If there were no air resistance, how long would it take a free-falling skydiver to fall from a plane at 3000 m to an altitude of 420 m , where she will pull her ripcord?

Answers

Answer 1

Answer:

22.93 seconds

Explanation:

s = Displacement = 3000 - 420 = 2580 m = The distance she will free fall

a = Acceleration due to gravity = 9.81 m/s²

u = Initial velocity = 0

v = Final velocity

t = Time taken

Equation of motion

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 2580=0\times t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{2580\times 2}{9.81}}\\\Rightarrow t=22.93\ s[/tex]

Time taken by the skydiver to cover the distance between 3000 m to an altitude of 420 m neglecting air resistance is 22.93 seconds


Related Questions

You are camping with two friends, Joe and Karl. Since all three of you like your privacy, you don't pitch your tents close together. Joe's tent is 19.0 m from yours, in the direction 19.0° north of east. Karl's tent is 45.0 m from yours, in the direction 39.0° south of east. What is the distance between Karl's tent and Joe's tent?

Answers

Answer:

Distance between Karl and Joe is 38.467 m

Solution:

Let us assume that you are at origin

Now, as per the question:

Joe's tent is 19 m away from yours in the direction [tex]19.0^{\circ}[/tex] north of east.

Now,

Using vector notation for Joe's location, we get:

[tex]\vec{r_{J}} = 19cos(19.0^{\circ})\hat{i} + 19sin(19.0^{\circ})\hat{j}[/tex]

[tex]\vec{r_{J}} = 17.96\hat{i} + 6.185\hat{j} m[/tex]

Now,

Karl's tent is 45 m away from yours and is in the direction [tex]39.0^{\circ}[/tex]south of east, i.e.,  [tex]- 39.0^{\circ}[/tex] from the positive x-axis:

Again,  using vector notation for Karl's location, we get:

[tex]\vec{r_{K}} = 45cos(-319.0^{\circ})\hat{i} + 45sin(- 39.0^{\circ})\hat{j}[/tex]

[tex]\vec{r_{K}} = 34.97\hat{i} - 28.32\hat{j} m[/tex]

Now,  obtain the vector difference between [tex]\vec{r_{J}}[/tex] and [tex]\vec{r_{K}}[/tex]:

[tex]\vec{r_{K}} - \vec{r_{J}} = 34.97\hat{i} - 28.32\hat{j} - (17.96\hat{i} + 6.185\hat{j}) m[/tex]

[tex]\vec{d} = \vec{r_{K}} - \vec{r_{J}} = 17.01\hat{i} - 34.51\hat{j} m[/tex]

Now, the distance between Karl and Joe, d:

|\vec{d}| = |17.01\hat{i} - 34.51\hat{j}|

[tex]d = \sqrt{(17.01)^{2} + (34.51)^{2}} m[/tex]

d = 38.469 m

The distance between Karl's and Joe's tent is:

Final answer:

The distance between Joe's tent and Karl's tent is approximately 36.84 m.

Explanation:

To find the distance between Joe's tent and Karl's tent, we can use the concept of vector addition. We first need to break down the given distances and angles into their respective components:

Joe's tent: 19.0 m at 19.0° north of east Karl's tent: 45.0 m at 39.0° south of east

Next, we can use the components to find the displacement from Joe's tent to Karl's tent:

For Joe's tent: North component = 19.0 m * sin(19.0°) = 6.36 m, East component = 19.0 m * cos(19.0°) = 17.88 m For Karl's tent: North component = -45.0 m * sin(39.0°) = -27.10 m, East component = 45.0 m * cos(39.0°) = 34.37 m

Using the components, we can calculate the displacement from Joe's tent to Karl's tent:

North displacement = -27.10 m - 6.36 m = -33.46 m East displacement = 34.37 m - 17.88 m = 16.49 m

Finally, we can use the Pythagorean theorem to find the magnitude of the displacement:

Magnitude = sqrt((-33.46 m)^2 + (16.49 m)^2) = 36.84 m

Therefore, the distance between Joe's tent and Karl's tent is approximately 36.84 m.

If the Sun were to disappear or somehow radically change
itsoutput, how long would it take for us on Earth to learn
aboutit?

Answers

The answer is If the Sun were to suddenly disappear or change its output, it would take 8 minutes for us on Earth to notice, due to the time it takes light and gravitational force to travel from the Sun to Earth. The Sun is approximately 1.50×10¹¹ meters away, and light travels at about 300,000 kilometers per second. Therefore, we see the Sun as it was 8 minutes ago.

If the Sun were to suddenly disappear or change its output, it would take 8 minutes for us on Earth to notice any change. This is because the Sun is approximately 1.50×10¹¹ meters away, and light, which travels at the speed of about 300,000 kilometers per second, takes 8 minutes to travel from the Sun to Earth.

Therefore, for 8 minutes, we would continue to see the Sun as it was before the change or disappearance occurred.

Similarly, if there were an immediate change in the gravitational force due to the Sun’s disappearance, it would also take 8 minutes for Earth to experience the effect because gravitational information, like light, propagates at the speed of light.

Hence, The answer is If the Sun were to suddenly disappear or change its output, it would take 8 minutes for us on Earth to notice

A car is traveling at a speed of 38.0 m/s on an interstate highway where the speed limit is 75.0 mi/h. Is the driver exceeding the speed limit? Justify your answer.

Answers

Answer: Yes, he is exceeding the speed limit

Explanation:

Hi!

This is problem about unit conversion

1 mile = 1,609.344 m

Then the speed limit v is:

v = 75 mi/h = 120,700.8 m/h

1 hour = 60 min = 60*60 s = 3,600 s

v = (120,700.8/3,600) m/s = 33.52 m/s

38 m/s is higher than the speed limit v.

A weight of mass m1 is on
africtionless ramp which makes angle theta with respect to
thehorizontal. This mass starts at the top of the ramp which is
atheight L above the horizontal. If the mass is simply
leftto slide down the ramp, how long will it take to reach
thehorizontal?

Answers

Answer:

[tex]t = \sqrt{L / ( sin(\theta) * (-1/2) * g * tg(\theta) )}[/tex]

Explanation:

The mass will have a weight, and since it is on a surface it will have a normal reaction.

The vertical component of the normal reaction will be equal and opposite to the weight.

w = g * m

Nv = N * sin(θ)

N is the normal reaction and Nh its vertical component

Nv = -w

N * sin(θ) = -g * m

The horizontal component of the normal will be

Nh = N * cos(θ)

N = Nh / cos(θ)

Then:

Nh / cos(θ) * sin(θ) = -g * m

sin/cos = tg

Nh * tg(θ) = -g * m

The horizontal component of the normal force will be the only force in the horizontal direction

It will cause an acceleration

Nh = ah * m

Then

ah * m * tg(θ) = -g * m

Simplifying the mass on each side

ah * tg(θ) = -g

ah = -g * tg(θ)

The mass will slide from a height related to the lenght of the ramp

L = D * sin(θ)

D = L / sin(θ) This is the distance it will slide

We set up a reference system with origin at the top of the ramp and the positive X axis pointing down the ramp in the direction of the slope.

In this reference system:

X(t) = X0 + V0*t + 1/2 * a * t^2

X0 = 0

V0 = 0

Then

X(t) = -1/2 * g * tg(θ) * t^2

It will move the distance D

L / sin(θ) = -1/2 * g * tg(θ) * t^2

t^2 = L / ( sin(θ) * (-1/2) * g * tg(θ) )

[tex]t = \sqrt{L / ( sin(\theta) * (-1/2) * g * tg(\theta) )}[/tex]

The negative sign will dissapear because gravity has a negative sign too.

A baseball thrown from the outfield is released form
shoulderheight at an initial velocity of 29.4 m/s at an initial
angle of30.0 with respect to the horizontal. What is the maximum
verticaldisplacement that the ball reaches during
itstrajectory?

Answers

Answer:

[tex]y_{max}=11m[/tex]

Explanation:

The maximum vertical displacement that the ball reaches can be calculate using the following formula:

[tex]v^{2}=v^{2} _{o}+2g(y-y_{o})[/tex]

At the highest point, its velocity becomes 0 because it stop going up and starts going down.

[tex]0=(29.4sin(30))^{2} -2(9.8)y[/tex]

Solving for y

[tex]y=\frac{(29.4sin(30))^{2}}{2(9.8)} =11m[/tex]

At the instant the traffic light turns green, a car starts with a constant acceleration of 3.00 ft/s^2. At the same instant a truck, traveling with a constant speed of 70.0 ft/s, overtakes and passes the car. How far from the starting point (in feet) will the car overtake the truck?

Answers

Answer:

The car overtakes the truck at a distance d = 3266.2ft from the starting point

Explanation:

Problem Analysis

When car catches truck:

dc = dt = d

dc: car displacement

dt: truck displacement

tc = tt = t

tc: car time

tt : truck time

car kinematics :

car moves with uniformly accelerated movement:

d = vi*t + (1/2)a*t²

vi = 0 : initial speed

d = (1/2)*a*t² Equation (1)

Truck kinematics:

Truck moves with constant speed:

d = v*t Equation (2)

Data

We know that the acceleration of the car is 3.00 ft / s² and the speed of the truck is 70.0 ft / s .

Development problem

Since the distance traveled by the car is equal to the distance traveled by the truck and the time elapsed is the same for both, then we equate equations (1 ) and (2)

Equation (1) = Equation (2)

(1/2)*a*t² = v*t

(1/2)*3*t² = 70*t  (We divide both sides by t)

1.5*t = 70

t = 70 ÷ 1.5

t = 46.66 s

We replace t = 46.66 s in equation (2) to calculate d:

d = 70*46.66 = 3266.2ft

d = 3266.2 ft

At approximately what wavelength of the continuous spectrum will the greatest (maximum) intensity occur when 60-kV electrons strike an copper (Cu) target?

Answers

Answer: 20 pm=20*10^-12 m

Explanation: To solve this problem we have to use the relationship given by:

λmin=h*c/e*ΔV= 1240/60000 eV=20 pm

this expression is related with the bremsstrahlung radiation when a flux of energetic electrons are strongly stopped hitting to a catode. The electrons give their kinetic energy to the atoms of the catode.

You slide a coffee mug across the table. The mug slides to the east and slows down while sliding. Which of the following statements best describes the net force acting on it? O The net force is zero. O The net force is directed east. O The net force is directed west. O There is not enough information to determine the direction of the net force.

Answers

Answer:

Explanation:

The mug is sliding towards the east but its velocity is going down . That means it has negative acceleration towards east   . In other words , it has positive acceleration towards west. Since it has positive acceleration towards

west , it must have positive force acting on it towards west.

A converging lens of focal length 0.18 m is used to produce an image of an object on a screen. If a magnification of 9.0 x is required, calculate the distance from the object at which the screen must be placed.

Answers

Answer:

distance between object and screen is 2 m

Explanation:

given data

focal length = 0.18 m

magnification = 9.0 x

to find out

distance from the object

solution

we know that magnification is express as

magnification m = [tex]\frac{v}{u}[/tex]   .............1

here u is distance of object from lens

and v is distance of image from lens

so here

9 = [tex]\frac{v}{u}[/tex]

v = 9 u   ..................2

now we will apply here lens formula that is

[tex]\frac{1}{f} = \frac{1}{u} + \frac{1}{v}[/tex]        ....................3

put here value f is focal length and v = 9 u

[tex]\frac{1}{0.18} = \frac{1}{u} + \frac{1}{9u}[/tex]  

solve it we get

u = 0.2

so v = 9 (0.2 )

v = 1.8

so here distance between object and screen is v +u

distance between object and screen = 1.8 + 0.2

distance between object and screen is 2 m

What is the magnitude of the electric field at a distance of 89 cm from a 27 μC charge, in units of N/C?

Answers

Answer:

306500 N/C

Explanation:

The magnitude of an electric field around a single charge is calculated with this equation:

[tex]E(r) = \frac{1}{4 \pi *\epsilon 0} \frac{q}{r^2}[/tex]

With ε0 = 8.85*10^-12 C^2/(N*m^2)

Then:

[tex]E(0.89) = \frac{1}{4 \pi *8.85*10^-12} \frac{27*10^-6}{0.89^2}[/tex]

E(0.89) = 306500 N/C

A 3250-kg aircraft takes 12.5 min to achieve its cruising
altitudeof 10.0 km and cruising speed of 850 km/h. If the
plane'sengines deliver on average, 1500 hp of power during this
time, whatis the efficiency of the engines?

Answers

Answer:

effeciency n = = 49%

Explanation:

given data:

mass of aircraft 3250 kg

power P = 1500 hp = 1118549.81 watt

time = 12.5 min

h = 10 km = 10,000 m

v =85 km/h = 236.11 m/s

[tex]n = \frac{P_0}{P}[/tex]

[tex]P_o = \frac{total\ energy}{t} = \frac{ kinetic \energy + gravitational\ energy}{t}[/tex]

kinetic energy[tex] = \frac{1}{2} mv^2  =\frac{1}{2} 3250* 236 = 90590389.66 kg m^2/s^2[/tex]

kinetic energy [tex]= 90590389.66 kg m^2/s^2[/tex]

gravitational energy [tex]= mgh = 3250*9.8*10000 = 315500000.00  kg m^2/s^2[/tex]

total energy [tex]= 90590389.66 +315500000.00 = 409091242.28 kg m^2/s^2[/tex]

[tex]P_o =\frac{409091242.28}{750} = 545454.99 j/s[/tex]

[tex]effeciency\ n = \frac{P_o}{P} = \frac{545454.99}{1118549.81} = 0.49[/tex]

effeciency n = = 49%

To calculate the efficiency of an aircraft engine, we calculate the work done by the aircraft in climbing to its cruising altitude and reaching its cruising speed, then compare it to the total energy input from the engines. Using the aircraft's mass, altitude, speed, and power output in the efficiency formula allows us to determine its efficiency. Real-world factors like air resistance would normally be considered, but are omitted in this scenario.

Calculating Aircraft Engine Efficiency

The efficiency of an aircraft's engines can be determined by comparing the actual mechanical work done to the energy input as power from the engines. For the given aircraft scenario, we can calculate the work done by the aircraft in reaching both its cruising altitude and speed, and then determine efficiency using the average power output of the engines.

Work Done by the Aircraft

We start by calculating the work done against gravity to reach the cruising altitude (also known as potential energy, PE) and the kinetic energy (KE) gained by the aircraft to reach cruising speed:

PE = m * g * h

KE = 0.5 * m * v²

Where m is the mass of the aircraft, g is the acceleration due to gravity (9.81 m/s²), h is the altitude (10,000 meters), and v is the speed (converted to m/s).

Average Power and Efficiency

Next, we convert the aircraft's average power output from horsepower to watts:

1 horsepower = 745.7 watts

Average Power = 1500 hp * 745.7 W/hp

Now, we'll calculate efficiency:

Efficiency (η) = (Work done / Energy input) * 100%

The total work done is the sum of PE and KE. Energy input is the power multiplied by the time in seconds the power is delivered.

Let's apply these steps using the provided data:

Convert 12.5 minutes to seconds.

Calculate the work done based on mass, speed, and altitude.

Calculate the total energy input from the engines.

Finally, use these values to find the engine efficiency.

Please note, in a real-world scenario, additional factors like air resistance and variations in engine power output would affect these calculations.

In a Young's two-slit experiment it is found that an nth-order maximum for a wavelength of 680.0 nm coincides with the (n+1)th maximum of light of wavelength 510.0nm. Determine n.

Answers

Answer:

n = 3

Solution:

Since, the slit used is same and hence slit distance 'x' will also be same.

Also, the wavelengths coincide, [tex]\theta [/tex] will also be same.

Using Bragg's eqn for both the wavelengths:

[tex]xsin\theta = n\lambda[/tex]

[tex]xsin\theta = n\times 680.0\times 10^{- 9}[/tex]           (1)

[tex]xsin\theta = (n + 1)\lambda[/tex]

[tex]xsin\theta = (n + 1)\times 510.0\times 10^{- 9}[/tex]         (2)

equate eqn (1) and (2):

[tex] n\times 680.0\times 10^{- 9} = (n + 1)\times 510.0\times 10^{- 9}[/tex]

[tex]n = \frac{510.0\times 10^{- 9}}{680.0\times 10^{- 9} - 510.0\times 10^{- 9}}[/tex]

n = 3

Final answer:

Using the formula for the location of maxima in a double slit interference pattern and equating the equations for the two different wavelengths, we find that the value of n is 3 for this Young's two-slit experiment scenario.

Explanation:

To determine the value of n such that an nth-order maximum for a wavelength of 680.0 nm coincides with the (n+1)th maximum of light of wavelength 510.0 nm in a Young's two-slit experiment, we can use the formula for the location of maxima in a double slit interference pattern:

dsinθ = mλ, where d is the separation of the slits, sinθ is the sine of the angle of the maxima, m is the order of the maximum, and λ is the wavelength of the light.

For two wavelengths to coincide, we equate the two equations:

nλ1 = (n+1)λ2

Substituting the given wavelengths:

n(680.0 nm) = (n+1)(510.0 nm)

Solving for n gives:

n = 510.0 / (680.0 - 510.0) = 3

A ball is dropped from rest from the top of a building, which is 106 m high. The magnitude of the gravitational acceleration g = 9.8 m/s2 Keep 2 decimal places in all answers. In this problem, the following setup is convenient: Take the initial location of ball (the top of the building) as origin x0 = 0 Take DOWNWARD as +x (a) How far (in meters) does the ball fall in the first 3 s ?

Answers

Answer:

44.1 m

Explanation:

initial velocity of ball, u = 0

height of building, H = 106 m

g = 9.8 m/s^2

t = 3 second

Let the ball travels a distance of h in first 3 seconds.

Use second equation of motion

[tex]s=ut+\frac{1}{2}at^{2}[/tex]

h = 0 + 0.5 x 9.8 x 3 x 3

h = 44.1 m

Thus, the distance traveled by the ball in first 3 seconds is 44.1 m.

A package is dropped from an airplane flying horizontally with constant speed V in the positive xdirection. The package is released at time t = 0 from a height H above the origin. In addition to the vertical component of acceleration due to gravity, a strong wind blowing from the right gives the package a horizontal component of acceleration of magnitude ¼g to the left. Derive an expression for the horizontal distance D from the origin where the package hits the ground.

Answers

Answer:

[tex]D=V*\sqrt{\frac{2H}{g} } -\frac{H}{4}[/tex]

Explanation:

From the vertical movement, we know that initial speed is 0, and initial height is H, so:

[tex]Y_{f}=Y_{o}-g*\frac{t^{2}}{2}[/tex]

[tex]0=H-g*\frac{t^{2}}{2}[/tex]    solving for t:

[tex]t=\sqrt{\frac{2H}{g} }[/tex]

Now, from the horizontal movement, we know that initial speed is V and the acceleration is -g/4:

[tex]X_{f}=X_{o}+V*t+a*\frac{t^{2}}{2}[/tex]   Replacing values:

[tex]D=V*\sqrt{\frac{2H}{g} }-\frac{g}{4}*\frac{1}{2} *(\sqrt{\frac{2H}{g} })^{2}[/tex]

Simplifying:

[tex]D=V*\sqrt{\frac{2H}{g} } -\frac{H}{4}[/tex]

String linear mass density is defined as mass/unit length. Calculate the linear mass density in kg/m of a string with mass 0.3g and 1.5m length?

Answers

Answer:

Linear mass density,[tex]\lambda=2\times 10^{-4}\ kg/m[/tex]

Explanation:

Given that,

Mass of the string, m = 0.3 g = 0.0003 kg

Length of the string, l = 1.5 m

The linear mass density of a string is defined as the mass of the string per unit length. Mathematically, it is given by :

[tex]\lambda=\dfrac{m}{l}[/tex]

[tex]\lambda=\dfrac{0.0003\ kg}{1.5\ m}[/tex]

[tex]\lambda=0.0002\ kg/m[/tex]

or

[tex]\lambda=2\times 10^{-4}\ kg/m[/tex]

So, the linear mass density of a string is [tex]2\times 10^{-4}\ kg/m[/tex]. Hence, this is the required solution.

To calculate the linear mass density of the string, you divide the mass in kilograms by the length in meters. For a 0.3g and 1.5m string, this yields a linear mass density of 0.0002 kg/m.

The student asks how to calculate the linear mass density (μ) of a string. The linear mass density is defined as mass per unit length. To calculate it for a given string, you divide the mass of the string by its length. The provided string has a mass of 0.3g, which should be converted to kilograms (0.0003 kg), and a length of 1.5m.

The formula to calculate linear mass density is:
μ = mass/length.

Therefore, the linear mass density of the string is:
μ = 0.0003 kg / 1.5 m = 0.0002 kg/m.

Water drips from the nozzle of a shower onto the floor 190 cm below. The drops fall at regular (equal) intervals of time, the first drop striking the floor at the instant the fourth drop begins to fall. Find the locations (above the floor in cm) of the second and third drops when the first strikes the floor. Second drop? Thrid drop?

Answers

Answer:

Second drop: 1.04 m

First drop: 1.66 m

Explanation:

Assuming the droplets are not affected by aerodynamic drag.

They are in free fall, affected only by gravity.

I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.

We can use the equation for position under constant acceleration.

X(t) = x0 + v0 * t + 1/2 * a *t^2

x0 = 0

a = 9.81 m/s^2

v0 = 0

Then:

X(t) = 4.9 * t^2

The drop will hit the floor when X(t) = 1.9

1.9 = 4.9 * t^2

t^2 = 1.9 / 4.9

[tex]t = \sqrt{0.388} = 0.62 s[/tex]

That is the moment when the 4th drop begins falling.

Assuming they fall at constant interval,

Δt = 0.62 / 3 = 0.2 s (approximately)

The second drop will be at:

X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m

And the third at:

X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m

The positions are:

1.9 - 0.86 = 1.04 m

1.9 - 0.24 = 1.66 m

above the floor

Calculate the net charge on a substance con- sisting of a combination of 9.0 x 10^13 protons and 4.1 x 10^13 electrons. The elemental charge is 1.6 x 10-19 C. Answer in units of C.

Answers

Answer:

Net charge,[tex]Q=7.84\times 10^{-6}\ C[/tex]

Explanation:

Number of protons, [tex]n_p=9\times 10^{13}[/tex]

Number of electrons, [tex]n_e=4.1\times 10^{13}[/tex]

Charge on electron, [tex]q_e=-1.6\times 10^{-19}\ C[/tex]

Charge on proton, [tex]q_p=1.6\times 10^{-19}\ C[/tex]

Net charge acting on the substance is :

[tex]Q=n_eq_e+n_pq_p[/tex]

[tex]Q=4.1\times 10^{13}\times (-1.6\times 10^{-19})+9\times 10^{13}\times 1.6\times 10^{-19}[/tex]

[tex]Q=0.00000784\ C[/tex]

or

[tex]Q=7.84\times 10^{-6}\ C[/tex]

So, the net charge on the substance is [tex]7.84\times 10^{-6}\ C[/tex]. Hence, this is the required solution.

In a power plant, pipes transporting superheated vapor are very common. Superheated vapor flows at a rate of 0.3 kg/s inside a pipe that is of diameter 5 cm and length10 m. The pipe is located in a power plant at a temperature of 22°C, and has a uniform pipe surface temperature of 100°C. If the temperature drop between the inlet and exit of the pipe is 30°C and the specific heat of the vapor is 2190 J/kg·K, determine the heat transfer coefficient as a result of convection between the pipe surface and the surroundings.

Answers

Answer:[tex]h=160.84 W/m^2-K[/tex]

Explanation:

Given

mass flow rate=0.3 kg/s

diameter of pipe=5 cm

length of pipe=10 m

Inside temperature=22

Pipe surface =100

Temperature drop=30

specific heat of vapor(c)=2190 J/kg.k

heat supplied [tex]Q=mc\Delta T=0.3\times 2190\times (30)[/tex]

Heat due to convection =hA(100-30)

[tex]A=\pi d\cdot L[/tex]

[tex]A=\pi 0.05\times 10=1.571 m^2[/tex]

[tex]Q_{convection}=h\times 1.571\times (100-22)=122.538 h[/tex]

[tex]Q=Q_{convection}[/tex]

19,710=122.538 h

[tex]h=160.84 W/m^2-K[/tex]

Final answer:

The maximum theoretical efficiency for a heat engine operating between a high temperature of 300°C (573.15 K) and a low temperature of 27°C (300.15 K) is 47.63%, calculated using the Carnot efficiency formula.

Explanation:

To calculate the maximum theoretical efficiency for a heat engine operating between two temperatures, we can use the efficiency formula derived from the Carnot cycle, which is given by:

\(\eta = 1 - \frac{T_{cold}}{T_{hot}}\)

Where \(\eta\) is the efficiency, \(T_{cold}\) is the cold reservoir temperature, and \(T_{hot}\) is the hot reservoir temperature. Temperatures must be in Kelvin.

First, convert the temperatures from Celsius to Kelvin:

\(T_{cold} = 27 \degree C + 273.15 = 300.15 K\)

\(T_{hot} = 300 \degree C + 273.15 = 573.15 K\)

Now, substitute these values into the efficiency formula:

\(\eta = 1 - \frac{300.15}{573.15}\)

\(\eta = 1 - 0.5237\)

So, the maximum theoretical efficiency is:

\(\eta = 0.4763\)

Or in percentage:

\(\eta = 47.63\%\)

This calculation assumes an ideal Carnot engine, which is a theoretical limit and cannot be achieved in practical engines; the actual efficiency will be lower due to various inefficiencies.

Two particles having charges of 0.440 nC and 11.0 nC are separated by a distance of 1.80 m . 1) At what point along the line connecting the two charges is the net electric field due to the two charges equal to zero?
2) Where would the net electric field be zero if one of the charges were negative?

Answers

Answer:

a) 0.3 m

b) r = 0.45 m

Explanation:

given,

q₁ = 0.44 n C   and q₂ = 11.0 n C

assume the distance be r from q₁  where the electric field is zero.

distance of point from q₂  be equal to 1.8 -r

now,

        E₁ = E₂

[tex]\dfrac{K q_2}{(1.8-r)^2} = \dfrac{K q_1}{r^2}[/tex]

[tex](\dfrac{1.8-r}{r})^2= \dfrac{q_2}{q_1}[/tex]

[tex]\dfrac{1.8-r}{r}= \sqrt{\dfrac{11}{0.44}}[/tex]

1.8 = 6 r

r = 0.3 m

b) zero when one charge is negative.

let us assume  q₁  be negative so, distance from  q₁ be r

from charge q₂ the distance of the point be 1.8 +r

now,

   E₁ = E₂

[tex]\dfrac{K q_2}{(1.8+r)^2} = \dfrac{K q_1}{r^2}[/tex]

[tex](\dfrac{1.8+r}{r})^2= \dfrac{q_2}{q_1}[/tex]

[tex]\dfrac{1.8+r}{r}= \sqrt{\dfrac{11}{0.44}}[/tex]

1.8 =4 r

r = 0.45 m

A lens with f = +11cm is paired with a lens with f = −25cm. What is the focal length of the combination?

Answers

Answer:

19.642 cm

Explanation:

f₁ = Focal length of first lens = 11 cm

f₂ = Focal length of second lens = -25 cm

Combined focal length formula

[tex]\frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}\\\Rightarrow \frac{1}{f}=\frac{1}{11}+\frac{1}{-25}\\\Rightarrow \frac{1}{f}=\frac{14}{275}\\\Rightarrow f=\frac{275}{14}\\\Rightarrow f=19.642\ cm[/tex]

Combined focal length is 19.642 cm

The focal length of the combination of lenses is approximately 19.64 cm.

To find the focal length of the combination of lenses in this scenario, we need to use the lensmaker's formula for thin lenses in combination.

Given:

Focal length of lens 1, [tex]\( f_1 = +11 \)[/tex] cm

Focal length of lens 2, [tex]\( f_2 = -25 \)[/tex] cm

The formula for the focal length of two thin lenses in contact is given by:

[tex]\[ \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \][/tex]

[tex]\[ \frac{1}{f} = \frac{1}{+11 \text{ cm}} + \frac{1}{-25 \text{ cm}} \][/tex]

[tex]\[ \frac{1}{f} = \frac{1}{11} - \frac{1}{25} \][/tex]

To subtract the fractions, find a common denominator, which is 275:

[tex]\[ \frac{1}{f} = \frac{25}{275} - \frac{11}{275} \][/tex]

[tex]\[ \frac{1}{f} = \frac{14}{275} \][/tex]

Now, invert both sides to solve for (f):

[tex]\[ f = \frac{275}{14} \][/tex]

[tex]\[ f \approx 19.64 \text{ cm} \][/tex]

In certain ranges of a piano keyboard, more than one string is tuned to the same note to provide extra loudness. For example, the note at 110 Hz has two strings at this frequency. If one string slips from its normal tension of 602 N to 564.00 N, what beat frequency is heard when the hammer strikes the two strings simultaneously? beats/s

Answers

Explanation:

Given that,

Frequency in the string, f = 110 Hz

Tension, T = 602 N

Tension, T' = 564 N

We know that frequency in a string is given by :

[tex]f=\dfrac{1}{2L}\sqrt{\dfrac{T}{m/L}}[/tex], T is the tension in the string

i.e.

[tex]f\propto\sqrt{T}[/tex]

[tex]\dfrac{f}{f'}=\sqrt{\dfrac{T}{T'}}[/tex], f' is the another frequency

[tex]{f'}=f\times \sqrt{\dfrac{T'}{T}}[/tex]

[tex]{f'}=110\times \sqrt{\dfrac{564}{602}}[/tex]

f' =106.47 Hz

We need to find the beat frequency when the hammer strikes the two strings simultaneously. The difference in frequency is called its beat frequency as :

[tex]f_b=|f-f'|[/tex]

[tex]f_b=|110-106.47|[/tex]

[tex]f_b=3.53\ beats/s[/tex]

So, the beat frequency when the hammer strikes the two strings simultaneously is 3.53 beats per second.

Final answer:

To calculate the beat frequency between two piano strings where one string's tension changes, it involves understanding sound production in instruments and the phenomenon of beats. However, without the length and mass of the strings, determining the beat frequency directly from the tension change is not straightforward.

Explanation:

The question involves calculating the beat frequency heard when a piano hammer strikes two strings tuned to the same note, where one string's tension has been altered. Beat frequency is the difference between the frequencies of two sounds. When two similar frequencies are played together, they produce beats that can be heard as a pulsation. However, to calculate the beat frequency from the given tensions, we first need to know the frequencies of the strings based on their tensions. Unfortunately, without specific information about the length and mass of the strings, calculating the exact frequencies and thus the beat frequency directly from the change in tension (602 N to 564 N) is not straightforward in this context. Normally, frequency can be related to tension in a string using the formula for the fundamental frequency of a vibrating string, which depends on the tension, length, and mass per unit length of the string. The question implies an understanding of the physical principles behind the production of sound in stringed instruments and the phenomenon of beats.

A uniform electric field of magnitude 4.9 ✕ 10^4 N/C passes through the plane of a square sheet with sides 8.0 m long. Calculate the flux (in N · m^2/C) through the sheet if the plane of the sheet is at an angle of 30° to the field. Find the flux for both directions of the unit normal to the sheet.

1)unit normal with component parallel to electric field (N · m^2/C)
2)unit normal with component antiparallel to electric field (N · m^2/C)

Answers

Answer:

1.  1.568 x 10^6 N m^2 / C

2. -  1.568 x 10^6 N m^2 / C

Explanation:

E = 4.9 x 10^4 N/C

Side of square, a = 8 m

Area, A = side x side = 8 x 8 = 64 m^2

Angle between lane of sheet and electric field = 30°

Angle between the normal of plane of sheet and electric field,

θ = 90°- 30° = 60°

The formula for the electric flux is given by

[tex]\phi = E A Cos\theta[/tex]

(1) [tex]\phi = E A Cos\theta[/tex]

By substituting the values, we get

Ф = 4.9 x 10^4 x 64 x Cos 60 = 1.568 x 10^6 N m^2 / C

(2) [tex]\phi = E A Cos\theta[/tex]

By substituting the values, we get

Ф = - 4.9 x 10^4 x 64 x Cos 60 = - 1.568 x 10^6 N m^2 / C

A football player punts the ball from the ground at a 65.0° angle above the horizontal. If the ball stays in the air for a total of 6.5 seconds, what are the vertical and horizontal components of the initial velocity?

Answers

Answer: [tex]V_{0,x } = 297.7 \frac{m}{s}\\V_{0,y } = 637 \frac{m}{s}[/tex]

Explanation:

Hi!

We define the point (0,0) as the intial position of the ball. The initial velocity is [tex](V_{0,x}, V_{0,y})[/tex]

The motion of the ball in the horizontal direction (x) has constant velocity, because there is no force in that direction. :

[tex]x(t) = V_{0,x}t[/tex]

In the vertical direction (y), there is the downward acceleration g of gravity:

[tex]y(t) = -gt^2 + V_{0,y}t[/tex]

(note the minus sign of acceleration, because it points in the negative y-direction)

When the ball hits the ground, at t = 65s,  y(t = 65 s) = 0. We use this to find the value of the initial vertical velocity:

[tex]0 = t(-gt + V_{0,y})\\V_{0,y} = gt = 9.8 \frac{m}{s^2} 65 s = 637 \frac{m}{s}[/tex]

We used that g = 9.8 m/s²

To find the horizonttal component we use the angle:

[tex]\tan(65\º) = \frac{V_{y,0}}{V_{x,0}} = 2.14\\V_{x,0} = 297.7\frac{m}{s}[/tex]

The driver of a sports car traveling at 10.0⁣m/s steps down hard on the accelerator for 5.0⁣s and the velocity increases to 30.0⁣m/s. What was the average acceleration of the car during the 5.0s time interval?

Answers

Answer:

[tex]a=4m/s^{2}[/tex]

Explanation:

From the concept of average acceleration we know that

[tex]a=\frac{v_{2}-v_{1} }{t_{2}-t_{1}  }[/tex]

From the exercise we know that

[tex]v_{2}=30m/s\\v_{1}=10m/s\\t_{2}=5s\\t_{1}=0s[/tex]

So, the average acceleration of the car is:

[tex]a=\frac{30m/s-10m/s}{5s}=4m/s^{2}[/tex]

A secondary battery is a battery that A. has been repaired following damage. B. can only be discharged once. C. is supplied with a fuel. D. can be discharged and recharged.

Answers

Answer:D

Explanation:

A secondary battery or rechargeable battery is a battery that can be discharged and recharged.

It is an elcetrochemical cell which involve redox reaction i.e. oxidation and reduction. Oxidation is a process of loosing the electrons while reduction involves gaining of electron.

During discharging battery act as galvanic cell in which Chemical energy is converted into Electrical energy.

During Charging battery act as Electrolytic cell in which Electrical energy is converted in to chemical energy.

A super snail initially traveling at 2 m/s accelerates at 1 m/s^2 for 5 seconds. How fast will it be going at the end of the 5 seconds? How far did the snail travel?

Answers

Answer:

The snail travel at the end of 5 s with a velocity of 12 m/s and the distance of the snail is 22.5 m.

Explanation:

Given that, the initial velocity of the snail is,

[tex]u=2m/s[/tex]

And the acceleration of the snail is,

[tex]a=1m/s^{2}[/tex]

And the time taken by the snail is,

[tex]t=5 sec[/tex]

Now according to first equation of motion,

[tex]v=u+at[/tex]

Here, u is the initial velocity, t is the time, v is the final velocity and a is the acceleration.

Now substitute all the variables

[tex]v=2m/s+ 1 \times 5 sec\\v=7m/s[/tex]

Therefore, the snail travel at the end of 5 s with a velocity of 7 m/s.

Now according to third equation of motion.

[tex]v^{2}- u^{2}=2as\\ s=\frac{v^{2}- u^{2}}{2a} \\[/tex]

Here, u is the initial velocity, a is the acceleration, s is the displacement, v is the final velocity.

Substitute all the variables in above equation.

[tex]s=\dfrac{7^{2}- 2^{2}}{2(1)}\\s=\dfrac{45}{2}\\ s=22.5m[/tex]

Therefore the distance of the snail is 22.5 m.

Find the force of attraction between a proton and an electron separated by a distance equal to the radius of the smallest orbit followed by an electron (5 x 10^-11 m) in a hydrogen atom

Answers

Answer:

The answer is [tex] -9.239 \times 10^{-8}\ N = [/tex]

Explanation:

The definition of electric force between two puntual charges is

[tex]F_e = \frac{K q_1 q_2}{d^2}[/tex]

where

[tex]K = 9 \times 10^9\ Nm^2/C^2[/tex].

In this case,

[tex]q_1 = e = 1.602\times 10^{-19}\ C[/tex],

[tex]q_2 = -e = -1.602\times 10^{-19}\ C[/tex]

and

[tex]d = 5 \times 10^{-11}\ m[/tex].

So the force is

[tex]F_e = -9.239 \times 10^{-8}\ N [/tex]

where the negative sign implies force of attraction.

A typical radio wave has a period of 1.4 microseconds. Express this period in seconds. Answer in units of s.

Answers

Answer:

In second time period will be [tex]1.4\times 10^{-6}sec[/tex]

Explanation:

We have given the time period  of wave [tex]T=1.4microsecond[/tex]

We have to change this time period in unit of second

We know that 1 micro sec [tex]10^{-6}sec[/tex]

We have to change 1.4 micro second

To change the time period from micro second to second we have to multiply with [tex]10^{-6}[/tex]

So [tex]1.4microsecond =1.4\times 10^{-6}sec[/tex]

Find the critical angle for total internal reflection for a flint glass-air boundary (you may assume that λ = 580.0 nm). Express your answer to 4 significant figures!

Answers

Answer:

the critical angle of the flint glass is 37.04⁰

Explanation:

to calculate the critical angle for total internal reflection.

given,

wavelength of the flint glass =  λ  = 580.0 nm

                                                       = 580 × 10⁻⁹ m        

critical angle  = sin^{-1}(\dfrac{\mu_a}{\mu_g})

at the wavelength of 580.0 nm the refractive index of the glass is 1.66

refractive index of air = 1                        

critical angle  = sin^{-1}(\dfrac{1}{1.66})

                      = 37.04⁰              

hence, the critical angle of the flint glass is 37.04⁰

How do resistors in series affect the total resistance?

Answers

Answer:

Explanation:

Resistance in series is given by the sum of all the resistor in series

value of Total Resistance is given by

[tex]R_{th}=R_1+R_2+R_3+R_4+..............R_n[/tex]

Where [tex]R_{th}[/tex] is the total resistance

[tex]R_1,R_2[/tex] are the resistance in series

Current in series remains same while potential drop is different for different resistor

The value of net resistor is always greater than the value of individual resistor.

If a there is a defect in a single resistor then it affects the whole circuit in series.

Other Questions
Which of the following is an example of reverse distribution in a supply chain? a. products moved between intermediaries before reaching the customer b. products moved from the factory to resellers c. products moved to the factory by suppliers d. products that are to be disposed upon being returned by resellers e. products moved directly from producer to customer A nonuniform, but spherically symmetric, distribution of charge has a charge density (r) given as follows:(r)=0(1r/R)for rR(r)=0for rRwhere 0=3Q/R3 is a positive constant.Express your answer in terms of some or all of the variables r, R, Q, and appropriate constants.Obtain an expression for the electric field in the region rR.Obtain an expression for the electric field in the region rR.Find the value of r at which the electric field is maximum.Find the value of that maximum field. A random sample of registered voters from tampa, fl were asked if they support the dream act, a proposed law which would provide a path to citizenship for people brought illegally to the us as children. The survey also collected information on the political ideology of the respondents. Based on the mosaic plot shown below, do views on the dream act and political ideology appear to be independent? Students are touring the hospital before starting their clinical rotations. The instructor points out that the type of thermometer used in this facility is noninvasive, safe, efficient, and quick. What type of thermometer is the instructor describing?A. tympanicB. rectalC. oralD. axillary What is the relationsihp betwen biotic and abiotic factors AND evolution? What is the total kinetic energy of a 2500 lbm car when it is moving at 80 mph (in BTU)? Question 10 of 10Because of global warming, ocean surface temperatures are rising. Which ofthe following is another possible consequence?O A Low tides might disappearO B Earth's rotation might change directionO Sea ice might meltO Bayres might change direction Consider an interdisciplinary study that is aimed at understanding how ocean currents affect the distribution of coral larvae. What two disciplines of oceanography would the researchers be focused on?Biological and physical oceanography 5.How are the jobs of a music teacher and music therapist alike? Sunland Company uses a periodic inventory system. Details for the inventory account for the month of January 2017 are as follows: Units Per unit price Total Balance, 1/1/2017 290 $5.00 $1450 Purchase, 1/15/2017 140 ..5.10 714 Purchase, 1/28/2017 140 ..5.30 742 An end of the month (1/31/2017) inventory showed that 230 units were on hand. How many units did the company sell during January 2017? Two point charges are fixed on the y axis: a negative point charge q1 = -24 C at y1 = +0.19 m and a positive point charge q2 at y2 = +0.33 m. A third point charge q = +8.0 C is fixed at the origin. The net electrostatic force exerted on the charge q by the other two charges has a magnitude of 18 N and points in the +y direction. Determine the magnitude of q2. The American Sugar Producers Association wants to estimatethemean yearly sugar consumption. A sample of n = 12 peoplerevealsthe mean yearly consuption to be 55 pounds with astandarddeviation of 20 pounds. Find the lower bound for the 98%confidenceinterval for the mean yearly sugar consumption. Assumethepopulation is normal. Identity each pairV each pair of angles as complementary, supplementary, or neither.More than 5tps please help quickly Which of the following statements best describes the characteristics of a hypothesis, one of the steps of the scientific method A. it is a possible answer to a specific question B. it is a scientific inquiry that cannot be tested C. It is a fact D. it is always true A 1500 kg car traveling east at 40 km/hr turns a corner and speeds up to a velocity of 50 km/hr due north. What is the change in the car's momentum? -3y+5x=26,-2y-5x=-16 If the price of gasoline at a particular station in Europe is 5 euros per liter. An American student in Europe is allowed to use 40 euros to buy gasoline. Knowing that 4 quarts make a gallon, and that 1 liter is about 1 US liquid quart, about how many gallons can the student buy? Vanessa pours 52 kilograms of table sugar into 100 mL of coffee. Some of the sugar dissolves, but most of it does not dissolve. The coffee solution is... a....unsaturated with sugar. Ob...saturated with sugar. Which pair of numbered statements best completes the chart related to thefeatures of the chambers of Congress?House of RepresentativesSenateProposes all tax billsApproves presidential appointmentsA. (1) All states have equal representation; (2) Representation basedon state populationsOB. (1) Led by the vice president; (2) Led by a speakerC. (1) Ratifies treaties with foreign countries; (2) Can impeach publicofficialsOD. (1) Affected by gerrymandering; (2) Not affected bygerrymandering. The definition of "nested statements" is _____. elements of specific text that work within elements of HTML elements of specific code that work within elements of HTML elements of HTML that work within other elements of HTML elements of HTML that work outside of elements of HTML