 349228 meters

Time taken, [tex]t = 8\ hours \ 32\ minutes =8\ h+\dfrac{32}{60}\ h=8.53\ h[/tex]

or t = 30708 s

We need to find the average speed for this trip. The average speed is given by :

[tex]v=\dfrac{d}{t}[/tex]

[tex]v=\dfrac{349228\ m}{30708\ s}[/tex]  

v = 11.37 m/s

So, the average speed for this trip is 11.37 m/s. Hence, this is the required solution.

Given light with frequencies of: 5.5 x 1014 Hz, 7 x 1014 Hz and 8 x 1014 Hz, calculate the wavelengths in free space. What color are these waves?

Answers

Explanation:

The relation between frequency and wavelength is shown below as:

c = frequency × Wavelength

Where, c is the speed of light having value = 3×10⁸ m/s

So, Wavelength  is:

Wavelength  = c / Frequency

Given:

Frequency = 5.5 × 10¹⁴ Hz

So,

Wavelength  = 3×10⁸ m/s  / 5.5 × 10¹⁴ Hz = 545 × 10⁻⁹ m = 545 nm  (1 nm = 10⁻⁹ m )

This wavelength corresponds to green color.

Frequency = 7 × 10¹⁴ Hz

So,

Wavelength  = 3×10⁸ m/s  / 7 × 10¹⁴ Hz = 428 × 10⁻⁹ m = 428 nm  (1 nm = 10⁻⁹ m )

This wavelength corresponds to  Violet color.

Frequency = 8 × 10¹⁴ Hz

So,

Wavelength  = 3×10⁸ m/s  / 8 × 10¹⁴ Hz = 375 × 10⁻⁹ m = 375 nm  (1 nm = 10⁻⁹ m )

It does not fall in visible region. So no color. It is in UV region.

Two spheres are cut from a certain uniform rock. One has radius 4.10 cm. The mass of the other is eight times greater.

Answers

Final answer:

The volume of the larger sphere is eight times greater than that of the smaller sphere, and since their masses are proportional to their volumes for objects of uniform density, we can find the radius of the larger sphere to be twice that of the smaller sphere with a radius of 4.10 cm, resulting in a radius of 8.20 cm for the larger sphere.

Explanation:

The question concerns a comparison of the volumes of two spheres made from the same uniform rock. Since the mass of one sphere is eight times greater than the other, and since mass is proportional to volume for objects with uniform density, we can deduce that the volume of the larger sphere is also eight times greater than the smaller sphere. Given that the volume of a sphere (V) is calculated as V = (4/3)πR³, where R is the radius, we understand that because the volumes are proportional to the cube of the radii, we can calculate the radius of the larger sphere if we know the radius of the smaller one. Specifically, if the radius of the smaller sphere is 4.10 cm and its volume is V, then the volume of the larger sphere is 8V, and its radius is 2 times that of the smaller sphere since 2³ equals 8. Therefore, the radius of the larger sphere is 2 × 4.10 cm = 8.20 cm.

The Sun appears to move relative to the stars. For example, right now the Sun is in front of the constellation Leo, but in a month it will have moved to Virgo. Using the length of the year (365 days), calculate how fast (degrees/day) this motion is.

Answers

Answer:

0.98°

Explanation:

The Sun appears to move across various constellation because of the Earth's revolution around it. This apparent motion is essentially same as the actual motion of the Earth. The orbit of Earth around the Sun is almost circular.

Time taken to complete one revolution = 365 days

Degrees traveled in 365 Days = 360°

The motion per day is

[tex]=\frac{360}{365}[/tex]

= 0.98° per day

Other Questions
the experiment where the factors being tested are not applied. It allows scientists to set a baseline to compare the experimental groups that do have factors applied to them.Test variable (independent variable):Outcome variable (dependent variable):Control group: Jack applies a force of 30 and move 90 kg box. What is the acceleration of the box? What is the median of 6, 7, 10, 12, 15? Which layer of the earth drive the convection that moves the plates? What is the quadratic equation to this question Please HurryLine is important because A: All photographs have visible lines B: It can be living or artificial elements C: It directs the eye to the focus of the photo graph D: There should be action in all parts of the photograph An intravenous solution contains 500 g of a drug substance in each milliliter. How many milligrams of the drug would a patient receive from the intravenous infusion of a liter of the solution? How does the hypothalamus monitor water in the body?A.If blood is too concentrated, the hypothalamus nerve cells will contain too much salt.B.If blood is too concentrated, the hypothalamus it registers dehydration in its own cells.C. If blood is too concentrated, the hypothalamus registers ADH in the blood.D.If blood is too concentrated, nerve cells in the hypothalamus it has nerve cells that lose water by osmosis and fire more slowly.E.If blood is too concentrated, in the hypothalamus it registers that its cells are losing water by osmosis. Which type of star cluster is loose and disorganized? binary eclipse globular open Which of the following equations have exactly one solution?Choose all answers that apply: Choose the best meaning for the word "nemesis" as itis used in the passage.From the day we first met we were at odds. If she said,"go," I said, "stop." If she said, "yes," I responded, "no."She was always my rival and enemy. It was time for thestudent council election that would determine who wouldbe in charge. Would it be me or my nemesis?studentsisteropponentmagician Suppose you have a scientific question you are interested in answering. What would you normally do before you make your hypothesis? A.Do some background research. B.Conduct a scientific experiment. C.Make predictions about your question. D.Design a procedure for your experiment. Hughes was assigned to find infected cow parts at meat processing plants in Washington. He remembers the sad look on some owners faces when he flashed his badge. If there was a chance that any of their meat might have mad cow, theyd have to throw it all away."The business they built from scratch was destroyedthrough no fault of their own. And there was nothing they could do about it," Hughes says.The tone in this passage most suggests that Hughes iscaring.dedicated.tense.worried. Many crustaceans (for example, lobsters, shrimp, and crayfish) use their tails to swim, but crabs have reduced tails that curl under their shells and are not used in swimming. This is an example of _____.a. natural selectionb. an adaptationc. a homologous structured. a vestigial trait Select the prime number and multiply by 10004. 6. 7. 8. 15. 21 What is the difference between Rage pressure and absolute pressure? What is the least angle measure by which this figure can be rotated so that it maps onto itself?4590180360 Read the two passages from A Raisin in the Sun. Passage 1: RUTH: Why don't you answer the door, man? WALTER (suddenly bounding across the floor to embrace her): 'Cause sometimes it hard to let the future begin! (Stooping down in her face.) I got wings! You got wings! All God's children got wings! He crosses to the door and throws it open. Standing there is a very slight little man in a not-too-prosperous business suit and with haunted frightened eyes and a hat pulled down tightly, brim up, around his forehead. . . . WALTER leans deep in the man's face, still in his jubilance. When I get to heaven gonna put on my wings, Gonna fly all over God's heaven . . . Passage 2: WALTER (turning madly, as though he is looking for WILLY in the very room): Willy! . . . Willy . . . don't do it . . . Please don't do it . . . Man, not with that money . . . Man, please, not with that money . . . Oh, God . . . Don't let it be true . . . (He is wandering around, crying out for WILLY and looking for him or perhaps for help from God.) Man . . . I trusted you . . . Man, I put my life in your hands . . . (He starts to crumple down on the floor as RUTH just covers her face in horror. MAMA opens the door and comes into the room, with BENEATHA behind her.) Man . . . (He starts to pound the floor with his fists, sobbing wildly.) THAT MONEY IS MADE OUT OF MY FATHER'S FLESH Which statement best compares the two passages? The first passage hints that Walter faces his fear, and the second passage indicates that he avoids it. The first passage hints that Ruth cannot understand Walter, and the second passage confirms it. Both passages show that Walter has an optimistic outlook on life. Both passages show how extreme Walter's emotions can be. What led to the swift population rise over the last two thousand years? Check all that apply. a.increased food supply b.improved communication c.improved public health d.increased birth rates e.increased resistance to vaccines 50 km equals how many meters?