in the reaction a + b -> c the following information applies. at the beginning of the reaction there was 1.0 mol of chemical a and 0.5 mol of chemical c was recovered. what are the limiting reagent, the theoretical yield, and the percent yield for this reaction

Answers

Answer 1
Wsjajjs ajajajja shanks anajajjajjs

Related Questions

The decomposition of 57.0 g of Fe2O3 results in Consider the following reaction. 2Fe2O3 ---> 4Fe + 3O2 deltaH degree rxn = + 824.2 kJ decomposition of 57.0 g of Fe2O3 results in the release of 294 kJ of heat. A. the absorption of 23500 kJ of heat. B. the absorption of 147 kJ of heat. C. the absorption of 294 kJ of heat. D. the release of 23500 kJ of heat. E. the release of 147 kJ of heat.

Answers

Final answer:

The question seeks to determine the amount of heat released during the decomposition of 57.0 g of Fe2O3. After converting the given weight to moles, we find that 57.0 g corresponds to about 147 kJ. Therefore, the answer is E. the release of 147 kJ of heat.

Explanation:

The question pertains to the heat change associated with the decomposition of Iron (III) oxide (Fe2O3). Given that Fe2O3 molecular weight is ~159.69 g/mol and the fact that every 2 mol of Fe2O3 releases 824.2 kJ of heat, we can calculate the energy associated with 57 grams of Fe2O3 as follows:

First, deduce the number of moles of Fe2O3 in 57 grams: 57g / 159.69 g/mol = 0.357 mol of Fe2O3

Since 2 mol of Fe2O3 correspond to 824.2 kJ, we can conclude that 0.357 mol corresponds to: (824.2 kJ / 2) x 0.357 = 147 kJ

Considering the question described the decomposition process as 'results in the release of', it suggests the heat change is exothermic or heat-releasing. Hence, the correct answer should be: E. the release of 147 kJ of heat.

Learn more about Thermal decomposition here:

https://brainly.com/question/32788677

#SPJ12

A mining crew extracted two different types of minerals from the underground. Then, they transferred the same amount of energy into both minerals. Why did mineral A change while mineral B stayed the same? Explain what happened to the molecules of both minerals.

Answers

Answer: Mineral A changed because Molecular energy transferred is equal or greater than than its Activation energy

Mineral B didn't change because Molecular energy transferred is less than its Activation energy.

Explanation:

The molecules of Mineral A has been disturbed by the addition of energy causing a change and the entropy is increased. The Molecules of Mineral B has not been disturbed because the residual energy has not been overcome and therefore yielding no visible change

The plausible reason for the change in mineral A will be the lower activation energy than the transferred energy.

The addition of energy will result in the change in the minerals if the activation energy is exceeded.

The minerals found in mining A and B have transferred the energy. The minimum amount of energy required to do the transition in the atoms in the activation energy.

The possible reason for the change in the mineral A will be the lower activation energy for the mineral A. The mineral B does not change because the activation energy of mineral B is higher as compared to mineral A.

For more information, refer to the link:

https://brainly.com/question/22034013

A certain substance changes temperature from 14°C to 48°C. The substance is also known to have a mass of 20 kg. If the substance gained 800 kJ of heat during this temperature change, then what is the specific heat of this substance?

Answers

Answer:

The substance has a specific heat of 1.176 J/g°C

Explanation:

Step 1: Data given

Temperature change = 34 °C

Mass of the substance = 20 kg = 20000 grams

The substance gained 800 kJ of heat during this temperature change

Step 2: Calculate the specific heat

q = m*c*ΔT

⇒ with q = heat gained = 800 kJ = 800000 J

⇒ with m = the mass of the substance = 20 kg = 20000 grams

⇒ with c = the specific heat of the substance = TO BE DETERMINED

⇒ with ΔT = the change of temperature = T2 -T1 = 48° - 14 ° = 34°

c = q/(m*ΔT)

c = 800000 / (20000 * 34)

c = 1.176 J/g°C

The substance has a specific heat of 1.176 J/g°C

For the conversion of ice to water at 0°C and 1 atm,1.ΔG is negative,ΔH is negative, and ΔS is positive.2.ΔG is zero, ΔH is positive, and ΔS is positive.3.ΔG is positive, ΔH is negative, and ΔS is positive.4.ΔG is zero, ΔH is positive, and ΔS is negative.

Answers

Answer:

2. ΔG is zero, ΔH is positive, and ΔS is positive

Explanation:

When the ice is being converted to water ate 0ºC and 1 atm, there is an equilibrium between the solid and the liquid. At the equilibrium point, ΔG (the free energy) is zero. It is negative for spontaneous reactions and positive for nonspontaneous reactions.

For the phase change happens, the ice must absorb heat from the surroundings, so it's an endothermic reaction, and because of that ΔH (the enthalpy) must be positive. It is negative for exothermic reactions.

In the liquid state, the molecules have more energy and the randomness is higher than the solid-state. The entropy (S) is the measure of the randomness, so if it's increasing, ΔS must be positive.

Final answer:

The conversion of ice to water at 0°C and 1 atm has a negative ΔG, negative ΔH, and positive ΔS.

Explanation:

For the conversion of ice to water at 0°C and 1 atm:

ΔG is negative, ΔH is negative, and ΔS is positive.

ΔG is zero, ΔH is positive, and ΔS is positive.

ΔG is positive, ΔH is negative, and ΔS is positive.

ΔG is zero, ΔH is positive, and ΔS is negative.

Option 1 is the correct answer. When ice converts to water at 0°C and 1 atm, the Gibbs free energy change (ΔG) is negative, indicating that the process is spontaneous. The enthalpy change (ΔH) is negative, as heat is absorbed from the surroundings, and the entropy change (ΔS) is positive, as there is an increase in disorder.

Bond length is the distance between the centers of two bonded atoms. On the potential energy curve, the bond length is the internuclear distance between the two atoms when the potential energy of the system reaches its lowest value. Given that the atomic radii of H and I are 25.0 pm and 133 pm , respectively, predict the bond length of the HI molecule.

Answers

Answer:

158.0 pm

Explanation:

In this case, the bond length of the HI molecule is equal to the sum of the atomic radii of its components. Which is to say:

Bond length HI = Atomic Radius H + Atomic Radius I

Bond Length = 25.0 pm + 133 pm

Bond Length = 158.0 pm

Final answer:

The bond length of the HI molecule can be predicted by summing the atomic radii of hydrogen (25.0 pm) and iodine (133 pm), resulting in an estimated bond length of 158 pm.

Explanation:

The question seeks to predict the bond length of the HI molecule based on the atomic radii of hydrogen (H) and iodine (I). Bond length is crucial for understanding molecular structure and is reflective of the optimal distance between two bonded atoms where the potential energy of the system is at its lowest. Given that the atomic radius of H is 25.0 pm and that of I is 133 pm, the bond length of the HI molecule can be estimated by summing these radii.

To predict the bond length of HI, we simply add the atomic radii of H and I:

Atomic radius of H = 25.0 pm

Atomic radius of I = 133 pm

Estimated bond length of HI = (25.0 pm + 133 pm) = 158 pm

This approach assumes that the bond length is approximately the sum of the individual atomic radii, which is often a reasonable approximation for such predictions.

What is the molar mass of a monoprotic acid if 33.30 mL of 0.0823 M NaOH is required to neutralize a 0.254−g sample?

Answers

Answer:

MW = 94.07 g/mol

Explanation:

We are here given a neutralization reaction which is a 1: 1 molar relation. So calculating the # mol NaOH reacted we will know the  #mol of  the monoprotic acid, and since we are given the mass of sample we can calculate the molar mas of the compund because # mol = mass/ MW .

# mol NaOH = 0.0823 mol/L x 33 mL/1000 mL/L = 0.0027 mol

# mol = m/MW ∴   MW: m/# mol

MW :  0.254 g / 0.0027 mol =  94.07 g/mol

A 24.1-g mixture of nitrogen and carbon dioxide is found to occupy a volume of 15.1 L when measured at 870.2 mmHg and 31.2oC. What is the mole fraction of nitrogen in this mixture?

Answers

Final answer:

The mole fraction of nitrogen in the gas mixture can be calculated using the ideal gas law and the given pressure, volume, and temperature. The calculation suggests a mole fraction of 1.509, which might indicate that we've made an erroneous assumption about the mixture's composition.

Explanation:

First, in order to find the mole fraction of nitrogen in the mixture, we should first find the number of moles of the total mixture. To do this, we can use the ideal gas law, which states that the volume, pressure, and temperature of a gas can be related to the number of moles of the gas. This law can be written as: PV=nRT.

To find the pressure in the correct units, we convert mmHg to atm by dividing by 760 (since 1 atm = 760 mmHg). The pressure is therefore 870.2 / 760 = 1.145 atm. Similarly, we should convert the temperature to Kelvin by adding 273 to the Celsius temperature: 31.2 + 273 = 304.2 K.

So, our equation becomes: 1.145 atm * 15.1 L = n * 0.0821 atm*L/mol/K * 304.2 K. Solving for n, we find that the total number of moles in the mixture is n = 0.570 moles.

Given that molecular nitrogen (N₂) has a molar mass of 28.01 g/mol, we can calculate the number of moles of nitrogen in the 24.1-g mixture. The mass of nitrogen divided by its molar mass gives the number of moles, which is 24.1 g / 28.01 g/mol = 0.860 moles. Therefore, the mole fraction of nitrogen (X_N2) in the mixture can be calculated as the number of moles of nitrogen divided by the total number of moles, or 0.860 / 0.570 = 1.509.

Therefore, the mole fraction of nitrogen in the mixture is 1.509. This value may seem unusual as mole fractions are typically less than 1, but this discrepancy could be due to the initial assumption that the entire 24.1 g consisted of nitrogen. In a real situation, you would need to know the mass of each component in the mixture to accurately calculate the mole fractions.

Learn more about Mole fraction here:

https://brainly.com/question/32203215

#SPJ12

Final answer:

The mole fraction of nitrogen in the gas mixture is calculated to be approximately 43.8 percent using the Ideal Gas Law and the given molar masses of nitrogen and carbon dioxide.

Explanation:

To find the mole fraction of nitrogen in this mixture, we first need to use the Ideal Gas Law (PV=nRT) to find the total moles (n) of the gases in the mixture. Given the volume (V) of the gas mixture is 15.1 L, the pressure (P) is 870.2 mmHg or 1.145 atm, and the temperature (T) is 31.2oC or 304.35 K, with R being the ideal gas constant which equals 0.0821 L·atm/K·mol, the total number of moles is found to be 0.573 mol.

Then, we need to know that the molar masses of nitrogen (N₂) and carbon dioxide (CO₂) are 28.01 g/mol and 44.01 g/mol respectively. So, we can set up the equation x(28.01) + (1-x)(44.01) = 24.1 (where x is the mole fraction of nitrogen in the mixture) to solve for x. We find that x equals 0.438.

So, the mole fraction of nitrogen in this mixture is approximately 0.438 or 43.8 percent.

Learn more about Mole fraction here:

https://brainly.com/question/29808190

#SPJ11

What is meant by the mass percent concentration of a solution

Answers

Answer:

The mass of a solute divided by the mass of a solution times 100

Explanation:

The concentration of a solution refers to how much of a solute is dissolved in an amount of solvent. To express this concentration exist different methods, the mass percent concentration is one of them and is defined as the mass of a solute divided by the mass of a solution times 100:

%m/m= (mass of a solute/mass of solution)x100

Where the mass of the solution is the sum of the mass of solute and mass of solvent.

%m/m is commonly used when you can measure the masses of both solute and solution.

I hope you find this information useful and interesting! Good luck!

Final answer:

Mass percent in chemistry denotes the proportion of a solute in a solution in terms of a percentage. It's calculated as: Mass Percent = (mass of solute/mass of solution) * 100.

Explanation:

The mass percent concentration of a solution signifies the proportion of a solute in a certain quantity of solution, and it is displayed as a percentage. To calculate the mass percent, we use the formula:

Mass Percent = (mass of solute/mass of solution) * 100

If, for example, you have a solution composed of 20g of sugar in 180g of water, the mass of the solution would be the sum of these two (200g), and thus the mass percent of sugar in the solution is (20/200)*100 = 10%.

Learn more about Mass Percent here:

https://brainly.com/question/35288517

#SPJ6

Which of the properties of radioisotopes make them useful as tracers in medical or agricultural applications? i. Their chemical behavior is the same as nonradioactive isotopes. ii. They emit various types of radiation. iii. The nuclear reaction is unaffected by the chemical state of the isotope.

Answers

Answer:

ii) They emit various tyoes of radiation

Explanation:

They fact that they emit radiation makes them ideal to use as a tracer because that radiation can be detected and followed. This means that you can know where the isotope is going throught.

Cause of that, radioisotopes are very helpful in medical applications such as tracing blood veins.

When copper metal is added to nitric acid, the following reaction takes place
Cu (s) + 4 HNO₃ (aq) → Cu(NO₃)₂ (aq) + 2 H₂O (l) + 2 NO₂ (g)
Calculate the volume of NO₂ gas collected over water at 25.0 °C when 2.01 g of copper is added to excess nitric acid if the total pressure is 726 mm Hg. The vapor pressure of water at 25.0 °C is 23.8 mm Hg

Answers

The volume of NO₂ gas collected over water at 25.0 °C is 1.67 L

We'll begin by calculating the number of mole of Cu. This can be obtained as follow:

Mass of Cu = 2.01 g

Molar mass of Cu = 63.55 g/mol

Mole of Cu =?

Mole = mass / molar mass

Mole of Cu = 2.01 / 63.55

Mole of Cu = 0.0316 mole

Next, we shall determine the number of mole of NO₂ produced by 2.01 g (i.e 0.0316 mole) of Cu. This can be obtained as follow:

Cu(s) + 4HNO₃(aq) → Cu(NO₃)₂(aq) + 2H₂O(l) + 2NO₂(g)

From the balanced equation above,

1 mole of Cu reacted to produce 2 moles of NO₂.

Therefore,

0.0316 mole of Cu will react to produce = 0.0316 × 2 = 0.0632 mole of NO₂.

Finally, we shall determine the volume of NO₂ gas obtained from the reaction. This can be obtained as follow:

Number of mole of NO₂ (n) = 0.0632 mole

Temperature (T) = 25 °C = 25 + 273 = 298 K

Total pressure = 726 mm Hg

Vapor pressure of water = 23.8 mm Hg

Pressure of NO₂ (P) = 726 – 23.8 = 702.2 / 760 = 0.924 atm

Gas constant (R) = 0.0821 atm.L/Kmol

Volume (V) =?

PV = nRT

0.924 × V = 0.0632 × 0.0821 × 298

0.924 × V = 1.54623856

Divide both side by 0.924

[tex]V = \frac{1.54623856}{0.924} \\\\[/tex]

V = 1.67 L

Therefore, the volume of NO₂ collected over water at 25.0 °C is 1.67 L

Learn more: https://brainly.com/question/21988882

The chemical reaction is defined as the reaction of reactants to form products. The reaction between copper and nitric acid will result in the formation of copper(II)nitrate, water, and nitrogen dioxide. The volume of NO[tex]_2[/tex] collected will be 1.67 L.

Give that,

Mass of Cu = 2.01 g Molar mass of Cu = 63.55 g/mol [tex]\begin{aligned}\text{mole}&=\dfrac{\text{mass}}{\text{molar mass}}\\\text{Mole of Cu}&=\dfrac{2.01}{ 63.55}\end[/tex]   Mole of Cu = 0.0316 mole

The number of moles produced by nitrogen dioxide (2.01 g) will be:

[tex]\text {Cu}_\text {(s)} + \text{4 HNO}_3_\text{(aq)}\rightarrow\text{Cu}\text{(NO}_3)_2_\text{(aq)} + \text{2 H}_2\text O_\text{(l)} + \text{2 NO}_2_\text{(g)}[/tex]

Now, from the equation,

0.316 moles of copper will produce = 2 x  0.0316 = 0.0632 mole of NO₂.

Now, from the ideal gas equation,

PV = nRT0.924 × V = 0.0632 × 0.0821 × 298 0.924 × V = 1.54623856Divide both side by 0.924

[tex]\text{V}&=\dfrac{1.546238}{0.924}\\\\\text V &= 1.67 L[/tex]

Therefore, the volume of nitrogen dioxide collected over water at 25-degree celcius is 1.67 L.

To know more about ideal gas equation, refer tot he following link:

https://brainly.com/question/15118706?referrer=searchResults

Select the correct electron configurations from the list below. You can refer to the periodic table for atomic numbers. Check all that apply.
A) The electron configuration of O2− is [He]2s22p6.
B) The electron configuration of Cs is [Xe]6s05d1.
C) The electron configuration of Ag+ is [Kr]5s14d9.
D) The electron configuration of Si is [Ne]3s23p2.
E) The electron configuration of Ni is [Ar]4s23d8.

Answers

The correct electron configurations are:

A) O2−: [He]2s²2p⁶.

D) Si: [Ne]3s²3p².

E) Ni: [Ar]4s²3d⁸.

The correct electron configurations from the provided list are as follows:

A) The electron configuration of O2− (the oxygen ion with a charge of -2) is [He]2s²2p⁶. This configuration accounts for the addition of two electrons to the neutral oxygen atom's electron configuration of 1s²2s²2p⁴, resulting in a total of eight electrons.

D) The electron configuration of Si (silicon) is [Ne]3s²3p². Silicon, with an atomic number of 14, has 14 electrons. The electron configuration follows the Aufbau principle, filling the 1s, 2s, 2p, and 3s subshells.

E) The electron configuration of Ni (nickel) is [Ar]4s²3d⁸. Nickel, with an atomic number of 28, has 28 electrons. This configuration represents the filling of the 1s, 2s, 2p, 3s, 3p, 4s, and 3d subshells.

Option B and C are not correct:

B) The electron configuration of Cs (cesium) is [Xe]6s¹. Cesium, with an atomic number of 55, has only one valence electron in the 6s orbital.

C) The electron configuration of Ag+ (the silver ion with a charge of +1) is [Kr]5s²4d⁹. This configuration arises from the removal of one electron from the neutral silver atom's electron configuration, [Kr]5s²4d¹⁰, leaving it with 47 electrons.

Understanding electron configurations is essential in chemistry, as they determine the chemical properties and reactivity of elements. These configurations are based on the filling of electron orbitals following specific rules and principles, such as the Aufbau principle, Pauli exclusion principle, and Hund's rule.

For more such questions on electron configurations

https://brainly.com/question/26084288

#SPJ6

Calculate the number of atoms of each type in C12H22O11 and record

Answers

Answer:

1 mol of sucarose has 7.22 x10²⁴ atoms of C, 1.32 x10²⁵ atoms of H and 6.62 x10²⁴ atoms of O

Explanation:

C12H22O11 is the molecular formular for sucarose

So in 1 mol of sacarose, we have 12 mols of carbon, 22 moles of hydrogen, and 11 mols of oxygen.

As you know, 1 mol has 6.02x10²³ atoms so these are the rule of three to calculate the number of atoms of each type.

1 mol ______ 6.02x10²³

12 moles ______ 12 . 6.02x10²³ = 7.22 x10²⁴

22 moles ______ 22 . 6.02x10²³ = 1.32 x10²⁵

11 moles _______ 11 . 6.02x10²³ = 6.62 x10²⁴

If you have ever peeled the label off a glass jar, you may have noticed that the glue does not easily wash off with water. However, it can be easily removed with another common household solvent– fingernail polish remover (ethel acetate). What does this tell you about the chemical composition of the glue? Explain your answer.

Answers

Answer:

It can be removed by acidic chemicals

Explanation:

Final answer:

The glue likely consists of compounds with nonpolar covalent bonds that repel water but are dissolved by solvents like acetone, explaining why water can't remove the glue but fingernail polish remover can.

Explanation:

The observation that glue does not easily wash off with water but can be removed with a substance like fingernail polish remover helps us understand the chemical composition of the glue. The adhesive used in the glue is likely a combination of compounds with nonpolar covalent bonds. These compounds resist polarity, which repels water molecules. However, they can be dissolved with certain solvents that contain similar nonpolar substances, such as acetone found in fingernail polish remover. Acetone, or dimethyl ketone, is used as a solvent in various applications due to its ability to dissolve many substances.

By understanding the chemical reactions between different substances, one can often predict their behaviors when they interact. In this case, the interaction between the glue and the water or acetone is predictable based on our understanding of their individual chemical compositions and the forces of cohesion and adhesion that influence how substances combine.

For example, when substances such as water, which have molecules with polar covalent bonds, interact with substances like glue, which has molecules with nonpolar covalent bonds, cohesion within the water molecules causes them to resist mixing with the glue molecules. Conversely, adhesion between the glue molecules and the acetone molecules in fingernail polish remover allows them to mix effectively, thereby enabling the acetone to dissolve the glue.

Learn more about Chemical Reactions here:

https://brainly.com/question/34137415

#SPJ3

Which statement about surface tension is FALSE?
a. Increased intermolecular forces increase surface tension.
b. Items with densities lower than water will sink due to surface tension.
c. Liquids tend to minimize their surface area.
d. Molecules on the surface of the liquid have fewer molecules to interact with.
e. All of the above statements are true.

Answers

Answer: B (Items with densities lower than water will sink due to surface tension)

Explanation:

Surface tension is an intermolecular force exerted on the surface of water making it like a stretch elastic skin. Surface tension enables items with lesser densities than water, to float and slide on a water surface. Examples insects, leaves, paper etc

According to Archimedes principle an object denser than the fluid will sink. While objects less dense than the fluid will float.

Answer is (B) is false because items with densities higher then water will sink due to surface tension

Items with densities lower than water will sink due to surface tension. Therefore, the correct option is option B.

A intriguing phenomena called surface tension occurs when a liquid meets a gas or another liquid. It results from the cohesive forces between the molecules that are present at a liquid's surface. Surface tension is a result of the thin layer that is formed by these cohesive forces that holds the molecules closely together. A liquid droplet placed on a surface can be used to illustrate the idea of surface tension. The droplet takes on a spherical shape as a result of the cohesive forces between the water molecules. The molecules at the surface are drawn inside to reduce their exposure to the surroundings.

Therefore, the correct option is option B.

To know more about surface tension, here:

https://brainly.com/question/571207

#SPJ6

Both ethylene (C2H4) and benzene (C6H6) contain the CC bond. The reactivity of ethylene is greater than that of benzene. For example, ethylene readily reacts with molecular bromine, whereas benzene is normally quite inert toward molecular bromine and many other compounds. Explain this difference in reactivity.

Answers

In spite of ethylene and benzene has double bonded carbon-carbon, Benzene is a cyclic molecule with a special property called aromaticity. Aromaticity gives to the ring electronic properties which makes harder for benzene being reactive as ethylene.

Benzene has the formula C6H6 being cyclic and aromatic because have conjugated double bonds and those double bonds has a property called resonance unusual elevated making the structure very stable. That can be seen under the conditions of reaction of alkene compounds in which benzene doesn't react, like bromination with Br2 in CCl4.

On the other hand, ethylene is an alkene which has the formula C2H4, the double bond carbon carbon is available to suffer the different reactions of alkenes being more reactive.

Final answer:

Ethylene is more reactive than benzene primarily due to ethylene's discrete, highly reactive double bond, compared to benzene's delocalized and stabilized double bonds within its aromatic ring. The stability of the delocalized electrons in the benzene ring reduces its reactivity, while ethylene's electron-rich double bond invites addition reactions.

Explanation:

The difference in reactivity between ethylene (C2H4) and benzene (C6H6) toward molecular bromine is primarily due to the structural differences in their carbon-carbon double bonds. Ethylene contains a discrete C=C double bond that is highly reactive because it can open up to allow additional atoms to attach to the carbon atoms (an addition reaction). In contrast, the C=C bonds in benzene are part of a delocalized electron system over the entire aromatic ring, giving it extraordinary stability. This delocalization makes benzene less reactive towards addition reactions, such as with bromine, because the addition would disrupt the stable aromatic system.

Benzene's unique stability is due to the alternating single and double C-C bonds, which form a resonance-stabilized structure. This stability is a concept commonly understood as aromaticity, which significantly reduces the chemical reactivity of benzene's double bonds compared to those in alkenes like ethylene. Although the C=C bond is nonpolar, the reactivity of ethylene is also influenced by the electron-rich region around the σ bond, making it more prone to reactions with nucleophiles.

Learn more about Reactivity of Ethylene vs Benzene here:

https://brainly.com/question/35545492

#SPJ6

A compound is 7.74% hydrogen and 92.26% carbon by mass. At 100°C a 0.6883 g sample of the gas occupies 250 mL when the pressure is 820 torr. What is the molecular formula for this compound?

Answers

Answer: The molecular formula for the compound is [tex]C_6H_6[/tex]

Explanation:

We are given:

Percentage of C = 92.26 %

Percentage of H = 7.74 %

Let the mass of compound be 100 g. So, percentages given are taken as mass.

Mass of C = 92.26 g

Mass of H = 7.74 g

To formulate the empirical formula, we need to follow some steps:

Step 1: Converting the given masses into moles.

Moles of Carbon =[tex]\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{92.26g}{12g/mole}=7.68moles[/tex]

Moles of Hydrogen = [tex]\frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{7.74g}{1g/mole}=7.74moles[/tex]

Step 2: Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 7.68 moles.

For Carbon = [tex]\frac{7.68}{7.68}=1[/tex]

For Hydrogen = [tex]\frac{7.74}{7.68}=1[/tex]

Step 3: Taking the mole ratio as their subscripts.

The ratio of C : H = 1 : 1

The empirical formula for the given compound is [tex]CH[/tex]

Calculating the molar mass of the compound:

To calculate the molecular mass, we use the equation given by ideal gas equation:

PV = nRT

Or,

[tex]PV=\frac{m}{M}RT[/tex]

where,

P = pressure of the gas = 820 torr

V = Volume of gas = 250 mL = 0.250 L  (Conversion factor:  1 L = 1000 mL )

m = mass of gas = 0.6883 g

M = Molar mass of gas = ?

R = Gas constant = [tex]62.3637\text{ L. torr }mol^{-1}K^{-1}[/tex]

T = temperature of the gas = [tex]100^oC=(100+273)K=373K[/tex]

Putting values in above equation, we get:

[tex]820torr\times 0.250L=\frac{0.6883g}{M}\times 62.3637\text{ L torr }mol^{-1}K^{-1}\times 373K\\\\M=\frac{0.6883\times 62.3637\times 373}{820\times 0.250}=78.10g/mol[/tex]

For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.

The equation used to calculate the valency is:

[tex]n=\frac{\text{Molecular mass}}{\text{Empirical mass}}[/tex]

We are given:

Mass of molecular formula = 78.10 g/mol

Mass of empirical formula = 13 g/mol

Putting values in above equation, we get:

[tex]n=\frac{78.10g/mol}{13g/mol}=6[/tex]

Multiplying this valency by the subscript of every element of empirical formula, we get:

[tex]C_{(1\times 6)}H_{(1\times 6)}=C_6H_6[/tex]

Hence, the molecular formula for the compound is [tex]C_6H_6[/tex]

Consider the reaction CH4(g) + X2(g) → CH3X(g) + HX(g), where X is a halogen-like atom (Group 7A). Calculate ∆H for this reaction if bond energy tables give the following values: C H : 416 kJ/mol X X : 230 kJ/mol H X : 277 kJ/mol C X : 222 kJ/mol Answer in units of kJ/mol.

Answers

Answer:

ΔH of reaction is -147 kJ/mol

Explanation:

For the reaction:

CH₄(g) + X₂(g) → CH₃X(g) + HX(g)

It is possible to obtain ΔHr of reaction from the sum of ΔH of products minus ΔH of reactants:

ΔHr = ΔH CH₃X + ΔH HX - (ΔH CH₄ + ΔH X₂) (1)

The ΔH of each compound is obtained from bond energies thus:

ΔH CH₃X = 3×C-H + C-X = 3×416 kJ/mol + 222 kJ/mol = 1470 kJ/mol

ΔH HX = H-X = 277 kJ/mol

ΔH CH₄ = 4×C-H = 4×416kJ/mol = 1664 kJ/mol

ΔH X₂ = X-X = 230 kJ/mol

Replacing in (1):

ΔHr = 1470 kJ/mol + 277kJ/mol - (1664 kJ/mol + 230 kJ/mol) = -147 kJ/mol

I hope it helps!

Final answer:

To calculate the enthalpy change for CH₄ + X₂ → CH₃X + HX, we tally the energy needed to break one C-H bond and one X-X bond (total 646 kJ/mol) and subtract the energy released from forming one C-X bond and one H-X bond (total 499 kJ/mol), resulting in a ΔH of 147 kJ/mol.

Explanation:

To calculate the enthalpy change (ΔH) for the reaction CH₄(g) + X₂(g) → CH₃X(g) + HX(g), we need to consider the bond energies provided. The calculation involves computing the energy required to break bonds in the reactants and the energy released from forming bonds in the products.

First, we break one C-H bond in CH₄ and one X-X bond. The energy required is:

1 mol C-H: 416 kJ/mol

1 mol X-X: 230 kJ/mol

When these connections are broken, the total energy needed is:

416 kJ/mol + 230 kJ/mol = 646 kJ/mol

Next, we form one C-X bond and one H-X bond with the energies released as follows:

1 mol C-X: 222 kJ/mol

1 mol H-X: 277 kJ/mol

The total energy released in forming these bonds is:

222 kJ/mol + 277 kJ/mol = 499 kJ/mol

The enthalpy change of the reaction is the energy required minus the energy released:

ΔH = 646 kJ/mol - 499 kJ/mol = 147 kJ/mol

This reaction is endothermic, as indicated by the positive value of ΔH.

What is the mass of wood required to raise the temperature of 1000 kg of water from 25.0 to 100.0 °C (in kg with at least 3 sig figs.)? The specific heat of water is 4.184 J/g°C, and the lower heating value of dry wood is 16.72 MJ/kg.

Answers

Answer:

1.877 x 10⁷ kg

Explanation:

To solve this problem we first use the equation:

Q = m * c * ΔT

Where Q is the heat needed to increase the temperature of a substance, m is the mass, c is the specific heat and ΔT is the difference in temperature.

For this problem:

m = 1000 kg = 1000000 gJ = 4.184 J/g°CΔT = 100°C - 25°C = 75°C

We put the data in the equation and solve for Q:

Q =  1000000 g * 4.184 J/g°C * 75°CQ = 313.80 MJ

So that's the energy required to heat 1000 kg of water, now we calculate the mass of wood using the equation:

Q = m * b

Where b is the heating value of wood and m its mass:

313.80 MJ  = m * 16.72 MJ/kgm = 1.877 x 10⁷ kg wood

An unknown diatomic gas has a density of 3.164 g/l at stp. What is the identity of the gas?

Answers

Answer:

The identity of the gas is Cl₂ (chlorine)

Explanation:

STP conditions are:

1 atm → Pressure

273.15 K → T°

So, we must use the Ideal Gas Law to get the moles.

Before that, we will think density as data where 3.164 g of diatomic gas are contained in 1 L of volume.

P.V = n . R . T

1 atm . 1 L = n. 0.082 L.atm/mol.K . 273.15K

1 L.atm / (0.082 L.atm/mol.K . 273.15K) = n

0.0446 mol = n

This quantity of diatomic gas, are 3.164 g so the molar mass will be:

Mass / mol = molar mass

3.164 g / 0.0446 mol = 70.9 g/m

The element (a diatomic molecule), which has that molar mass in the periodic table is the Cl₂.

1 Cl = 35.45 g/m

Cl₂. = 70.9 g/m

Final answer:

Using the density data and Avogadro's principle, we can calculate the molar mass of the unknown gas to be around 70.8 g/mole. Yet, none of the gases from the provided list align with this molar mass.

Explanation:

The identity of the unknown diatomic gas can be found using the Ideal Gas Law and Avogadro's principle. Avogadro's principle states that equal volumes of gases at the same temperature and pressure will contain an equal number of particles (or moles). Hence, at Standard Temperature and Pressure (STP), 1 mole of any gas will occupy 22.4 L.

From the data provided, we know that 1 mole of the unknown gas has a mass of 3.164 g/L × 22.4 L per mole = 70.8 g/mole. Among the different potential gases listed in the reference, O₂ is a diatomic gas and has a molar mass of 32g/mole, which isn't close to the calculated one. NH3 has a molar mass of 17g/mole which also doesn't match. This leaves us with He (Helium), which is not diatomic and hence can't be our gas. We can therefore confidently conclude that there seems to be a mistake as none of the gases listed align with our calculated molar mass.

Learn more about Chemistry of Gases

https://brainly.com/question/14019170

SPJ3

Aqueous sodium bicarbonate was used to wash the crude n-butyl bromide. a. What was the purpose of this wash? Give equations. b. Why would it be undesirable to wash the crude halide with aqueous sodium hydroxide? 5. Look up the density of n-butyl chloride (1-chlorobutane). Assume that this alkyl halide was prepared instead of the bromide. Decide whether the alkyl chloride would appear as the upper or the lower phase at each stage of the separation procedure: after the reflux, after the addition of water, and after the addition of sodium bicarbonate.

Answers

Answer:

See explanation below

Explanation:

a) According to this, this is an excercise that is involving a separation and reaction of different compounds. The n-butyl bromide is formed when, you made the following reaction:

CH2 = CH - CH2 - CH3 + HBr/peroxide -----------> Br - CH2 - CH2 - CH2 - CH3

Now, in this reaction, we still has traces of HBr in the product, so, in order to neutralize these traces, we wash the solution with bicarbonate sodium forming sodium bromide and carbonic acid as follow:

HBr + Na2CO3 ---------> NaBr + Na2CO3

Also, this is a weak base so it will not react with the n-butylbromide to form another product.

b) Basing of what it was stated above, we cannot wash the solution with NaOH because this is a strong base, and not only wil eliminate the traces of HBr, it will also react with the butylbromide causing an elimination and substitution reaction, giving the following products:

BrCH2CH2CH2CH3 + NaOH --->CH2=CHCH2CH3 + OHCH2CH2CH2CH3

That it's why we need to wash this product with a weak base only.

c) The density of 1-chlorobutane is 0.88 g/mL, density of water is 1 g/mL and density of sodium bicarbonate is 2.2 g/cm3, therefore, the one that has a greater density will go at the lower phase.

In this case, after the reflux, it will stay in the lower phase.

after adding water, it will be in the upper phase.

after adding bicarbonate, it will be in the upper phase too.

Final answer:

a. The purpose of washing the crude n-butyl bromide with aqueous sodium bicarbonate is to remove acidic impurities. b. It would be undesirable to wash the crude halide with aqueous sodium hydroxide. After each stage of the separation procedure, the alkyl chloride would appear as the upper or lower phase.

Explanation:

a. The purpose of washing the crude n-butyl bromide with aqueous sodium bicarbonate is to remove any acidic impurities. Sodium bicarbonate is a weak base that reacts with acidic impurities, such as hydrochloric acid or sulfuric acid, to form water-soluble salts. The balanced chemical equation for the reaction between sodium bicarbonate and hydrochloric acid is:

NaHCO3 + HCl → NaCl + H2O + CO2

b. It would be undesirable to wash the crude halide with aqueous sodium hydroxide because sodium hydroxide is a strong base that can react with the bromide ion to form sodium bromide, which would not be easily separated from the organic layer.

After the reflux, the alkyl chloride would appear as the upper phase. After the addition of water, the alkyl chloride would still appear as the upper phase. After the addition of sodium bicarbonate, the alkyl chloride would appear as the lower phase.

Learn more about washing the crude n-butyl bromide with aqueous sodium bicarbonate here:

https://brainly.com/question/29849746

#SPJ3

For the question that follow, consider the BEST Lewis structures of the following oxyanions:
(i) NO2 -
(ii) NO3 -
(iii) SO3 2-
(iv) SO4 2-
(v) BrO3 -
In which of the ions do all X-O bonds (X indicates the central atom) have the same length?

Answers

Final answer:

In Lewis structures, all X-O bonds have the same length in NO3 -, SO4 2-, and BrO3 -. This is due to resonance, whereby the electron density is distributed among multiple equivalent structures.

Explanation:

In the Lewis structures of the given oxyanions, the ions in which all X-O bonds have the same length are: (ii) NO3 -, (iv) SO4 2-, and (v) BrO3 -. The concept of bond length in these ions is connected to the principle of resonance. Each of these ions exhibit resonance, which means the electron density is distributed among more than one equivalent Lewis structures. This leads to the bonds having the same length. For example, in the SO4 2- ion, there are multiple resonance structures, each involving double bonds between the sulfur and the different oxygen atoms. As these double bonds can 'move' about the ion (due toan resonce), the four sulfur-oxygen bonds are of equal length. Such a phenomenon is not present in (i) NO2 - and (iii) SO3 2-.

Learn more about Lewis Structures and Resonance here:

https://brainly.com/question/33720751

#SPJ6

Final answer:

The NO2- ion has all X-O bonds with the same length.

Explanation:

The Lewis structure of an ion represents the arrangement of atoms and electrons in the ion.

In the oxyanions provided, only NO2- has all X-O bonds (X representing the central atom) with the same length.

This is because the NO2- ion has resonance structures, which means the double bond can be located between either of the two oxygen atoms. As a result, the N-O bonds in NO2- are identical in length.

The pH pH scale for acidity is defined by pH = − log 10 [ H + ] pH=-log10[H+] where [ H + ] [H+]is the concentration of hydrogen ions measured in moles per liter (M). A solution has a pH pH of 4.6. Calculate the concentration of hydrogen ions in moles per liter (M). The concentration of hydrogen ions is Preview moles per liter.

Answers

Answer:

2 51 × 10^-5mol/L

Explanation:

The concentration of hydrogen ions can be calculated using the formula below :

pH = -log [H+]

pH = 4.6

[H+] = ?

[H+] = Antilog (-4.6)

[H+] = 2 51 × 10^-5mol/L

The catabolic process of converting carbohydrates to CO2 requires ________ of carbon. The catabolic process of converting carbohydrates to CO2 requires ________ of carbon.a.Substitutionb.Oxidationc.Isomerizationd.Reduction

Answers

Answer:

The catabolic process of converting carbohydrates to CO2 requires oxidation of carbon.

Explanation:

There are multiple definitions of reduction-oxidation. There is one that explains it with respect to oxygen, the other with respect to hydrogen and another with respect to electrons. The relevant one here is the one that explains it in terms of hydrogen. Oxidation is the removal of hydrogen while reduction is the addition of hydrogen. During repiration, the carbon loses the hydrogens attached to it and is therefore oxidized. These hydrogens attach themselves to oxygen which means oxygen is reduced.

The recipe for pumpkin pie calls for 3 tablespoons of flour and 1.5 cups of sugar for each pie. Which of the following conversion factors would be used to find out how many pies could be made from 7.5 cups of sugar.

Answers

Answer:

5 pumpkin pies could be made with 7.5 cups of sugar.

Explanation:

The conversion factor to solve the problem is:

[tex]7.5 cups of sugar\times\frac{1 pie}{1.5 cups of sugar} = 5 pies[/tex]

If the equilibrium constant for a reaction is 0.00010, what does this tell us about the position of equilibrium for that reaction?

A. There are more reactants than products at equilibrium.
B. There are more products than reactants at equilibrium.
C. At equilibrium, the concentration of reactants is the same as that of the products.
D. The concentration of the product at equilibrium is 0.00010 M.

Answers

Answer: A. There are more reactants than products at equilibrium.

Explanation:

Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as [tex]K_{eq}[/tex]

For a general chemical reaction:

[tex]aA+bB\rightarrow cC+dD[/tex]

The expression for [tex]K_{eq}[/tex] is written as:

[tex]K_{eq}=\frac{[C]^c[D]^d}{[A]^a[B]^b}[/tex]

There are 3 conditions:

When [tex]K_{eq}>1[/tex]; the reaction is product favored.

When [tex]K_{eq}<1[/tex]; the reaction is reactant favored.

When [tex]K_{eq}=1[/tex]; the reaction is in equilibrium.

From the above expression, the equilirbium constant is directly dependent on product concentration. Thus, more is the concentration of product, more will be the equilibrium constant.

The values of [tex]K_{eq}[/tex] less than 1 , means the reactant are more than the products.

Which elements have the most similar chemical properties

Answers

Final answer:

Elements within the same group or family on the periodic table have the most similar chemical properties due to their identical number of valence electrons. Examples include alkali metals such as lithium and sodium, and halogens like fluorine and chlorine.

Explanation:

Elements that have the most similar chemical properties are typically found within the same group on the periodic table. Groups, also known as families, contain elements with the same number of valence electrons. For example, the alkali metals such as lithium (Li) and sodium (Na) have one valence electron, making them highly reactive and sharing similar chemical behaviors like forming compounds with oxygen in a 2:1 ratio.

Similarly, alkaline earth metals like beryllium (Be) and magnesium (Mg) each have two valence electrons and also show close chemical properties. The halogens—including fluorine (F) and chlorine (Cl)—each have seven valence electrons, leading to their characteristic reactivity and ability to form compounds with elements such as sodium.

As elements share the same number of valence electrons, it leads to similarities in the ways they lose, gain, or share electrons during chemical reactions. The patterns of chemical properties extend beyond single groups; for instance, metallic character increases as one moves down a group in the periodic table.

A gas sample in a piston assembly expands, doing 171 kJ of work on its surroundings at the same time that 242 kJ of heat is added to the gas. (a) What is the change in internal energy of the gas during this process? (b) Will the pressure of the gas be higher or lower when these changes are completed?

Answers

Answer:

a) ΔU = 71 kJ

b) the pressure will be higher

Explanation:

Step 1: Data given

A gas does 171 kJ of work on its surroundings

At the same time there is 242 kJ of heat added to the gas

Step 2: Calculate change of internal energy

Change of internal energy ΔU  by the gas due to the 171 kJ work done by the system and addition of 242 kJ heat to the system.

heat energy (ΔH) is the summation of heat capacity (ΔU) and work done by a system

ΔU = Q + W

The work is done by the system on its surroundings, what means energy is lost. W will have a negative value: -171 kJ

The heat is added to the system, this means we gain energy. Q will have a positive value: 242 kJ

Total change of intern energy will be:

ΔU = Q - W

ΔU = 242 kJ - 171 kJ

ΔU = 71 kJ

ΔU = nR*ΔT

For an ideal gas  n and R are constant. . Now consider PV = nRT.

P and T are directly related. Therefore, an increase in temperature will result in a higher pressure.

Final answer:

The change in internal energy of the gas during the process is 71 kJ, and the pressure of the gas will generally be lower at the end of the process.

Explanation:

The question addresses the concept of the first law of thermodynamics as it applies to heat transfer, work done by a gas, and changes in internal energy in thermodynamic processes. According to the first law of thermodynamics, the change in internal energy of a system (ΔU) is equal to the heat (Q) added to the system minus the work (W) done by the system on its surroundings. In this case:

ΔU = Q - W

The given data states that the gas sample does 171 kJ of work on its surroundings (W = 171 kJ) and 242 kJ of heat is added to the gas (Q = 242 kJ). Therefore:

ΔU = 242 kJ - 171 kJ = 71 kJ

(a) The change in internal energy of the gas during the process is 71 kJ.

(b) As the gas does work on the surroundings and expands, the pressure of the gas will generally be lower at the end of the process, as described by the ideal gas law and assuming other factors such as temperature remain constant.

Which combination of elements will form an ionic bond?

A.) sodium and calcium

B.) nitrogen and helium

C.) potassium and chlorine

D.) oxygen and fluorine

Answers

Answer:

The correct answer is option C.

Explanation:

Ionic bond is defined as the bond which is formed by complete transfer of electrons from one atom to another atom.

The atom which looses the electron is known as electropositive atom and the atom which gains the electron is known as electronegative atom. This bond is usually formed between a metal and a non-metal.

Ionic compound is formed by the complete transfer of electrons from 1 atom to another atom. The cation is formed by the loss of electrons by metals and anions are formed by gain of electrons by non metals.

From the given options , the option with metal and non metal is potassium and chlorine. these elements will combine together to form ionic compound called potassium chloride.

flows into a catalytic reactor at 26.2 atm and 250.°C with a flow rate of 1100. L/min. Hydrogen at 26.2 atm and 250.°C flows into the reactor at a flow rate of 1400. L/min. If 13.9 kg is collected per minute, what is the percent yield of the reaction?

Answers

Answer:

69%

Explanation:

Say the hydrocarbon is C2H4, the equation of reaction would be;

C2H4 + H2 ----------> C2H6

The hydrocarbon, C2H4 is the limiting reagent.

From the question, the hydrocarbon C2H4 flows into a catalytic reactor at 26.2 atm and 250°C with a flow rate of 1100 L/min

Using, PV=nRT--------------------(1).

n= PV/RT to find the number of moles.

n= 26.2 atm × 1100 L/ 0.0821 L. atm/mol per kelvin × 523 K.

=28,820 atm.L/ 42.9383 L.atm/mol.

= 671.2 mole.

One mole of C2H4 produced one mole of C2H6.

Mass of C2H6 = 30 × 671.2

= 20,136 g = 20.136 kg.

Percent yield = actual yield/ theoretical yield × 100% -------(2)

Actual yield= 13.9 kg, theoretical yield = 20.136 kg

Substitute the parameters into equation (2). We have;

Percent yield = 13.9 kg/ 20.136× 100

Percent yield= 0.69 × 100

Percent yield= 69%

Note: P= pressure, V= volume, T= temperature and n = number of moles

50 mL of a chlorofluorocarbon gas effused through a porous barrier in 157 seconds. The same volume of argon effused in 76 seconds under the same conditions. What is the formula of the chlorofluorocarbon?

Answers

Answer:

[tex]CCl_{2}FCF_{3}[/tex]

Explanation:

To solve this equation we can use Graham's Law of effusion to calculate the molar mass of the chloroflourocarbon

[tex]\sqrt{\frac{M_{1} }{M_{2} } } = \frac{t_{1} }{t_{2} } \\\\\sqrt{\frac{M_{1} }{39.948 } } = \frac{157 }{76}\\\\\\M_{1}  = 170.477\\[/tex]

Which chloroflorocarbon has this molar mass?

C2Cl2F4

Using Graham's Law of Effusion and given effusion times, we calculated the molar mass of the chlorofluorocarbon to be approximately 170.55 g/mol. This formula suggests the gas is likely Cl₂F₂ (chlorodifluoromethane).

The formula of the chlorofluorocarbon, we can use Graham's Law of Effusion. This law states that the rate of effusion of a gas is inversely proportional to the square root of its molar mass.

The formula for Graham's Law is: (Rate of effusion of Gas 1) / (Rate of effusion of Gas 2) = √(Molar mass of Gas 2 / Molar mass of Gas 1)

Given:

Volume of each gas (V) = 50 mLTime for chlorofluorocarbon (t₁) = 157 sTime for argon (t₂) = 76 s

First, find the rate of effusion for each gas:

Rate of effusion for chlorofluorocarbon = V / t₁ = 50 mL / 157 sRate of effusion for argon = V / t₂ = 50 mL / 76 s

Using Graham's Law:

(Rate of effusion of chlorofluorocarbon) / (Rate of effusion of argon) = sqrt(Molar mass of argon / Molar mass of chlorofluorocarbon)

Substitute the values:

(50 mL / 157 s) / (50 mL / 76 s) = √(39.948 g/mol / Molar mass of chlorofluorocarbon)

Simplify:

76 / 157 = √(39.948 / Molar mass of chlorofluorocarbon)

(76 / 157[tex])^2[/tex] = 39.948 / Molar mass of chlorofluorocarbon

Molar mass of chlorofluorocarbon = 39.948 / (76 / 157[tex])^2[/tex] = 39.948 / (0.484[tex])^2[/tex] =170.55 g/mol

An example of a chlorofluorocarbon with a molar mass close to 170.55 g/mol is Cl₂F₂ (chlorodifluoromethane), with a molar mass of approximately 120.91 + 37.996 = 169.91 g/mol.

Other Questions
At recess the girls are trying to decide on the rules of a game involving a ball. In the middle of discussion the boys get mad and Terrance grabs the ball out of Judy's hand and throws it to Mike who runs with it. He shouts, "You girls are too slow." In the middle of play the boys yell out rules and chase each other. Judy runs to the teacher and complains loudly that the boys don't play fair. What would be the best response for the teacher to make while trying to educate Judy on communication styles?a. "Boys just like to scare girls and be the boss."b. "You girls took too long to make a decision so the boys had every right to take the ball."c. "Boys and girls are different when they play games. Boys like to get the game started and make up rules then. It doesn't matter to them if everyone agrees like girls do."d. "I will make Mike and Terrance stay in during recess tomorrow." What effects did the embargo act of 1807 have on American i dusted Youve just received a complaint from your best customer that her set of 50 new sensors is overheating and she wants her money back or a significant reduction in the cost. You showed her email to your boss who remarked, "Well, thats not covered under the service-agreement and shes beyond 90 days for returns. We cant be responsible for customers who abuse the products without regard for proper use as stated clearly in the manual." How would you best characterize this situation?a)This is an ethical dilemma because its quite possible the customer will sue the company over this issue.b)This is an ethical dilemma because both the customer and the company have legitimate concerns.c)This is not an ethical dilemma because both proper use and return policies are clearly stated.d)This is not an ethical dilemma because the customer has free will and was under no obligation to buy from this particular company. If you buy clothes from Walmart online, then begin to see ads for Viamart in your browser, you're receiving Which best explains the term psychic distance?A. Where the story begins versus where it ends upB. The feeling that the narrator has become disorientedC. A character that can read other characters' mindsD. How close the reader feels to the events of the story While visiting the Albert Michelson exhibit at Clark University, you notice that a chandelier (which looks remarkably like a simple pendulum) swings back and forth in the breeze once every T = 6.2 seconds.Randomized VariablesT = 6.2 seconds(a) Calculate the frequency of oscillation (in Hertz) of the chandelier.(b) Calculate the angular frequency of the chandelier in radians/second. sig.gif?tid=2N74-08-DD-43-8D37-13518No Attempt No Attempt25% Part (c) Determine the length L in meters of the chandelier. sig.gif?tid=2N74-08-DD-43-8D37-13518No Attempt No Attempt25% Part (d) That evening, while hanging out in J.J. Thompsons House O Blues, you notice that (coincidentally) there is a chandelier identical in every way to the one at the Michelson exhibit except this one swings back and forth 0.11 seconds slower, so the period is T + 0.11 seconds. Determine the acceleration due to gravity in m/s2 at the club. Peter and Amanda collect seashells on a beach. They both had 0 seashells when they started. Peter collects 5 seashells every minute, and Amanda collects 8 seashells every minute. Which graph and explanation correctly represent the number of shells Peter and Amanda have collected? Just wondering I know the equation but I don't get the graphs??? which graph would it be Which question is least likely to lead to a biased answer in a survey?(A) Do you think children eat too much sugar?(B) How disappointed are you with the current mayor?(C) What is your favorite drink?(D) Should dog owners who want their dogs to be healthy feed them Acme Dog Food? 130=0.5m+30 what is the answer when u solve the equation. How was the creation of Parliament a step toward the creation of democracy in England? [ 15 POINTS ] Hydrogen peroxide decomposes to water and oxygen at constant pressure by the following reaction: 2H2O2(l) 2H2O(l) + O2(g) H = -196 kJ Calculate the value of q (kJ) in this exothermic reaction when 2.50 g of hydrogen peroxide decomposes at constant pressure. Which answer best describes a defining characteristic of an autobiography?It often includes a futuristic setting.Its purpose is to recount historical events.It always uses the compare and contrast text structure.It is written by the author about his or her own life. What causes the emission of radiant energy that produces characteristic spectral lines for a given element? Melissa buys 2 1/2 pounds of salmon and 1 1/4 pounds of swordfish. She pays a total of $31.25, and the swordfish cost $.20 per pound less than the salmon. What would be the combined cost of 1 pound of salmon and 1 pound of swordfish Luke's cubicle neighbor Leia, though an understanding and great co-worker, talks loudly on the phone. Luke gets annoyed every time Leia's phone rings, but he has decided it's simply not worth the trouble to talk to her about it. Luke's conflict-handling intention is called ________. When Walter is asked by his friends how he is going to deal with some recent changes that have occurred in his life, he just smiles and says, "Oh, I don't know! I guess I'll just do what I've always done.". Walter is clearly a proponent of ____ theorya. consistency b. continuity c. familiarity d. centrality How much support of congress is needed to propose amendments Redox reactions can be written as two half-reactions, focusing on the gain or loss of electrons by one of the chemical substances. One half-reaction shows the oxidation while the other shows the reduction. When the two half-reactions are combined, the overall reaction is obtained.The half-reactions can aid in the balancing of redox equations because the number of each element must be balanced as well as the number of electrons gained and lost. What substance is added to balance the hydrogen in a half-reaction?A. HOB. HOC. HD. H Lynbrook West, an apartment complex, has 100 two-bedroom units. The monthly profit (in dollars) realized from renting out x apartments is given by the following function. P(x) = -11 x^2 + 1804 x - 43,000 To maximize the monthly rental profit, how many units should be rented out?units What is the maximum monthly profit realizable? $ 9. What is a clause? a. A group of words that does not contain a subject and a verb and functionsas one part of speech.b. A group of words that contains a subject and a verb.c. A group of words that has a gerund or infinitive.d. A group of words that follows a linking verb and functions as one partof speech.