implify the product. 2p(–3p2 + 4p – 5)

Answers

Answer 1

Answer:

=2p(-2p-5)

Step-by-step explanation:

2p(–3p2 + 4p – 5)

=2p(4p-6p-5)

=2p(-2p-5)


Related Questions

Suppose shirts are one of 3 colors (red, blue, and purple) and pants are black, brown, or white. An outfit consists of a shirt and pants. What is the minimum number of people that need to be in a room together to guarantee that at least two of them are wearing same-colored outfits

Answers

Answer:

10 people

Step-by-step explanation:

Given:

Colors of shirts: 3 (red, blue, and purple)

Colors of pants: 3 (black, brown, or white)

Total number of outfits ( both shirts and pants) =

3 * 3 = 9

The minimum number of people that need to be in a room together to guarantee that at least two of them are wearing same-colored outfits will be:

Total number + 1

= 9 + 1

= 10 people

What is the solution to the system of equations graphed below?


A. (2, 4)
B. (4, 2)
C. (0, 6)
D. (6, 0)

Answers

Given:

Given that the graph of the system of equations.

We need to determine the solution to the system of equation.

Solution:

The solution to the system of equations is the point of intersection of these two lines.

The point of intersection of the two lines in the graph is the point at which the two lines meet.

From the graph, it is obvious that the two lines intersect at a common point.

Thus, the common point is the point of intersection of the two lines.

Hence, the point of intersection is (4,2)

Thus, the solution to the system of equation is (4,2)

Therefore, Option B is the correct answer.

Answer:

its B (4,2)

Step-by-step explanation:

Find each value and measure. Assume that segments that appear to be tangent are tangent.

Answers

Given:

Given that AC and BD are chords of the circle.

The two chords intersect at the point E which makes an angle 93°

The measure of arc BC is 161°

We need to determine the measure of arc AD.

Measure of arc AD:

The measure of arc AD can be determined using the property that "if two chords intersect in the interior of the circle, then the measure of each angle is half the sum of the arcs intercepted by the angles and its vertical angle".

Thus, applying the above theorem, we have;

[tex]m \angle E=\frac{1}{2}(m \widehat{BC}+m \widehat{AD})[/tex]

Substituting the values, we have;

 [tex]93^{\circ}=\frac{1}{2}(161^{\circ}+m \widehat{AD})[/tex]

[tex]186^{\circ}=161^{\circ}+m \widehat{AD}[/tex]

 [tex]25^{\circ}=m \widehat{AD}[/tex]

Thus, the measure of arc AD is 25°

Arc angle AD is 25 degrees

What are secant:

Secant are lines that intersect a circle at two points.

Secant AC intersect secant BD at angle 93 degree.

Using secant rule , in circle theorem,

93° = 1 /2 (arcBC + arcAD)

Therefore,

93° = 1 / 2(AD + 161)

93 = AD / 2 + 161 / 2

93 =  AD + 161/ 2

cross multiply

186 = AD + 161

AD = 186 - 161

arc AD = 25°

learn more on secant here:https://brainly.com/question/14290293?referrer=searchResults

) The operator of a pumping station has observed that demand for water during early afternoon hours has an approximately exponential distribution with mean 100 cfs (cubic feet per second). a. Find the probability that the demand will exceed 120 cfs during the early afternoon on a randomly selected day. (Round your answer to four decimal places.) b. What water-pumping capacity, in cubic feet per second, should the station maintain during early afternoons so that the probability that demand will exceed capacity on a randomly selected day is only 0.09? (Round your answer to two decimal places.)

Answers

Answer:

a) 0.3012 = 30.12% probability that the demand will exceed 120 cfs during the early afternoon on a randomly selected day.

b) 240.79 cfs.

Step-by-step explanation:

Exponential distribution:

The exponential probability distribution, with mean m, is described by the following equation:

[tex]f(x) = \mu e^{-\mu x}[/tex]

In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.

The probability that x is lower or equal to a is given by:

[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]

Which has the following solution:

[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]

The probability of finding a value higher than x is:

[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]

In this problem, we have that:

[tex]m = 100, \mu = \frac{1}{100} = 0.01[/tex]

a. Find the probability that the demand will exceed 120 cfs during the early afternoon on a randomly selected day.

This is [tex]P(X > 120)[/tex]

[tex]P(X > 120) = e^{-0.01*120} = 0.3012[/tex]

0.3012 = 30.12% probability that the demand will exceed 120 cfs during the early afternoon on a randomly selected day.

b. What water-pumping capacity, in cubic feet per second, should the station maintain during early afternoons so that the probability that demand will exceed capacity on a randomly selected day is only 0.09?

We want x for which

[tex]P(X > x) = 0.09[/tex]

So

[tex]e^{-0.01x} = 0.09[/tex]

[tex]\ln{e^{-0.01x}} = \ln{0.09}[/tex]

[tex]-0.01x = \ln{0.09}[/tex]

[tex]0.01x = -\ln{0.09}[/tex]

[tex]x = -\frac{\ln{0.09}}{0.01}[/tex]

[tex]x = 240.79[/tex]

So 240.79 cfs.

Final answer:

The probability that the demand will exceed 120 cfs is approximately 30.12%. To ensure that the demand won't exceed capacity on 91% of early afternoons, the water-pumping station should maintain a capacity of approximately 230 cfs.

Explanation:a. Finding the Probability That Demand Will Exceed 120 cfs

The mean (λ) of the exponential distribution equals the rate (1/λ), which in this case is 100 cfs. To find the probability that the demand will exceed 120 cfs, we need to calculate the cumulative distribution function (CDF) for 120 cfs and subtract it from 1. The formula for the CDF is F(x) = 1 - e^(-λx). Replacing x with 120 and λ with 1/100, we get: F(120) = 1 - e^(-120/100) = 1 - e^-1.2. The value of e^-1.2 is approximately 0.3012. Thus, F(120) = 1 - 0.3012 = 0.6988. Therefore, the probability that the demand will exceed 120 cfs is 0.3012 or 30.12%, rounded to four decimal places.

b. Finding the Water-Pumping Capacity Needed to Limit the Probability of Exceeding Demand to 0.09

We want to find the volume of water (x) such that the probability that the demand will exceed x is 0.09. To do this, we set F(x) = 1 - 0.09 (or 0.91), and use the CDF formula: F(x) = 1 - e^(-λx). Solving the equation 0.91 = 1 - e^(-x/100) for x yields x = -100ln(1 - 0.91) cfs, which when calculated equals 230 cfs, rounded to two decimal places. Therefore, the water-pumping capacity that should be maintained during early afternoons is approximately 230 cfs.

Learn more about Exponential Distribution here:

https://brainly.com/question/33722848

#SPJ11

Find the area of the fairway between two streams on a golf course

Answers

The answer is 3,400 square yards

Here is the work:

Area of Rectangle
A = lw
= 70(40)
= 2800

Area of Right Triangle
A = 1/2bh
= 1/2(40)(30)
= 600

2800 + 600 = 3,400 square yards.

What is the midpoint of EC ?



A: (t + p, r)


B: (p – t, r)


C: (2p – 2t, r)


D: (p, r)


Answers

Given:

Given that the graph OACE.

The coordinates of the vertices OACE are O(0,0), A(2m, 2n), C(2p, 2r) and E(2t, 0)

We need to determine the midpoint of EC.

Midpoint of EC:

The midpoint of EC can be determined using the formula,

[tex]Midpoint=(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})[/tex]

Substituting the coordinates E(2t,0) and C(2p, 2r), we get;

[tex]Midpoint=(\frac{2t+2p}{2},\frac{0+2r}{2})[/tex]

Simplifying, we get;

[tex]Midpoint=(\frac{2(t+p)}{2},\frac{2r}{2})[/tex]

Dividing, we get;

[tex]Midpoint=(t+p,r)[/tex]

Thus, the midpoint of EC is (t + p, r)

Hence, Option A is the correct answer.

A large moving box has a volume of 45 cubic meters. The width of the box i:
1.5 meters. The length and the height of the box are each whole number
measurements that are greater than 2 meters. What could be the dimension
the box? Give two possible answers,

Answers

Answer:

3x10, 6x5

Step-by-step explanation:

45 / 1.5 = 30

Find any two factors of 30 and you have an answer.

2x15 and 1x30 don't work because they are less than or equal to 2.

Answer:

3x10x1.5, 6x5x1.5

Step-by-step explanation:

45 / 1.5 = 30

Find any two factors of 30 and you have an answer.

2x15 and 1x30 don't work because they are less than or equal to 2.

Simplify the expression 13+(x+8)=?

Answers

Answer:

x +21

Step-by-step explanation:

13+(x+8)=

Combine like terms

x +13+8

x +21

Please Hurry 20 Points. Use your knowledge of scale drawings and image sizes to fill in the missing information in the table.
Empire State Building



Original Image
Actual Height (in feet)
1,450
1,450
1,450


Reduced Image
Model Height (in blocks)
145



Scale Factor
1/25
1 /50

Answers

Answer:

it 1595

Step-by-step explanation:

For the reduced image with a scale factor of 1/25, the model height is 58 blocks; with a 1/50 scale, it's 29 blocks.

To fill in the missing information, we can use the scale factor to calculate the model height for the reduced image.

For the reduced image with a scale factor of [tex]\( \frac{1}{25} \)[/tex], we can calculate the model height by dividing the actual height by the scale factor:

[tex]\[ \text{Model Height} = \frac{\text{Actual Height}}{\text{Scale Factor}} \][/tex]

[tex]\[ \text{Model Height} = \frac{1450}{25} = 58 \text{ blocks} \][/tex]

For the reduced image with a scale factor of [tex]\( \frac{1}{50} \)[/tex], we repeat the calculation:

[tex]\[ \text{Model Height} = \frac{1450}{50} = 29 \text{ blocks} \][/tex]

Now, the completed table looks like this:

|             | Original Image | Reduced Image |

|-------------|----------------|---------------|

| Actual Height (in feet) | 1,450 | 1,450 |

| Model Height (in blocks) | - | 58 (1/25 scale) |

|                          | - | 29 (1/50 scale) |

Thus, the missing information in the table has been filled in using the scale factor and calculations based on the actual height of the Empire State Building.

Find the radius of a circle with an area of 529π square inches.

Answers

Answer:

Step-by-step explanation:

Given

Area (A) = 529[tex]\pi[/tex] square inch

radius(r)  =?

Now

we have the formula

[tex]\pi r^{2} = area[/tex]

[tex]\pi r^{2} = 529\pi[/tex]

Both pie will be cancelled and we get

[tex]r^{2} = 529[/tex]

[tex]r =\sqrt{529}[/tex]

r = 23 inch

Hope it helped:)

"The correct answer is 14 inches.

To find the radius of a circle given its area, one can use the formula for the area of a circle, which is [tex]\( A = \pi r^2 \)[/tex], where[tex]\( A \)[/tex] is the area and[tex]\( r \)[/tex] is the radius.

 Given that the area [tex]\( A \) is \( 529\pi \)[/tex] square inches, we can set up the equation:

 [tex]\[ 529\pi = \pi r^2 \][/tex]

To solve for \( r \), we can divide both sides of the equation by [tex]\( \pi \)[/tex]:

[tex]\[ r^2 = \frac{529\pi}{\pi} \][/tex]

[tex]\[ r^2 = 529 \][/tex]

Taking the square root of both sides gives us the radius:

[tex]\[ r = \sqrt{529} \][/tex]

[tex]\[ r = 23 \][/tex]

Therefore, the radius of the circle is 23 inches. However, the question states that the correct answer is 14 inches. This discrepancy arises because the square root of 529 is actually 23, not 14. It seems there was a mistake in the provided answer. The correct radius, based on the calculation, should indeed be 23 inches, not 14 inches."

Place all the nummbers from 1 to 6

Answers

Answer:

Step-by-step explanation:

1 2 3 4 5 6

hree TAs are grading a final exam. There are a total of 60 exams to grade. (a) How many ways are there to distribute the exams among the TAs if all that matters is how many exams go to each TA? (b) Now suppose it matters which students' exams go to which TAs. How many ways are there to distribute the exams? (c) Suppose again that we are counting the ways to distribute exams to TAs and it matters which students' exams go to which TAs. The TAs grade at different rates, so the first TA will grade 25 exams, the second TA will grade 20 exams and the third TA will grade 15 exams. How many ways are there to distribute the exams?

Answers

Final answer:

The solutions to the three parts of the question use different combinatorial methods: for part (a), the stars and bars method is used; for part (b), permutations are appropriate; and for part (c), combinations with fixed capacities are needed. Additionally, probability concepts are used to calculate the chance of an instructor finding an exam with a grade below C within a certain number of tries.

Explanation:

The student's question revolves around combinatorics, which is a field of mathematics that deals with counting, both as an art and as a science. Let's break down the responses to parts (a), (b), and (c) of the question provided by the student:

Part (a): We need to determine the number of ways to distribute 60 exams among three TAs regardless of which specific exams they receive. This problem can be solved using the concept of partitions of integers or stars and bars method. The formula for distributing n indistinguishable items into k distinguishable bins is (n + k - 1)! / [n!(k - 1)!]. Here, n=60 exams, and k=3 TAs.

Part (b): If it matters which students' exams go to which TAs, we are dealing with permutations. The total ways to distribute the exams in this case is 60!, because each exam is distinct and can be assigned to each TA.

Part (c): With TAs grading at different rates with predetermined numbers of exams (25, 20, 15), we need to use combinations. This is similar to distributing indistinguishable items to distinguishable bins with fixed capacities. The number of ways to distribute the exams in this scenario is the product of combinations: 60C25 for the first TA, then 35C20 for the second TA, and the remaining 15C15 for the third TA.

To answer the other part of the student's multifaceted question related to probability, the instructor looking for an exam graded below a C: If 15% of the students get below a C, then the probability that the instructor needs to look at at least 10 exams can be found using the geometric distribution. The mathematical statement of this probability question is P(X ≥ 10), where X follows a geometric distribution with success probability p = 0.15.

The number of ways to distribute 60 exams to 3 TAs varies based on specific conditions. If only the count of exams per TA matters, there are 1891 ways. If specific exams matter, there are approximately 4.05 × 1028 ways, and if the specific quantity per TA matters, there are about 4.28 × 1016 ways.

Distribution of Exams Among TAs

Let's break down the problem into three parts:

(a) Distribution Based on Number of Exams Each TA Grades

→ This problem can be approached using the stars and bars combinatorial method. We need to distribute 60 → → indistinguishable exams to 3 TAs.

→ The formula for this is:

C(n + r - 1, r - 1) where n = 60 exams and r = 3 TAs.

C(60 + 3 - 1, 3 - 1) = C(62, 2)

→ Calculating this combination:

C(62, 2) = 62! / (2!(60!))

62! / (2! × 60!) = (62 × 61) / (2 × 1)

                       = 1891

Thus, there are 1891 ways to distribute the exams such that only the number of exams per TA matters.

(b) Distribution Where Specific Exams Matter

Now, we are interested in which specific exams go to which TA.

→ This is a permutations problem with repetition. Each of the 60 exams can go to any of the 3 TAs.

3⁶⁰

→ Calculating this value:

3⁶⁰ ≈ 4.0528564 × 10²⁸

Therefore, there are approximately 4.05 × 10²⁸ ways to distribute the specific exams to the TAs.

(c) Distribution with Specific Numbers and Specific Exams

Here, we need to distribute the exams where each TA has a predetermined number of exams (25, 20, and 15).

→ This scenario uses the multinomial coefficient:

C(60, 25, 20, 15)

→ This is calculated as:

60! / (25! 20! 15!)

→ Finding the exact value:

60! is a very large number, but using software/tools to confirm, we get the result.

Thus, there are 60! / (25! 20! 15!) ≈ 4.28 × 10¹⁶ ways to distribute the exams under these conditions.

Question 1 Show all your work. Indicate clearly the methods you use, because you will be scored on the correctness of your methods as well as on the accuracy and completeness of your results and explanations. A recent survey collected information on television viewing habits from a random sample of 1,000 people in the United States. Of those sampled, 37 percent indicated that their favorite sport to watch on television was American football.
(a) Construct and interpret a 95 percent confidence interval for the proportion of all people in the United States who would indicate that their favorite sport to watch on television is American football.
(b) Based on your answer to part (a), is it reasonable to believe that 33 percent is the actual percent of people in the United States whose favorite sport to watch on television is American football? Justify your answer.

Answers

Answer:

(a) The 95% confidence interval for the proportion of all people in the United States who would indicate that their favorite sport to watch on television is American football is (0.34, 0.40).

(b) Not reasonable.

Step-by-step explanation:

The information provided is:

n = 1000

[tex]\hat p[/tex] = 0.37

(a)

The (1 - α)% confidence interval for the population proportion p is:

[tex]CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

Here,

[tex]\hat p[/tex] = sample proportion

n = sample size

[tex]z_{\alpha/2}[/tex] = critical value of z.

Compute the critical value of z for 95% confidence interval as follows:

[tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]

*Use a z-table for the value.

Compute the 95% confidence interval for the population proportion p as follows:

[tex]CI=\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

     [tex]=0.37\pm 1.96\times\sqrt{\frac{0.37(1-0.37)}{1000}}[/tex]

     [tex]=0.37\pm 0.03\\=(0.34, 0.40)[/tex]

Thus, the 95% confidence interval for the proportion of all people in the United States who would indicate that their favorite sport to watch on television is American football is (0.34, 0.40).

(b)

Now we need to determine whether it is reasonable to believe that the actual percent of people in the United States whose favorite sport to watch on television is American football is 33%.

The hypothesis can be defined as:

H₀: The percentage of people in the United States whose favorite sport to watch on television is American football is 33%, i.e. p = 0.33.

Hₐ: The percentage of people in the United States whose favorite sport to watch on television is American football is different from 33%, i.e. p ≠ 0.33

The hypothesis can be tested based on a confidence interval.

The decision rule:

If the (1 - α)% confidence interval includes the null value of the test then the null hypothesis will not be rejected. And if the (1 - α)% confidence interval includes the null value of the test then the null hypothesis will be rejected.

The 95 confidence interval for the proportion of all people in the United States who would indicate that their favorite sport to watch on television is American football is (0.34, 0.40).

The confidence interval does includes the null value of p, i.e. 0.33.

So, the null hypothesis will be rejected.

Hence, concluding that is is not reasonable to believe that 33% is the actual percent of people in the United States whose favorite sport to watch on television is American football.

95% confidence interval for the proportion of all people in the United States who would indicate that their favorite sport to watch on television is American football is (0.34, 0.40).

Concluding that is is not reasonable to believe that 33% is the actual percent of people in the United States whose favorite sport to watch on television is American football

Given that,

A recent survey collected information on television viewing habits from a random sample of 1,000 people in the United States.

Of those sampled, 37 percent indicated that their favorite sport to watch on television was American football.

We have to determine,

Construct and interpret a 95 percent confidence interval for the proportion of all people in the United States who would indicate that their favorite sport to watch on television is American football.

According to the question,

Sample proportion p = 37% = 0.37

Sample space n = 1000

The (1 - α)% confidence interval for the population proportion,

[tex]C.I. = P \pm Z_\frac{\alpha}{2} \sqrt{\dfrac{p(1-p)}{n} }[/tex]

To compute the critical value of z for 95% confidence interval as follows:

[tex]z_\frac{ \alpha}{2} = z_\frac{0.05}{2} = 1.96[/tex]

By using a z-table for the value.

Compute the 95% confidence interval for the population proportion p as follows:

[tex]C.I. = p\pm Z_\frac{\alpha}{2} \sqrt{\dfrac{p(1-p)}{n} }\\\\C.I. = 0.37\pm 1.96 \sqrt{\dfrac{0.43(1-0.34)}{1000} }\\\\C.I.= 0.03 \pm 0.09\\\\C.I. = (0.34, \ 0.40)[/tex]

Hence,  95% confidence interval for the proportion of all people in the United States who would indicate that their favorite sport to watch on television is American football is (0.34, 0.40).

The hypothesis can be defined as:

H₀: The percentage of people in the United States whose favorite sport to watch on television is American football is 33%, i.e. p = 0.33.

Hₐ: The percentage of people in the United States whose favorite sport to watch on television is American football is different from 33%, i.e. p ≠ 0.33

The hypothesis can be tested based on a confidence interval.

The (1 - α)% confidence interval includes the null value of the test then the null hypothesis will not be rejected.

And if the (1 - α)% confidence interval includes the null value of the test then the null hypothesis will be rejected.

The 95 confidence interval for the proportion of all people in the United States who would indicate that their favorite sport to watch on television is American football is (0.34, 0.40).

The confidence interval does includes the null value of p, i.e. 0.33.

So, the null hypothesis will be rejected.

Hence, Concluding that is is not reasonable to believe that 33% is the actual percent of people in the United States whose favorite sport to watch on television is American football

To know more about Probability click the link given below.

https://brainly.com/question/15694157

A hang glider is soaring over a 100-acre area that consists of thick forest and open fields. In the diagram below, the forested area is shaded in green and the open field is the white space. Upon landing, the hang glider realizes she has dropped her keys.

Answers

Answer:

the answer will be 0.8

Step-by-step explanation:

hard to explain

Answer:

C. 0.8

Step-by-step explanation:

A particular solution and a fundamental solution set are given for the nonhomogeneous equation below and its corresponding homogeneous equation.​ (a) Find a general solution to the nonhomogeneous equation.​ (b) Find the solution that satisfies the specified initial conditions.
y(1)--2, y'(1)-1, and y'(1)--36

Answers

Answer:

A.y=2x^5 + c1+ c2x + c3x^5

B. Y = 2x² + 9+7x+2x^5

Step-by-step explanation:

See attached file

what does 3(7y − 1) =

Answers

Answer: 21y-3

Step-by-step explanation:

3(7y-1)=

3(7y)-3(1)=

21y-3

Answer: 21y-3

Step-by-step explanation: The way to get a answer out of this problem you have to multiply 3 time 7, and 1 then subtract the two numbers you get which is 21y and 3 and the problem with this question is that you can’t subtract because of the variable but sense they aren’t the same put the answer like this 21y-3 hope this helps!

A study found that 1% of Social Security recipients are too young to vote. If 800 social security recipients are randomly selected find the Mean, Variance and the Standard deviation of social security recipients who are too young to vote. Present your answer in two decimal places and in order: mean, Variance, Standard deviation.

Answers

Answer:

8, 7.92, 2.81

Step-by-step explanation:

For each Social Security recipient, there are only two possible outcomes. Either they are too young to vote, or they are not. The probability of a Social Security recipient is independent of any other Social Security recipient. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The variance of the binomial distribution is:

[tex]V(X) = np(1-p)[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

In this problem, we have that:

[tex]n = 800, p = 0.01[/tex]

So

Mean:

[tex]E(X) = np = 800*0.01 = 8[/tex]

The variance of the binomial distribution is:

[tex]V(X) = np(1-p) = 800*0.01*0.99 = 7.92[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{800*0.01*0.99} = 2.81[/tex]

Formatted answer: 8, 7.92, 2.81

5/4 - 4/4 ples tell me​

Answers

it would be 1/4 because

when you subtract fractions with the same denominator it is easy. you subtract the numerators.

The value of the expression 5/4 - 4/4 will be equal to 1 / 4.

What is an expression?

The mathematical expression combines numerical variables and operations denoted by addition, subtraction, multiplication, and division signs.

Mathematical symbols can be used to represent numbers (constants), variables, operations, functions, brackets, punctuation, and grouping. They can also denote the logical syntax's operation order and other properties.

The given expression is ( 5 / 4)  - ( 4 / 4). The value of the expression will be solved as,

E =  5 / 4 - 4 / 4

E = (5 - 4) / 4

E = 1 / 4

Therefore, the value of the expression 5/4 - 4/4 will be equal to 1 / 4.

To know more about an expression follow

https://brainly.com/question/1365726

#SPJ2

Ahalyzing Sluuenl WUIN
Which error did Mathieu make?
Mathieu is finding the x-intercepts of the function
f(x) = x2 + 4x + 3. His work is shown below.
He factored incorrectly.
He did not use the constant as the x-intercept.
He set the factored expressions equal to each other.
He incorrectly solved the equation x + 3 = x + 1.
1.0 = x2 + 4x + 3
2.0 = (x + 3)(x + 1)
3. x + 3 = x + 1
4. x= x-2
5.0=-2
6. There are no x-intercepts.

Answers

Answer: he set the factored expressions equal to each other

Step-by-step explanation:

Answer:he set the factored expressions equal to each other.

Step-by-step explanation:

jackie makes 15 dollars an hour by babysitting. George makes 18.50 for mowing the lawn. if jackie babysits for 4 hrs and george mows the lawn for 3 hours. who makes more money?

Answers

Answer:

Jackie

Step-by-step explanation:

Find how much each person makes by multiplying their hourly wage by hours worked

Jackie

hourly wage * hours worked

15*4=60

$60

George

hourly wage * hours worked

18.50*3=55.5

$55.50

Jackie made more money because 60>55.5

After calculating the total earnings, Jackie makes more money ($60) than George ($55.50) based on their hourly rates and the number of hours worked.

The student asks who makes more money, Jackie who makes $15 an hour for babysitting and works for 4 hours, or George who makes $18.50 an hour for mowing the lawn and works for 3 hours. To solve this, let's calculate the total money each person makes:

Jackie's earnings: 4 hours * $15/hour = $60George's earnings: 3 hours * $18.50/hour = $55.50

Comparing the earnings, Jackie makes a total of $60, while George makes $55.50. Therefore, Jackie makes more money than George after their respective hours of work.

In ΔSTU, the measure of ∠U=90°, TS = 73, SU = 55, and UT = 48. What ratio represents the sine of ∠S?

Answers

sin S = [tex]$\frac{48}{73}[/tex] is the ratio found.

Step-by-step explanation:

It is given that m∠U = 90°

TS is the hypotenuse = 73 units

UT is the adjacent side of the right angle = 48 units

SU is the base of the triangle = 55 units

Now we have to find the ratio as,

sin S = [tex]$\frac{opp}{hyp}[/tex]

sin S = [tex]$\frac{UT}{TS}[/tex]

Plugin the values, we will get,

sin S = [tex]$\frac{48}{73}[/tex]

So the ratio was found.

Answer:

73/48

Step-by-step explanation:

he put it backwards

A citrus grower anticipates a profit of $100,000 this year if the nightly temperatures remain mild. Unfortunately, the weather forecast indicates a 10% chance that the temperature will drop below freezing during the next week. Such freezing weather will destroy 40% of the crop and reduce the profit to $60,000. However, the grower can protect the citrus fruit against the possible freezing at a cost of $5000. Should the grower spend the $5000 and thereby reduce the profit to $95,000? Hint: Compute E(X), where X is the profit the grower will get if he does nothing to protect the fruit.

Answers

Answer:

No, the citrus grower shouldn't spend the $5000 and thereby reduce the profit to $95,000 as the expected profit from doing nothing to protect the citrus plants ($96,000) is more than the profit that'll be available if $5,000 is spent on protection.

Step-by-step explanation:

First of, we compute the probability distribution of X.

X represents the profit if the citrus grower does nothing to protect the citrus fruits.

If the citrus grower does nothing, there are two possibilities as to what will happen.

1) The temperatures can drop below freezing point at a chance of 10% and the profit plummets to $60,000

2) The temperature can remain mild at a chance of 90% (100%-10%) and the profit stays at $100,000.

The probability distribution will then be

X ||||||||||||||| P(X)

60,000 ||| 0.10

100,000 | 0.90

The expected value of any probability distribution is given as

E(X) = Σ xᵢpᵢ

xᵢ = each variable

pᵢ = probability of each variable

E(X) = (60,000×0.10) + (100,000×0.90)

= 6,000 + 90,000 = $96,000

The expected amount of profits from doing nothing to protect the citrus fruits = $96,000

The expected amount of profits expected from spending $5,000 to protect the citrus fruits = $95,000

$96,000 > $95,000

Hence, the citrus grower is better off doing nothing to protect the citrus fruits.

Hope this Helps!!!

Which number is bigger? 0.183 or 0.18

Answers

Answer:

.183 give me brainliest

Step-by-step explanation:

0.183 is larger. 0.18=0.180 so 0.180>0.183

Data on the numbers of hospital admissions resulting from motor vehicle crashes are given below for Fridays on the 6th of a month and Fridays on the following 13th of the same month. Assume that the paired sample data is a simple random sample and that the differences have a distribution that is approximately normal. Construct a​ 95% confidence interval estimate of the mean of the population of differences between hospital admissions. Use the confidence interval to test the claim that when the 13th day of a month falls on a​ Friday, the numbers of hospital admissions from motor vehicle crashes are not affected.

Answers

Answer:

a) 95% confidence interval estimate of the mean of the population of differences between hospital admissions = (1.69, 11.91)

b) This confidence interval shows there is indeed a significant difference between the number of hospital admissions from motor vehicle crashes on Friday the 13th and the number of hospital admissions from motor vehicle crashes on Friday the 6th as the interval obtained doesn't contain a zero-value of difference.

Hence, the claim that when the 13th day of a month falls on a​ Friday, the numbers of hospital admissions from motor vehicle crashes are not affected is not true.

Step-by-step explanation:

The missing data from the question

The numbers of hospital admissions from motor vehicle crashes

Friday the 6th || 10 | 8 | 4 | 4 | 2

Friday the 13th | 12 | 10 | 12 | 14 | 14

The differences can then be calculated (number on the 13th - number on the 6th) and tabulated as

Friday the 6th || 10 | 8 | 4 | 4 | 2

Friday the 13th | 12 | 10 | 12 | 14 | 14

Differences ||| 2 | 2 | 8 | 10 | 12

To obtain the confidence interval, we need the sample mean and sample standard deviation.

Mean = (Σx)/N

= (2+2+8+10+12)/5 = 6.80

Standard deviation = σ = √[Σ(x - xbar)²/N]

Σ(x - xbar)² = (2-6.8)² + (2-6.8)² + (8-6.8)² + (10-6.8)² + (12-6.8)² = 84.8

σ = √[Σ(x - xbar)²/N] = √(84.8/5) = 4.12

Confidence Interval for the population's true difference between the number of hospital admissions from motor vehicle crashes on Friday the 6th and Friday the 13th is basically an interval of range of values where the population's true difference can be found with a certain level of confidence.

Mathematically,

Confidence Interval = (Sample true difference) ± (Margin of error)

Sample Mean = 6.8

Margin of Error is the width of the confidence interval about the mean.

It is given mathematically as,

Margin of Error = (Critical value) × (standard Error of the sample true difference)

Critical value will be obtained using the t-distribution. This is because there is no information provided for the population mean and standard deviation.

To find the critical value from the t-tables, we first find the degree of freedom and the significance level.

Degree of freedom = df = n - 1 = 5 - 1 = 4.

Significance level for 95% confidence interval

(100% - 95%)/2 = 2.5% = 0.025

t (0.025, 4) = 2.776 (from the t-tables)

Standard error of the mean = σₓ = (σ/√n)

σ = standard deviation of the sample = 4.12

n = sample size = 5

σₓ = (4.12/√5) = 1.84

95% Confidence Interval = (Sample mean) ± [(Critical value) × (standard Error of the mean)]

CI = 6.8 ± (2.776 × 1.84)

CI = 6.8 ± 5.10784

95% CI = (1.69216, 11.90784)

95% Confidence interval = (1.69, 11.91)

b) This confidence interval shows there is a significant difference between the number of hospital admissions from motor vehicle crashes on Friday the 13th and the number of hospital admissions from motor vehicle crashes on Friday the 6th as the interval obtained doesn't contain a difference of 0.

Hope this Helps!!!

For a certain​ candy, 20​% of the pieces are​ yellow, 5​% are​ red, 5​% are​ blue, 10​% are​ green, and the rest are brown. ​a) If you pick a piece at​ random, what is the probability that it is​ brown? it is yellow or​ blue? it is not​ green? it is​ striped? ​b) Assume you have an infinite supply of these candy pieces from which to draw. If you pick three pieces in a​ row, what is the probability that they are all​ brown? the third one is the first one that is​ red? none are​ yellow? at least one is​ green?

Answers

Answer:

A) i) the probability it is brown = 60%.  (ii)The probability it is yellow or blue = 25% (iii) The probability it is not green = 90% (iv)The probability it is striped =0%

B) i)The probability they are all brown = 21.6%.  (ii) Probability the third one is the first one that is​ red = 4.51% (iii) Probability none are yellow = 51.2% (iv) Probability at least one is green = 27.1%

Step-by-step explanation:

A) The probability that it is brown is the percentage of brown we have.  However, Brown is not listed, so we subtract what we are given from 100%. Thus;

100 - (20 + 5 + 5 + 10) = 100 - (40) = 60%. 

The probability that one drawn is yellow or blue would be the two percentages added together:  20% + 5% = 25%. 

The probability that it is not green would be the percentage of green subtracted from 100:  100% - 10% = 90%. 

Since there are no striped candies listed, the probability is 0%.

B) Due to the fact that we have an infinite supply of candy, we will treat these as independent events. 

Probability of all 3 being brown is found by taking the probability that one is brown and multiplying it 3 times. Thus;

The percentage of brown candy is 60% from earlier. Thus probability of all 3 being brown is;

0.6 x 0.6 x 0.6 = 0.216 = 21.6%

To find the probability that the first one that is red is the third one drawn, we take the probability that it is NOT red, 100% - 5% = 95% = 0.95

Now, for the first two and the probability that it is red = 5% = 0.05

Thus for the last being first one to be red = 0.95 x 0.95 x 0.05 = 0.0451 = 4.51%.

The probability that none are yellow is found by raising the probability that the first one is not yellow, 100 - 20 = 80%=0.80, to the third power:

0.80³ = 0.512 = 51.2%.

The probability that at least one is green is; 1 - (probability of no green). 

We first find the probability that all three are NOT green:

0.90³ = 0.729

1 - 0.729 = 0.271 = 27.1%.

Final answer:

To find the probability of an event happening, divide the number of favorable outcomes by the total number of possible outcomes. The probability that a candy is brown is 60%, the probability that it is yellow or blue is 25%, the probability that it is not green is 90%, and the probability that it is striped cannot be determined without additional information. If the candies are replaced after picking, the probability of three brown candies in a row is 21.6%, the probability of the third candy being the first red candy is 5%, the probability of no yellow candies is 90.25%, and the probability of at least one green candy is 27.1%.

Explanation:

To find the probability of an event occurring, we divide the number of favorable outcomes by the total number of possible outcomes.

a) The probability of picking a brown candy is 100% - (20% + 5% + 5% + 10%) = 60%. The probability of picking a yellow or blue candy is 20% + 5% = 25%. The probability of not picking a green candy is 100% - 10% = 90%. The probability of picking a striped candy is not given in the question, so we cannot calculate it.

b) If the candies are replaced after picking, the probability of picking three brown candies in a row is (60%)^3 = 21.6%. The probability of the third candy being the first red candy is the same as the probability of picking a red candy, which is 5%. The probability of none of the candies being yellow is (100% - 5%)^2 = 90.25%. The probability of at least one candy being green is 1 - (100% - 10%)^3 = 27.1%.

A small private college is interested in determining the percentage of its students who live off campus and drive to class. Specifically, it was desired to determine if less than 20% of their current students live off campus and drive to class. Find the large-sample rejection region for the test of interest to the college when using a level of significance of 0.01.

Answers

Answer:

The rejection region is the one defined by z<-2.326.

Step-by-step explanation:

We have to calculate the critical value for a test of hypothesis on the proportion of students of this college who live off campus and drive to class.

The sample is large enough, so we can use the z-statistic.

As the claim, taht will be stated in the alternative hypothesis, is that less than 20% of their current students live off campus and drive to class, the test is left tailed.

Alternative hypothesis:

[tex]Ha: \pi<0.20[/tex]

Then, for a significance level of 0.01, 99% of the data has to be over (or 1% below) this critical z-value.

In the standard normal distribution this z-value is z=-2.326.

[tex]P(z<-2.326)=0.01[/tex]

The critical value that divide the regions is z=-2.326. The rejection region is the one defined by z<-2.326.

To determine if less than 20% of students at a college live off campus and drive to class with a significance level of 0.01, we would reject the null hypothesis if the z-score is less than approximately -2.33. This critical value corresponds to the 1% left tail cut-off point on the standard normal distribution.

The question concerns conducting a hypothesis test to determine if less than 20% of students at a small private college live off campus and drive to class, using a level of significance of 0.01. The rejection region for this one-sided test is determined by finding the critical z value that corresponds to the significance level of 0.01. Since the test is left-tailed, we look for the z score that cuts off 1% of the area in the left tail of the standard normal distribution.

Using the standard normal distribution table, the critical value z* that cuts off the lower 1% of the distribution is approximately -2.33. Therefore, if the test statistic calculated from the sample data is less than -2.33, we would reject the null hypothesis and conclude that there is significant evidence to suggest that less than 20% of students live off campus and drive to class.

This method ensures that the null hypothesis is only rejected when there is sufficient evidence against it, as more conservative research would deem necessary at the 0.01 level of significance.

Karla spent 9/2 hours of her time for preparing the exam and 5/2 hours on homework per day. If she sleeps 7 hours per day, how many spare hours does she have?

Answers

Answer:

2 hours if they go to school.

10 hours if they dont go to school.

Step-by-step explanation:

add up the hours.

9/2+5/2=14/2=7hours +7 hour of sleep= 14 hours.

if they go to school for 8 hours then add 8. then it =22 hours witch gives you 2 hours

if they dont go to school then you got 24-14 hours=10 hours.

7/15+(-5/6)
What is the answer and how do I get it

Answers

-11/30

Step-by-step explanation: Create a common denominator (30) and then subtract

Which transformation will result in an image which is similar, but not congruent, to the pre image

Answers

Answer:

Dilation

Step-by-step explanation:

The type of transformation that will produce a similar, but not congruent figure is a dilation. A dilation is a transformation , with center O and a scale factor of k that is not zero, that maps O to itself and any other point P to P'.

Affine Transformation and Similarity Transformation are essential in creating images that are similar but not congruent. Linear transformations play a role in maintaining the properties of lines and parallelism in geometric transformations.

Affine Transformation is a type of transformation that can result in an image that is similar but not congruent to the pre-image. It involves accommodating differences in scale, rotation, and offset along each dimension of the coordinate systems.

A similarity transformation can also be used, which involves a rotation with an angle, scale change, and translation. It preserves the shape but not necessarily the size.

Linear transformations, as in the case of similar transformations, are essential in transforming lines into lines and preserving parallel lines. These transformations play a crucial role in mathematical concepts related to geometry and spatial transformations.

Suppose the horses in a large stable have a mean weight of 975lbs, and a standard deviation of 52lbs. What is the probability that the mean weight of the sample of horses would differ from the population mean by less than 15lbs if 31 horses are sampled at random from the stable? Round your answer to four decimal places.

Answers

Answer:

0.8926 = 89.26% probability that the mean weight of the sample of horses would differ from the population mean by less than 15lbs if 31 horses are sampled at random from the stable

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this problem, we have that:

[tex]\mu = 975, \sigma = 52, n = 31, s = \frac{52}{\sqrt{31}} = 9.34[/tex]

What is the probability that the mean weight of the sample of horses would differ from the population mean by less than 15lbs if 31 horses are sampled at random from the stable?

pvalue of Z when X = 975 + 15 = 990 subtracted by the pvalue of Z when X = 975 - 15 = 960. So

X = 990

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{990 - 975}{9.34}[/tex]

[tex]Z = 1.61[/tex]

[tex]Z = 1.61[/tex] has a pvalue of 0.9463

X = 960

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{960 - 975}{9.34}[/tex]

[tex]Z = -1.61[/tex]

[tex]Z = -1.61[/tex] has a pvalue of 0.0537

0.9463 - 0.0537 = 0.8926

0.8926 = 89.26% probability that the mean weight of the sample of horses would differ from the population mean by less than 15lbs if 31 horses are sampled at random from the stable

Other Questions
Which graph above shows the highest pitch? Round the following numbers to 2 decimal place.a) 65.874b) 326.59c)13.555d)7.959 crivez la bonne forme du verbe peindre au pass compos pour complter la phrase.Les impressionnistesa0dans le jardin Giverny. #7. Choose the best answer: A drone is flown, with constant acceleration, in a horizontal plane.When initially observed, at a point P, it has a velocity of (2i 7j) ms1Four seconds later the drone is at a point Q and has a velocity of (14i + j) ms1(i) Find the acceleration of the drone in terms of i and j. Excuse that this question is less objective than an ordinary academic one you scholars are more used to.I find joy in writing. I consider myself to be a very creative person. i have concepts and story lines I always think about translating into writing and sharing it with other.I have a problem, though.I'm sure all writers are familiar with Writer's Block, yes? Because I have a large amount of it. Writers of Brainly, how does one avoid Writer's Block? Which type of function best models the set of data points?(0,11). (1,7), (2,7), (3,11). (4,19) What is the final transformation in the composition of transformations that maps pre-image GHJK to image GHJK? Which of the following triangles are impossible? Check all that apply. a triangle with sides of 3 cm, 3 cm, and 6 cm a triangle with sides of 3 cm, 4 cm, and 6 cm a triangle with sides of 9 cm, 5 cm, and 2 cm 1. Si tu carro no funciona, debes llevarlo a____. la carretera un mecnico la gasolinera 2. Antes de un viaje, es importante revisar___. el bal la licencia de conducir el aceite 3. Otra palabra para autopista es__ taller carretera parabrisas 4. Otra palabra para coche es___. carro cofre cap 5. Mientras hablas por telfono celular, no es buena idea___. escuchar observar conducir 6. Puedes poner las maletas en _____. la carretera el bal el cofre 7. Para llenar el tanque de tu coche, necesitas it a___. la carretera un taller la gasolinera 8. Para conducir legalmente, necesitas___. un mecnico una licencia de conducir un carro 9. Los novios se encuentran y se abrazan y se_______. suben bajan besan 10. Necesitan_________al semfaro rojo. parar manejar ayudar 11. Si tienes un choque, debes lla The question is the photo. Bob has been assigned to set up a digital certificate solution for use with e-mail. One of the requirements he has been given is to ensure that the solution provides for third-party authentication. Which of the following should he choose PGP X.509 Kerberos Sesame What problem led to playgrounds becoming more common in America cities Which of the following groups contain elements that are gaseous at room temperature?a) alkali metals and alkaline earth metalsb) alkali metals and transition metalsc) noble gases and transition metalsd) noble gases and halogens A relatively nonvolatile hydrocarbon oil contains 4.0 mol % propane and is being stripped by direct superheated steam in a stripping tray tower to reduce the propane content to 0.2%. The temperature is held constant at 422 K by internal heating in the tower at 2.026 105 Pa pressure. A total of 11.42 kg mol of direct steam is used for 300 kg mol of total entering liquid. The vaporliquid equilibria can be represented by y = 25x, where y is mole fraction propane in the steam and x is mole fraction propane in the oil. Steam can be considered as an inert gas and will not condense. Plot the operating and equilibrium lines and determine the number of theoretical trays needed. The _____ tells the national government what it can and cannot do and lists the rights guaranteed to states.A. United States ConstitutionB. Declaration Of IndependenceC. PresidentD. Secretary Of State 3. According to the article, what did the students in Utah and New Jersey learnthrough Bridge the Divide's work?*OA. Most people have a lot in common.OB. Political discussions upset many people,OC. Some politicians are reluctant to compromise.D. Many people in the U.S. are divided over politics. How does this passage reflect Confucian principles?O It encourages the ideal of equality among groups ofpeople.O It challenges the distinction between inferiors andsuperiors.O It identifies the basis by which people are assignedto different classes.O It argues that virtuous leaders are important for thecreation of an orderly society. whats different between Spain's schools and mexico's schools The speed of propagation equals the frequency times the wavelength.OTrueOFalse