In 2005, there were 18,200 students at college A with a projected enrolment increase of 750 students per year in the same year there were 34.450 students at college with a procede decline of 500 students per year According to these projections when will the colleges have the same enrollment? What will be the enrolment in each college at that me? ment In the year , the enrollment at both colleges will be the same The total enrolment at each college will be students

Answers

Answer 1

Answer:

a. 13 years

b. 27950 students

Step-by-step explanation:

Let x be the number of years since the initial year 2005. In 2005, [tex]x = 0[/tex], in 2006, [tex]x = 1[/tex], and so on.

For college "A" the number of students is given by the function:

[tex]NSA = 18200 + 750x[/tex]

For college "B" the number of students is given by the function:

[tex]NSB = 34450 - 500x[/tex]

Matching these expressions you have the value of x for which the two colleges have the same number of students.

[tex]NSA = 18200 + 750x = 34450 - 500x = NSB\\\\750x + 500x = 34450 - 18200\\\\1250x = 16250\\\\x = 16250/1250 = 13[/tex]

Then, the two colleges will have the same number of students 13 years later, that is, in 2018.

The number of students that each colleges will have in 2018 will be [tex]NSA = NSB = 18200 + 750 (13) = 27950[/tex] students.


Related Questions

The equation giving a family of ellipsoids is u = (x^2)/(a^2) + (y^2)/(b^2) + (z^2)/(c^2) . Find the unit vector normal to each point of the surface of this ellipsoids.

Answers

Answer:

[tex]\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]

Step-by-step explanation:

Given equation of ellipsoids,

[tex]u\ =\ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}[/tex]

The vector normal to the given equation of ellipsoid will be given by

[tex]\vec{n}\ =\textrm{gradient of u}[/tex]

            [tex]=\bigtriangledown u[/tex]

           

[tex]=\ (\dfrac{\partial{}}{\partial{x}}\hat{i}+ \dfrac{\partial{}}{\partial{y}}\hat{j}+ \dfrac{\partial{}}{\partial{z}}\hat{k})(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2})[/tex]

           

[tex]=\ \dfrac{\partial{(\dfrac{x^2}{a^2})}}{\partial{x}}\hat{i}+\dfrac{\partial{(\dfrac{y^2}{b^2})}}{\partial{y}}\hat{j}+\dfrac{\partial{(\dfrac{z^2}{c^2})}}{\partial{z}}\hat{k}[/tex]

           

[tex]=\ \dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}[/tex]

Hence, the unit normal vector can be given by,

[tex]\hat{n}\ =\ \dfrac{\vec{n}}{\left|\vec{n}\right|}[/tex]

             [tex]=\ \dfrac{\dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}}{\sqrt{(\dfrac{2x}{a^2})^2+(\dfrac{2y}{b^2})^2+(\dfrac{2z}{c^2})^2}}[/tex]

             

[tex]=\ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]

Hence, the unit vector normal to each point of the given ellipsoid surface is

[tex]\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]

How do you find the sigma of the x and y values? Do you do it like a partial derivative?

Regression analysis question:

infant 1 2 3 4 5 6 7 8
birth length(in) 19.75 20.5 19 21 19 18.5 20.25 20
6-month length (in) 25.5 26.25 25 26.75 25.75 25.25 27 26.5
a researcher collected data on length of birth and length at 6 months for 8 infants.

Calculate the following values:

∑ x, ∑ x2 , ∑ y, ∑ xy, ∑ y2

Then find SSxx and SSyy

Answers

Answer:

Step-by-step explanation:

Sample size of 8 infants were taken and their birth lengths in inches recorded and also 6 months lengths.

If x is length at birth time, and y 6 month length

we have as per table below.

x y x^2 y^2 xy

1 19.75 25.5 390.0625 650.25 503.625

2 20.5 26.25 420.25 689.0625 538.125

3 19 25 361 625 475

4 21 26.75 441 715.5625 561.75

5 19 25.75 361 663.0625 489.25

6 18.5 25.25 342.25 637.5625 467.125

7 20.25 27 410.0625 729 546.75

8 20 26.5 400 702.25 530

     

Total 158 208 3125.625 5411.75 4111.625

[tex]∑ x,     ∑ x2 , ∑ y,           ∑ xy,           ∑ y2\\158 208 3125.625 5411.75 4111.625[/tex]

SSxx = 3125.625 and SSyy = 5411.75

6. answer the question below​

Answers

Answer:

Step-by-step explanation:

Simplify \frac{25}{100}

100

25

to \frac{1}{4}

4

1

.

-\sqrt{\frac{1}{4}}−√

4

1

2 Simplify \sqrt{\frac{1}{4}}√

4

1

to \frac{\sqrt{1}}{\sqrt{4}}

4

1

.

-\frac{\sqrt{1}}{\sqrt{4}}−

4

1

3 Simplify \sqrt{1}√

1

to 11.

-\frac{1}{\sqrt{4}}−

4

1

4 Since 2\times 2=42×2=4, the square root of 44 is 22.

-\frac{1}{2}−

2

1

Done

Decimal Form: -0.5

Answer: D.)

Step-by-step explanation:

The first step would be to reduce the fraction in the square root, so divide both the numerator and denominator by 25 to get 1/4.

Then calculate the root, any root of one equals one so that stays as is. The exponential form of 4 would be 2^2.

Then reduce the index of the radical and exponent with 2 and you get answer D

10,101 base 2 + 11,011 base 2 =

Answers

Answer:

110,000 base 2

Step-by-step explanation:

column 1 [the first position in the number]:

1+1=0, (carry 1)

column 2:

0+1 +1 (carried)=0, (carry 1)

column 3:

1+0+1 (carried)=0, (carry 1)

column 4:

0+1+1 (carried)=0, (carry 1)

column 5:

1+1+1=1, (carry 1)

then you write the last 1 'cause there is n number to add with:

[tex]10,101_{2}+11,011_{2}=110,000_{2}[/tex]

In binary system the highest number to write is 1, if you add 1+1, it jumps to 0, and you have to carry 1 to the next position.

If you are not sure about the sum, you can convert the numbers in base 2, to base 10, so you can know if it is correct:

[tex]10,101_{2}=21_{10}\\11,011_{2}=27_{10}\\110,000_{2}=48_{10}[/tex]

So 21+27=48.

In decimal system when you add 9+1, it jumps to 0 and then you have to carry 1 to the next position, because the the highest number you can write is 9.

What is the total value of
these coins? 31

Answers

Answer:

The first two coins are quarters, and the one on the right is a nickle.

the two quarters [0.25+0.25] is 0.50 cents. Add the nickle [0.5] and you have 0.55 cents!

ex:     0.25+0.25+0.5

             0.50+0.5

                 =0.55 (cents)

Step-by-step explanation:

Use the variation of parameters method to solve the DR y" + y' - 2y = 1

Answers

Answer:

[tex]y(t)\ =\ C_1e^{-2t}+C_2e^t-t\dfrac{e^{-2t}}{3}-\dfrac{1}{3}[/tex]

Step-by-step explanation:

As given in question, we have to find the solution of differential equation

[tex]y"+y'-2y=1[/tex]

by using the variation in parameter method.

From the above equation, the characteristics equation can be given by

[tex]D^2+D-2\ =\ 0[/tex]

[tex]=>D=\ \dfrac{-1+\sqrt{1^2+4\times 2\times 1}}{2\times 1}\ or\ \dfrac{-1-\sqrt{1^2+4\times 2\times 1}}{2\times 1}[/tex]

[tex]=>\ D=\ -2\ or\ 1[/tex]

Since, the roots of characteristics equation are real and distinct, so the complementary function of the differential equation can be by

[tex]y_c(t)\ =\ C_1e^{-2t}+C_2e^t[/tex]

Let's assume that

     [tex]y_1(t)=e^{-2t}[/tex]          [tex]y_2(t)=e^t[/tex]

[tex]=>\ y'_1(t)=-2e^{-2t}[/tex]        [tex]y'_2(t)=e^t[/tex]

   and g(t)=1

Now, the Wronskian can be given by

[tex]W=y_1(t).y'_2(t)-y'_1(t).y_2(t)[/tex]

   [tex]=e^{-2t}.e^t-e^t(-e^{-2t})[/tex]

   [tex]=e^{-t}+2e^{-t}[/tex]

   [tex]=3e^{-t}[/tex]

Now, the particular solution can be given by

[tex]y_p(t)\ =\ -y_1(t)\int{\dfrac{y_2(t).g(t)}{W}dt}+y_2(t)\int{\dfrac{y_1(t).g(t)}{W}dt}[/tex]

[tex]=\ -e^{-2t}\int{\dfrac{e^t.1}{3.e^{-t}}dt}+e^{t}\int{\dfrac{e^{-2t}.1}{3.e^{-t}}dt}[/tex]

[tex]=\ -e^{-2t}\int{\dfrac{1}{3}dt}+\dfrac{e^t}{3}\int{e^{-t}dt}[/tex]

[tex]=\dfrac{-e^{-2t}}{3}.t-\dfrac{1}{3}[/tex]

[tex]=-t\dfrac{e^{-2t}}{3}-\dfrac{1}{3}[/tex]

Now, the complete solution of the given differential equation can be given by

[tex]y(t)\ =\ y_c(t)+y_p(t)[/tex]

      [tex]=C_1e^{-2t}+C_2e^t-t\dfrac{e^{-2t}}{3}-\dfrac{1}{3}[/tex]

In a class of 19 students, 3 are math majors. A group of four students is chosen at random. (Round your answers to four decimal places.) (a) What is the probability that the group has no math majors? (b) What is the probability that the group has at least one math major? (c) What is the probability that the group has exactly two math majors?

Answers

Answer:

(a) The probability is 0.4696

(b) The probability is 0.5304

(c) The probability is 0.0929

Step-by-step explanation:

The total number of ways in which we can select k elements from a group n elements is calculate as:

[tex]nCx=\frac{n!}{x!(n-x)!}[/tex]

So, the number of ways in which we can select four students from a group of 19 students is:

[tex]19C4=\frac{19!}{4!(19-4)!}=3,876[/tex]

On the other hand, the number of ways in which we can select four students with no math majors is:

[tex](16C4)*(3C0)=(\frac{16!}{4!(16-4)!})*(\frac{3!}{0!(3-0)!})=1820[/tex]

Because, we are going to select 4 students form the 16 students that aren't math majors and select 0 students from the 3 students that are majors.

At the same way, the number of ways in which we can select four students with one, two and three math majors are 1680, 360 and 16 respectively, and they are calculated as:

[tex](16C3)*(3C1)=(\frac{16!}{3!(16-3)!})*(\frac{3!}{1!(3-1)!})=1680[/tex]

[tex](16C2)*(3C2)=(\frac{16!}{2!(16-2)!})*(\frac{3!}{2!(3-1)!})=360[/tex]

[tex](16C1)*(3C3)=(\frac{16!}{1!(16-1)!})*(\frac{3!}{3!(3-3)!})=16[/tex]

Then, the probability that the group has no math majors is:

[tex]P=\frac{1820}{3876} =0.4696[/tex]

The probability that the group has at least one math major is:

[tex]P=\frac{1680+360+16}{3876} =0.5304[/tex]

The probability that the group has exactly two math majors is:

[tex]P=\frac{360}{3876} =0.0929[/tex]

Final answer:

In short, to calculate the probability of certain events in a group selection, you would identify the total possible groups, and then calculate how many of these groups satisfy your desired conditions. The probability is then calculated as the favorable events over the total possibilities.

Explanation:

This problem is a classic example of combinatorics and probability. The total number of ways to select four students from a total of 19 is given by the combination function: 19 choose 4. The denominator for all our probability calculations will be this total number of possible groups.

(a) To find the probability that the group has no math majors, we want all four students to be from the 16 non-math majors. This is calculated as combinations of 16 choose 4. Thus, the probability is (16 choose 4) / (19 choose 4).(b) The probability that the group has at least one math major is calculated as 1 minus the probability that the group has no math majors.(c) The probability that the group has exactly two math majors can be calculated by considering the combinations of selecting 2 math majors from the 3 (3 choose 2) and 2 non-math majors from the remaining 16 (16 choose 2). That gives us the probability of (3 choose 2)*(16 choose 2) / (19 choose 4).

Learn more about Combinatorics and Probability here:

https://brainly.com/question/31293479

#SPJ11

(b) What's the largest product possible from two numbers adding up to 100?

Answers

Answer:

2500

Step-by-step explanation:

We have to find the largest product of two numbers whose sum is 100.

Let the two numbers be x and y.

Thus, we can write x+y=100

We can calculate the value of y as:

y = 100 - x

The product of these number can be written as: (x)(y) = (x)(100-x) = 100x - x²

Let f(x) = 100x - x²

Now, the first derivative of this function with respect to x is

[tex]\frac{df(x)}{dx}[/tex] = 100-2x

Equating [tex]\frac{df(x)}{dx}[/tex] = 0, we get,

100-2x = 0

⇒ x = 50

Now, we find the second derivative of the the function f(x) with respect to x

[tex]\frac{d^2f(x)}{dx^2}[/tex] = -2

Since, [tex]\frac{d^2f(x)}{dx^2}[/tex] < 0, then by double derivative test the function have a local maxima at x = 50

This, x = 50 and y = 100-50 =50

Largest product = (50)(50) = 2500

Add 7.25 L and 875 cL. Reduce the result to milliliters.

Answers

The sum of 7.25 L and 875 cL, reduced to milliliters, is 16,000 mL as per the concept of addition.

To add 7.25 L and 875 cL, we need to convert the centiliters to liters before performing the addition.

1. Convert 875 cL to liters:

Since there are 100 centiliters in a liter, we divide 875 by 100 to get the equivalent in liters:

875 cL ÷ 100 = 8.75 L

2. Now that both quantities are in liters, we can add them together:

7.25 L + 8.75 L = 16 L

3. Finally, to convert the result to milliliters, we multiply by 1000 since there are 1000 milliliters in a liter:

16 L × 1000 = 16,000 mL

To learn more about the addition;

brainly.com/question/29464370

#SPJ12

Final answer:

To add 7.25 L and 875 cL and reduce the result to milliliters, convert 875 cL to liters to get 8.75 L, then add it to 7.25 L to total 16 L. Finally, convert 16 L to milliliters by multiplying by 1,000, resulting in 16,000 mL.

Explanation:

To add 7.25 L and 875 cL and reduce the result to milliliters, you first need to understand the conversion between liters, centiliters, and milliliters. Remember, there are 1000 milliliters (mL) in a liter (L) and 10 milliliters in a centiliter (cL).

First, let's convert 875 cL to liters to simplify the addition. Since there are 10 mL in a cL, and 1000 mL in a L, you would convert as follows:

875 cL = 875 / 10 = 87.5 mL

However, we need to recognize the proper conversion to liters in the step above. Correctly, it should state: 875 cL = 8.75 L (since 100 cL = 1 L).

Once we have both measurements in liters, we can easily add them:

7.25 L + 8.75 L = 16.0 L

To convert the total liters to milliliters, multiply by 1,000 (since there are 1,000 mL in 1 L).

16.0 L × 1,000 = 16,000 mL

A company can use two workers to manufacture product 1 and product 2 during a business slowdown. Worker 1 will be available for 20 hours and worker 2 for 24 hours. Product 1 will require 5 hours of labor from worker 1 and 3 hours of specialized skill from worker 2. Product 2 will require 4 hours from worker 1 and 6 hours from worker 2. The finished products will contribute a net profit of $60 for product 1 and $50 for product 2. At least two units of product 2 must be manufactured to satisfy a contract requirement. Formulate a linear program to determine the profit maximizing course of action. (Hint: the simplest formulation assigns one decision variable to account for the number of units of product 1 to produce and the other decision variable to account for the number of units of product 2 to produce.)

Answers

Answer:

The linear problem is to maximize [tex]Z = C_ {1} X_ {1} + C_ {2}X_ {2} = 60X_ {1} + 50X_ {2}[/tex], s.a.

subject to

[tex]\frac {1} {5} X_ {1} + \frac {1} {4} X_ {2} \leq 20\\\\\frac {1} {3} X_ {1} + \frac {1} {6} X_ {2} \leq 24\\\\X_ {2} \geq 2\\\\X_ {1}, X_ {2} \geq 0[/tex]

Step-by-step explanation:

Let the decision variables be:

[tex] X_ {1} [/tex]: number of units of product 1 to produce.

[tex] X_ {2} [/tex]: number of units of product 2 to produce.

Let the contributions be:

[tex]C_ {1} = 60\\\\C_ {2} = 50[/tex]

The objective function is:

[tex]Z = C_{1} X_{1}+ C_{2}X_{2} = 60X_ {1} + 50X_ {2}[/tex]

The restrictions are:

[tex]\frac {1} {5} X_ {1} + \frac {1} {4} X_ {2} \leq 20\\\\\frac {1} {3} X_ {1} + \frac {1} {6} X_ {2} \leq 24\\\\X_ {2} \geq 2\\\\X_ {1}, X{2} \geq 2\\\\[/tex]

The linear problem is to maximize [tex]Z = C_ {1} X_ {1} + C_ {2}X_ {2} = 60X_ {1} + 50X_ {2}[/tex], s.a.

subject to

[tex]\frac {1} {5} X_ {1} + \frac {1} {4} X_ {2} \leq 20\\\\\frac {1} {3} X_ {1} + \frac {1} {6} X_ {2} \leq 24\\\\X_ {2} \geq 2\\\\X_ {1}, X_ {2} \geq 0[/tex]

You've deposited $5,000 into a Michigan Education Savings Program (a 529 college savings program) for your daughter who will be attending college in 15 years. In order for it to grow to $24,000 by the time she goes to college, what annual rate of return would you have to earn?

N= I/Y= PV= PMT= FV= P/Y=

Answers

Answer:

Ans. the annual rate of return, in order to turn $5,000 into $24,000 in 15 years is 11.02% annual.

Step-by-step explanation:

Hi, well, in order to find the value of the interest rate of return, we need to solve for "r" the following equation,

[tex]Future Value=PresentValue(1+r)^{n}[/tex]

Where:

n= years (time that the money was invested)

r=annual rate of return (Decimal)

So, let´s see the math of this.

[tex]24,000=5,000(1+r)^{15}[/tex]

[tex]\frac{24,000}{5,000} =(1+r)^{15}[/tex]

[tex]\sqrt[15]{\frac{24,000}{5,000} } =1+r[/tex]

[tex]\sqrt[15]{\frac{24,000}{5,000} } -1=r[/tex]

[tex]r=0.11023[/tex]

So the annual rate of return that turns $5,000 into $24,000 in 15 years is 11.02%.

N=15; PV=5,000; FV=24,000; PMT=N.A; I/Y=11.02% P/Y=N.A

Best of Luck.

In a certain year, the U.S. Senate was made up of 53 Democrats, 45 Republicans, and 2 Independents who caucus with the Democrats. In a survey of the U.S. Senate conducted at that time, every senator was asked whether he or she owned at least one gun. Of the Democrats, 19 declared themselves gun owners; of the Republicans, 21 of them declared themselves gun owners; none of the Independents owned guns. If a senator participating in that survey was picked at random and turned out to be a gun owner, what was the probability that he or she was a Democrat? (Round your answer to four decimal places.)

Answers

Answer:

There is a 47.50% probability that the chosen senator is a Democrat.

Step-by-step explanation:

This can be formulated as the following problem:

What is the probability of B happening, knowing that A has happened.

It can be calculated by the following formula:

[tex]P = \frac{P(B).P(A/B)}{P(A)}[/tex]

Where P(B) is the probability of B happening, P(A/B) is the probability of A happening knowing that B happened and P(A) is the probability of A happening.

In your problem we have that:

A(what happened) is the probability of a gun owner being chosen:

There are 100 people in the survay(53 Democrats, 45 Republicans ans 2 Independents), and 40 of them have guns(19 Democrats, 21 Republicans). So, the probability of a gun owner being chosen is:

[tex]P(A) = \frac{40}{100} = 0.4[/tex]

[tex]P(A/B)[/tex] is the probability of a senator owning a gun, given that he is a Democrat. 19 of 53 Democrats own guns, so the probability of a democrat owning a gun is:

[tex]P(A/B) = \frac{19}{53} = 0.3585[/tex]

[tex]P(B)[/tex] is the probability that the chosen senators is a Democrat. There are 100 total senators, 53 of which are Democrats, so:

[tex]P(B) = \frac{53}{100} = 0.53[/tex]

If a senator participating in that survey was picked at random and turned out to be a gun owner, what was the probability that he or she was a Democrat?

[tex]P = \frac{P(B).P(A/B)}{P(A)} = \frac{(0.53)*(0.3585)}{(0.40)} = 0.4750[/tex]

There is a 47.50% probability that the chosen senator is a Democrat.

Is the set of all 2x2 matrices such that det(A)=0 a subspace of the vector space of all 2x2 matrices?

Answers

Answer:

The answer is no: the set of all 2x2 matrices such that det(A)=0 is not a subspace of the vector space of all 2x2 matrices.

Step-by-step explanation:

In order for a set of matrices to be a subspace of all 2x2 matrices, three conditions must be satisfied:

1) That the set is not empty.

2) If A and B are both 2x2 matrices with zero determinant then the matrix A+B should also be a matrix with zero determinant.

3) The determinant of c*A, where "c" is any complex number and A is any matrix of the set, should be zero.

1)

The first condition is satisfied by the set of all 2x2 matrices such that det(A)=0, since there are plenty 2x2 matrices with zero determinant.

2)

The second condition is not satisfied, since from the determinant properties, we know that:

[tex]det(A+B)\geq det(a)+det(B)[/tex]

The equality might hold, but it is not a general characteristic. For example, if we consider the following matrices:

[tex]A = \left[\begin{array}{cc}1&0\\0&0\end{array}\right], \quad B = \left[\begin{array}{cc}0&0\\0&1\end{array}\right][/tex]

We can easily check that the determinant of both matrices is zero, nevertheless the determinant of the sum is different than zero.

Therefore, the set of all 2x2 matrices such that det(A)=0 is not a subspace of the vector space of all 2x2 matrices.

The set of all 2x2 matrices such that det(A) = 0 is not a subspace of the vector space of all 2x2 matrices.

To determine if a set is a subspace of a vector space, it must satisfy three conditions:

1. The set must contain the zero vector (in this case, the zero matrix).

2. The set must be closed under addition, meaning that if A and B are matrices in the set, then A + B must also be in the set.

3. The set must be closed under scalar multiplication, meaning that if A is a matrix in the set and c is a scalar, then cA must also be in the set.

Let's examine each condition:

1. The zero matrix, denoted by O, has a determinant of det(O) = 0, so it is included in the set. This condition is satisfied.

2. Consider two 2x2 matrices A and B with determinant 0:

[tex]\[ A = \begin{pmatrix} a b \\ c d \end{pmatrix}, \quad \text{det}(A) = ad - bc = 0 \][/tex]

 [tex]\[ B = \begin{pmatrix} e f \\ g h \end{pmatrix}, \quad \text{det}(B) = eh - fg = 0 \][/tex]

 The sum of A and B is:

 [tex]\[ A + B = \begin{pmatrix} a+e b+f \\ c+g d+h \end{pmatrix} \][/tex]

 The determinant of A + B is:

 [tex]\[ \text{det}(A + B) = (a+e)(d+h) - (b+f)(c+g) \][/tex]

 [tex]\[ \text{det}(A + B) = ad + ah + ea + eh - bc - bg - cf - fg \][/tex]

 Since det(A) = 0 and det(B) = 0, we have:

 [tex]\[ ad - bc = 0 \][/tex]

 [tex]\[ eh - fg = 0 \][/tex]

 However, this does not imply that det(A + B) = 0. The cross terms ah, ea, bg, and cf may not sum to zero, and thus det(A + B) may not be zero. Therefore, the set is not closed under addition, and this condition is not satisfied.

3. Consider a scalar c and a matrix A with determinant 0:

 [tex]\[ cA = c \begin{pmatrix} a b \\ c d \end{pmatrix} = \begin{pmatrix} ca cb \\ cc cd \end{pmatrix} \][/tex]

 The determinant of cA is:

 [tex]\[ \text{det}(cA) = (ca)(cd) - (cb)(cc) = c^2(ad - bc) \][/tex]

 Since det(A) = 0, we have ad - bc = 0, and thus det[tex](cA) = c^2(0) = 0[/tex]for any scalar c. This means that the set is closed under scalar multiplication, and this condition is satisfied.

Adhesive tape made from fabric has a tensile strength of not less than 20.41 kg/2.54 cm of width. Reduce these quantities to grams and millimeters.

Answers

Answer:

[tex]\frac{20,410 \text{ grams}}{254\text{ mm}}[/tex]

Step-by-step explanation:

We have been given that adhesive tape made from fabric has a tensile strength of not less than 20.41 kg/2.54 cm of width. We are asked to reduce these quantities to grams and millimeters.

We know 1 kg equals 1000 grams and 1 cm equals 10 mm.

[tex]\frac{20.41\text{ kg}}{\text{2.54 cm}}[/tex]

[tex]\frac{20.41\text{ kg}}{\text{2.54 cm}}\times \frac{\text{1 cm}}{\text{10 mm}}[/tex]

[tex]\frac{20.41\text{ kg}}{2.54\times\text{10 mm}}[/tex]

[tex]\frac{20.41\text{ kg}}{254\text{ mm}}[/tex]

[tex]\frac{20.41\text{ kg}}{254\text{ mm}}\times \frac{\text{1000 grams}}{\text{1 kg}}[/tex]

[tex]\frac{20.41\times \text{1000 grams}}{254\text{ mm}}[/tex]

[tex]\frac{20,410 \text{ grams}}{254\text{ mm}}[/tex]

Therefore, our required measurement would be [tex]\frac{20,410 \text{ grams}}{254\text{ mm}}[/tex].

Let p:4 is an even integer. q:-5 is a negative prime number. Write each of the following statements in terms ofp, q, and logical connectives: a. 4 is an even integer and-5 is a negative prime number. b. 4 is not an even integer and-5 is a negative prime number. c. If 4 is an even integer, then-5 is a negative prime number. d. 4 is an even integer if and only if-5 is a negative prime number. e. If 4 is not an even integer, then-5 is not a negative prime number 50 MATHEMATICS INTHE MODERN WORLD

Answers

Answer:

a. [tex]p \wedge q[/tex]

b. [tex]\neg p \wedge q[/tex]

c. [tex]p\Rightarrow q[/tex]

d. [tex]p \Leftrightarrow q[/tex]

e. [tex]\neg p \Rightarrow \neg q[/tex]

Step-by-step explanation:

a. 4 is an even integer and -5 is a negative prime number, can be represented by: [tex]p \wedge q[/tex]

b. 4 is not an even integer and-5 is a negative prime number, can be represented by: [tex]\neg p \wedge q[/tex]

c. If 4 is an even integer, then-5 is a negative prime number, can be represented by: [tex]p\Rightarrow q[/tex]

d. 4 is an even integer if and only if-5 is a negative prime number, can be represented by: [tex]p \Leftrightarrow q[/tex]

e. If 4 is not an even integer, then-5 is not a negative prime number,  can be represented by: [tex]\neg p \Rightarrow \neg q[/tex]

Final answer:

The statements a-e are translated into the language of logic as p ∧ q, ¬p ∧ q, p → q, p ↔ q, and ¬p → ¬q, respectively. These represent different logical relationships between the statements '4 is an even integer' and '-5 is a negative prime number'.

Explanation:

To rewrite the provided statements using logical connectors and the given identifiers (p: 4 is an even integer, q: -5 is a negative prime number), we proceed as follows:

a. p ∧ q: This reads "p and q", representing the statement "4 is an even integer and -5 is a negative prime number".

b. ¬p ∧ q: The symbol ¬ stands for "not", so this reads "not p and q", representing "4 is not an even integer and -5 is a negative prime number".

c. p → q: This reads "p implies q", representing "If 4 is an even integer, then -5 is a negative prime number".

d. p ↔ q: This reads "p if and only if q", representing "4 is an even integer if and only if -5 is a negative prime number".

e. ¬p → ¬q: This reads "not p implies not q", representing "If 4 is not an even integer, then -5 is not a negative prime number".

Learn more about Logical Statements here:

https://brainly.com/question/4458769

#SPJ3

Solve the equation for x. cx+b=3(x-c) XFIİ (Simplify yo nswer.)

Answers

Answer:

The value of x is [tex]\frac{(3c+b)}{3-c}[/tex].

Step-by-step explanation:

The given equation is

[tex]cx+b=3(x-c)[/tex]

Using distributive property we get

[tex]cx+b=3(x)+3(-c)[/tex]

[tex]cx+b=3x-3c[/tex]

To solve the above equation isolate variable terms.

Subtract 3x and b from both sides.

[tex]cx-3x=-3c-b[/tex]

Taking out common factors.

[tex]x(c-3)=-(3c+b)[/tex]

Divide both sides by (c-3).

[tex]x=-\frac{(3c+b)}{c-3}[/tex]

[tex]x=\frac{(3c+b)}{3-c}[/tex]

Therefore the value of x is [tex]\frac{(3c+b)}{3-c}[/tex].

Prove or disprove (from i=0 to n) sum([2i]^4) <= (4n)^4. If true use induction, else give the smallest value of n that it doesn't work for.

Answers

Answer:

The statement is true for every n between 0 and 77 and it is false for [tex]n\geq 78[/tex]

Step-by-step explanation:

First, observe that, for n=0 and n=1 the statement is true:

For n=0: [tex]\sum^{n}_{i=0} (2i)^4=0 \leq 0=(4n)^4[/tex]

For n=1: [tex]\sum^{n}_{i=0} (2i)^4=16 \leq 256=(4n)^4[/tex]

From this point we will assume that [tex]n\geq 2[/tex]

As we can see, [tex]\sum^{n}_{i=0} (2i)^4=\sum^{n}_{i=0} 16i^4=16\sum^{n}_{i=0} i^4[/tex] and [tex](4n)^4=256n^4[/tex]. Then,

[tex]\sum^{n}_{i=0} (2i)^4 \leq(4n)^4 \iff \sum^{n}_{i=0} i^4 \leq 16n^4[/tex]

Now, we will use the formula for the sum of the first 4th powers:

[tex]\sum^{n}_{i=0} i^4=\frac{n^5}{5} +\frac{n^4}{2} +\frac{n^3}{3}-\frac{n}{30}=\frac{6n^5+15n^4+10n^3-n}{30}[/tex]

Therefore:

[tex]\sum^{n}_{i=0} i^4 \leq 16n^4 \iff \frac{6n^5+15n^4+10n^3-n}{30} \leq 16n^4 \\\\ \iff 6n^5+10n^3-n \leq 465n^4 \iff 465n^4-6n^5-10n^3+n\geq 0[/tex]

and, because [tex]n \geq 0[/tex],

[tex]465n^4-6n^5-10n^3+n\geq 0 \iff n(465n^3-6n^4-10n^2+1)\geq 0 \\\iff 465n^3-6n^4-10n^2+1\geq 0 \iff 465n^3-6n^4-10n^2\geq -1\\\iff n^2(465n-6n^2-10)\geq -1[/tex]

Observe that, because [tex]n \geq 2[/tex] and is an integer,

[tex]n^2(465n-6n^2-10)\geq -1 \iff 465n-6n^2-10 \geq 0 \iff n(465-6n) \geq 10\\\iff 465-6n \geq 0 \iff n \leq \frac{465}{6}=\frac{155}{2}=77.5[/tex]

In concusion, the statement is true if and only if n is a non negative integer such that [tex]n\leq 77[/tex]

So, 78 is the smallest value of n that does not satisfy the inequality.

Note: If you compute  [tex](4n)^4- \sum^{n}_{i=0} (2i)^4[/tex] for 77 and 78 you will obtain:

[tex](4n)^4- \sum^{n}_{i=0} (2i)^4=53810064[/tex]

[tex](4n)^4- \sum^{n}_{i=0} (2i)^4=-61754992[/tex]

Final answer:

We will use mathematical induction to prove this inequality.

Explanation:

We will prove this inequality using mathematical induction. First, let's check the base case when n = 0. The left-hand side (LHS) of the inequality is 0 and the right-hand side (RHS) is (4*0)^4 = 0. So, the inequality holds for n = 0.

Next, assume that the inequality holds for some positive integer k, i.e.,

∑([2i]^4) ≤ (4k)^4 (where the sum is taken from i = 0 to k)

We will prove that it also holds for k + 1. Adding the (k+1)th term to both sides of the inequality:

∑([2i]^4) + ([2(k+1)]^4) ≤ (4k)^4 + ([2(k+1)]^4)

Now, simplifying the LHS and RHS:

(∑([2i]^4)) + ([2(k+1)]^4) ≤ (4k)^4 + ([2(k+1)]^4)

The solution of a certain differential equation is of the form y(t)=aexp(7t)+bexp(11t), where a and b are constants. The solution has initial conditions y(0)=1 and y′(0)=4. Find the solution by using the initial conditions to get linear equations for a and b.

Answers

Answer:

Step-by-step explanation:

Given that the solution of a certain differential equation is of the form

[tex]y(t) = ae^{7t} +be^{11t}[/tex]

Use the initial conditions

i) y(0) =1

[tex]1=a(1)+b(1)\\a+b=1[/tex] ... I

ii) y'(0) = 4

Find derivative of y first and then substitute

[tex]y'(t) = 7ae^{7t} +11be^{11t}\\y'(0) =7a+11b \\7a+11b =4 ...II[/tex]

Now using I and II we solve for a and b

Substitute b = 1-a in II

[tex]7a+11(1-a) = 4\\-4a+11 =4\\-4a =-7\\a = 1.75 \\b = -0.75[/tex]

Hence solution is

[tex]y(t) = 1.75e^{7t} -0.75e^{11t}[/tex]

Answer:

y(t) = a exp(3t) + b exp(4t) conditions, y(0) = 3 y'(0) = 3 y(0) = a exp(3 x 0) + b exp(4 x 0) = a exp(0) + b exp(0) = (a x 1) + (b x 1) = a + b y'(0) = 0 so the linear equation is, a + b = 3

Step-by-step explanation:

In order to make some extra money in the summer, you water your neighbor's lawn and walk their dog. You water their lawn every 6 days and walk the dog every 4 days. Your neighbor pays you $5 each time you walk the dog and $6 each time you water the lawn.When you do both jobs on the same day. she gives you an exrta $3. On june 1, you dont have ro complete either job, because your neighbor did them both the day before. if you worked for your neighbor from june 1 to july 20 ( there 30 days in june and 31 days in july ), how many times would you do both jobs on the same day ? how much total money would earn?​

Answers

Answer:

$114

Step-by-step explanation:

make a calender and count every 4 days for dogs and every 6 days for the lawn. Then add all the money up.

the answer is $114 Hope this helps ! :-)

A thin tube stretched across a street counts the number of pairs of wheels that pass over it. A vehicle classified as type A with two axles registers two counts. A vehicle classified as type B with nine axles registers nine counts. During a 2​-hour ​period, a traffic counter registered 101 counts. How many type A vehicles and type B vehicles passed over the traffic​ counter? List all possible solutions.

Answers

Final answer:

The problem is a step-by-step calculation with several possible combinations of type A and type B vehicles when a total of 101 counts are registered. A systematic approach is required to find all possible whole number solutions.

Explanation:

This problem is an example of a diophantine problem or a linear equation in two variables. If we denote the number of type A vehicles by 'a', and the number of type B vehicles by 'b', the problem can be represented by the equation 2a + 9b = 101.

As you are looking for all possible solutions, you have to do a systematic search. You will find that:

If there were 0 type B vehicles, there would have to be 50.5 type A vehicles, which isn't possible as we can't have half a vehicle.If there was 1 type B vehicle, there would have to be 46 type A vehicles.If there were 2 type B vehicles, there would be 41.5 type A vehicles, which again isn't possible.If there were 3 type B vehicles, there would be 37 type A vehicles.If there were 4 type B vehicles, there would be 32.5 type A vehicles which isn't possible.If there were 5 type B vehicles, there would be 28 type A vehicles.Continuing in this manner, you can find all possible whole number of vehicle combinations.

Learn more about Linear Equation here:

https://brainly.com/question/32634451

#SPJ12

Find the solution to the differential equation

dB/dt+4B=20

with B(1)=30

Answers

Answer:

Solution: [tex]B=5+25e^{4-4t}[/tex]

Step-by-step explanation:

Given: [tex]\dfrac{dB}{dt}+4B=20[/tex]  

with B(1)=30

The differential equation in form of linear differential equation,

[tex]\dfrac{dy}{dt}+Py=Q[/tex]

Integral factor, IF: [tex]e^{\int Pdt}[/tex]

General Solution:

[tex]y\cdot IF=\int Q\cdot IFdt[/tex]

[tex]\dfrac{dB}{dt}+4B=20[/tex]  

P=4, Q=20

IF= [tex]e^{\int 4dt}=e^{4t}[/tex]

Solution:

[tex]Be^{4t}=\int 20e^{4t}dt[/tex]

[tex]Be^{4t}=5e^{4t}+C[/tex]

[tex]B=5+Ce^{-4t}[/tex]

B(1)=30 , Put t=1, B=30

[tex]30=5+Ce^{-4}[/tex]

[tex]C=25e^4[/tex]

[tex]B=5+25e^{4-4t}[/tex]

when a number is decreased by 40% of itself, the result is 24 what is the number?

Answers

Answer: The number is 40.

Step-by-step explanation:

Since we have given that

Let the number be 'x'.

If a number is decreased by 40%.

So, number becomes,

[tex]\dfrac{100-40}{100}\times x\\\\=\dfrac{60}{100}\times x\\\\=0.6x[/tex]

According to question, the result becomes 24.

So, our equation becomes,

[tex]0.6x=24\\\\x=\dfrac{24}{0.6}\\\\x=\dfrac{240}{6}\\\\x=40[/tex]

Hence, the number is 40.

-7x-3x+2=-8x-8
steps too pls

Answers

Answer:

5

Step-by-step explanation:

-7x-3x+2= -8x-8;

-10x+2= -8x-8;

-10x+2+8x= -8;

-10x+8x= -8-2;

-2x= -10;

x=(-10)/(-2);

x=5.

The side of a lake has a uniform angle of elevation of 15degrees
30minutes. How far up the side of the lake does the water rise if,
during the flood season, the height of the lake increases by 7.3
feet?

Answers

During the flood season, the water rises 26.4 feet up the side of the lake.

The angle of elevation is given as 15 degrees 30 minutes,

Now, it can be converted to decimal degrees as 15.5 degrees.

Let's denote the distance up the side of the lake as x feet.

Now set up a trigonometric equation using the tangent function:

tan(15.5°) = (7.3 feet) / x

We can solve for x by rearranging the equation:

x = (7.3 feet) / tan(15.5°)

Evaluating this expression gives us:

x = (7.3 feet) / 0.277

x = 26.4 feet

Therefore, the water rises 26.4 feet up the side of the lake.

To learn more about the angle visit:

https://brainly.com/question/25716982

#SPJ4

HELP!
Will give brainliest to whoever does answer this correctly!
As infants grow from a toddler to a young adult, there may be times when they are ill and medication is needed. It is extremely important that medication be administered in the exact dose so the child receives the correct amount. Too little or too much medication could have serious side effects. A popular children’s fever medicine manufacturer recommends the following dosage information to parents and pediatricians.

Answers

a) Rate of change is 0.208
Rate of change is change in Y divided by the change in X. Let Y be the Dosage. Let X be the Weight.
Subtract first dosage from the second:
7.5 - 5 =2.5

Subtract the first weight from the second:
36 - 24 = 12

Now divide:
2.5 ÷ 12 = 0.208

b) It is linear. Instead of subtracting the first from the second, just subtract the second from third:
10 - 7.5 = 2.5
48 - 36 = 12

Or the third from the fourth
12.5 - 10 = 2.5
60 - 48 = 12

Or the fourth from the fifth
15 - 12-5 = 2.5
72 - 60 = 12

What do you notice? You get 2.5 and 12 for all of them, thus the relationship is linear.

Answer:

the rate is 0.208

Let f be a differentiable function on (-0o,00) such that f(-x)= f(x) for all x in (, o). Compute the value of f'(0). Justify your answer

Answers

Answer:

[tex]f'(0)=0[/tex]

Step-by-step explanation:

Applying the chain rule

[tex]\frac{d}{dx} (f(-x))=-\frac{df}{dx}[/tex]

Then it becomes

[tex]\frac{df}{dx} =-\frac{df}{dx}[/tex]

In x=0

[tex]\frac{d[tex]f'(0)=-f'(0)\\f'(0)+f'(0)=0\\2f'(0)=0\\[/tex]f}{dx} =-\frac{df}{dx}[/tex]

Then

[tex]f'(0)=0[/tex]

Prochlorperazine (Compazine) for injection is available in 10-mL multiple dose vials containing 5 mg/mL. How many 2-mg doses can be withdrawn from the vial?

Answers

Answer:

25

Step-by-step explanation:

Given:

Volume of Prochlorperazine injection available = 10 mL

Dose per vial = 5 mg/mL

Now,

The total mass of dose present in 10 mL = Volume × Dose

or

The total mass of dose present in 10 mL = 10 × 5 = 50 mg

Thus,

The number of 2 mg dose that can be withdrawn = [tex]\frac{\textup{50 mg}}{\textup{2 mg}}[/tex]

or

The number of 2 mg dose that can be withdrawn = 25

Answer: 25 doses of 2 mg each from the 10-mL vial

Step-by-step explanation:

To determine how many 2-mg doses can be withdrawn from a 10-mL vial containing Prochlorperazine at a concentration of 5 mg/mL, you can use the following calculation:

1. Calculate the total amount of Prochlorperazine in the vial:

  Total amount = Concentration × Volume

  Total amount = 5 mg/mL × 10 mL

  Total amount = 50 mg

2. Now, calculate how many 2-mg doses can be withdrawn:

  Number of 2-mg doses = Total amount / Dose per patient

  Number of 2-mg doses = 50 mg / 2 mg/dose

  Number of 2-mg doses = 25 doses

So, you can withdraw 25 doses of 2 mg each from the 10-mL vial of Prochlorperazine.

A farmer looks out into the barnyard and sees the pigs and the chickens. "I count 70 heads and 180 feet, How many pigs and chickens are there?

Answers

Answer:

Pigs = 20 and Chickens = 50

Step-by-step explanation:

Let the number of pigs be x

and let the number of chicken be y

Thus, x + y = 70

Since Chicken has 2 legs and pigs has 4 legs.

⇒ 4x + 2y = 180

Solving both equations,

We get, x = 20 and y = 50

Thus number of pigs = 20

and, number of chickens = 50.

determine if the two functions f and g are inverses of each other algebraically. If not, why?

f(x)=2x+3/4x-3 ; g(x) = 3x+3/4x-2

a:
no, (f o g)(x)= x+2/3
yes
no, (f o g)(x)=3x

f(x) = -x^3+2 ; g(x) = 3(cubedroot)x-2/2

a:
no, (f o g)(x)= x-14/8
yes
no, (fog)(x)=3-x/2

f(x)=-2x+4/2-5x ; g(x) = 4-2x/5-2x

a:
no, (f o g)(x)= -2x+6/3x-5
no, (f o g)(x)= -6x+6/3x-5
yes.

(the number say ex. g(x) = 4-2x / the "/" is a fraction unit. first unit over the other as provided. any help appreciated thank you <3)

Answers

Answer:

1) yes

2) no, (fog)(x)=3-x/2

3) no, (f o g)(x)= -2x+6/3x-5

Final answer:

The first and second pair of functions are not inverses of each other, while the third pair of functions are inverses.

Explanation:

The first pair of functions, f(x) = 2x + 3/(4x - 3) and g(x) = 3x + 3/(4x - 2), are not inverses of each other. To determine this algebraically, we need to calculate (f o g)(x) and (g o f)(x) and check if they equal to x. In this case, (f o g)(x) is x + 2/3, which is not equal to x, therefore f and g are not inverses of each other.

The second pair of functions, f(x) = -x^3 + 2 and g(x) = 3(cubedroot)x - 2/(2), are also not inverses. By calculating (f o g)(x) and (g o f)(x), we found that (f o g)(x) = x - 14/8, which is not equal to x.

The third pair of functions, f(x) = -2x + 4/(2 - 5x) and g(x) = (4 - 2x)/(5 - 2x), is indeed inverses of each other. By calculating (f o g)(x) and (g o f)(x), we found that (f o g)(x) = x and (g o f)(x) = x, which means f and g are inverses of each other.

Learn more about Inverse functions here:

https://brainly.com/question/35509335

#SPJ3

The pictures are in order of the the questions asked.
1. Answer both parts:
2. Fill in the blank:
3. Arnie wrote:

If all three are answered in the most CLEAR way, brainliest will be handed out.

Answers

Answer:

The answers are given below:

Step-by-step explanation:

1. a. (─13)³⁵

1. b. The product will be negative. The expanded form shows 34 negative factors plus one more negative factor. Any even number of negative factor yields a positive product. The remaining 35th negative factor negates the resulting product.

2. 4 times.

3. Arnie is not correct. The base, ─3.1, should be in parentheses to prevent ambiguity. At present the notation is not correct.

Other Questions
Seorang ayah memberikan sebuah tantangan kepada anaknya untuk i menghitung jumlah uang koin yang diperlukan untuk memenuhi papan catur. I Pada kotak pertama diberi I uang koin, kotak kedua 2 uang koin, 4 uang koin untuk kotak ketiga, 8 koin untuk kotak keempat demikian berlanjut sampai memenuhi 64 kotak. A. Bantu anak tersebut menentukan auaunan banyak koin pada tiap tiap kotak papan catur tersebut.Nyatakan dalam bentuk perpangkatan The square root of 60 + n and the square root of 2n +28. What is the smallest natural number that could be. What was John Browns goal in raiding the federal arsenal at Harpers Ferry, Virginia?What was John Browns goal in raiding the federal arsenal at Harpers Ferry, Virginia? 1. How is 0.00069 written in scientific notation? (1 point).O 69x10--06.9x104O 0.69x1070692104 2.4 kg of nitrogen at an initial state of 285K and 150 kPa is compressed slowly in an isothermal process to a final pressure of 600 kPa. Determine the work. Which sentence demonstrates an error in parallel structure? A. For lunch, Stacy brings a bologna sandwich on Mondays, a ham sandwich on Tuesdays, and a turkey sandwich on Wednesdays. B. John needs to call a handyman to his house because his toilet runs, his icemaker is broken, and his faucet drips. C. To be a successful administrative assistant, you need to know how to use standard office equipment, how to answer calls with proper phone etiquette, and booking travel plans. D. The volunteers at the city's food bank separated donations into categories, stocked the shelves, and worked as cashiers. Ignoring any losses, estimate how much energy (in units of Btu) is required to raise the temperature of water in a 90-gallon hot-water tank from 60F to 110F. The specific heat of water is approximated as a constant, whose value is 0.999 Btu/lbmR at the average temperature of (60 + 110)/2 = 85F. In fact, c remains constant at 0.999 Btu/lbmR (to three digits) from 60F to 110F. For this same temperature range, the density varies from 62.36 lbm/ft3 at 60F to 61.86 lbm/ft3 at 110F. We approximate the density as remaining constant, whose value is 62.17 lbm/ft3 at the average temperature of 85F. An engineer in a locomotive sees a car stuck on the track at a railroad crossing in front of the train. When the engineer first sees the car, the locomotive is 300 m from the crossing and its speed is 18 m/s. If the engineers reaction time is 0.45 s, what should be the magnitude of the minimum deceleration to avoid an accident? Answer in units of m/s 2 . I seek to understand the principles whereby a person's ability to think, speak, perceive, and learn changes as they go through their life span. This statement identifies one as a _______ psychologist. Explain the presence of xoloitzcuintlis in Indian burial mounds. In Java write a method called wordCount that accepts a String as its parameter and returns the number of words in the String. A word is a sequence of one or more nonspace characters (any character other than ' '). For example, the call wordCount("hello") should return 1, the call wordCount("how are you?") should return 3, the call wordCount(" this string has wide spaces ") should return 5, and the call wordCount(" ") should return 0. A person is standing on a level floor. His head,upper torso,arms and hands together weigh 438N and have a centerof gravity thatis 1.17m above the floor. His upper legsweigh 144N and have acenter of gravity that is 0.835m above thefloor. Finally, his lowerlegs and feet together weigh 87Nand have a center of gravity thatis 0.270m above the floor. Relative to the floor, find the locationof the center of gravityfor the entire body. Hamid et al. (2010) had participants navigate a maze while recording their eye movements. The maze contained landmarks on the walls at corners and at other positions that would not aid maze navigation. After participants learned the maze, the researchers removed half of the landmarks. The results of this study revealed that _____.a. performance decreased when landmarks were removed that had been viewed longer.b. participants did not notice that the landmarks were missing and their performance was uneffected.c. participants had been relying on all landmarks to navigate.d. performance increased when non-informative landmarks were removed. Gina and Tina are identical twins. Gina has had a series of traumas and has been diagnosed with schizophrenia. Tina is demonstrating no symptoms of schizophrenia. Because schizophrenia tends to run in families, the difference between the twins can be explained througha) the stress of childbirth.b) cultural influences.c) the medical modeld) epigenetics. When an increase in the population of prey occurs, which of the following usually occurs in the population of its predator?When an increase in the population of prey occurs, which of the following usually occurs in the population of its predator?The population of the predator increases.The population of the predator remains unchanged.The population of the predator decreases.The population of the predator will become extinct. a bullet ofmass 0.05kg has a speed of 400m/s.what is its kinetic energy? If it hits a wall of which the averageresistive force is 10000N, calculate the distance penetrated by the bullet You have two beakers, one filled to the 100-mL mark with sugar (the sugar has a mass of 180.0 g) and the other filled to the 100-mL mark with water (the water has a mass of 100.0 g). You pour all the sugar and all the water together in a bigger beaker and stir until the sugar is completely dissolved. b. Which of the following is true about the volume of the solution? Explain.i. It is much greater than 200.0 mL.ii. It is somewhat greater than 200.0 mL.iii. It is exactly 200.0 mL.iv. It is somewhat less than 200.0 mL.v. It is much less than 200.0 mL. 1). Sammy was a normal, healthy boy. There was nothing wrong in his life to indicate that he was in anyway different from anyone else. When he completed highschool he obtained a job in a factory where he operared a large machine press. One day, his hand got caught in the press and was cut off. It was replaces with an artifical hand that looked and operated almost like a real hand.Is Sammy Alive? Yes or NoExplain the Reasoning What are the steps for writing a check?Sign the front of the check, write the bank's name, and write the date you want the check to be cashed.Enter the date, write the check number, write the amount in numbers, and sign the front of the check.Enter today's date, write the payee, write the amount in numbers, write the amount in words, and sign the back of the check.Enter today's date, write the payee, write the amount in numbers, write the amount in words, and sign the front of the check. Which is a personal risk factor for drug abuse?believing that drug abuse is unacceptablehaving low self-esteemhaving a low level of stresshaving parents who do not use drugs