In the reaction between CO and Fe3O4, the theoretical yield in an experiment is calculated to be 47.2 gFe. When a careless chemistry student carries out the experiment, the actual yield is 42.9 Fe. Calculatethe percentage yield.
A) 88.5%
B) 70.2%
C) 89.9%
D) 74.3%
E) 90.9%

Answers

Answer 1

Answer:

The percentage yield is 90.9 % (option e)

Explanation:

A simple rule of three to explain this.

If the theoretical yield of the reaction is 47.2 g Fe, we assume it as 100%, then what percentage of yield means 42.9 g Fe

47.2 g Fe _____ 100 %

42.9 g Fe ______ ( 42.9  .  100)/ 47.2 = 90.88%

Answer 2

Substituting the given values, the percentage yield is approximately E) 90.9%.

To find the percentage yield, we need to use the formula:

Percentage Yield = (Actual Yield / Theoretical Yield) × 100%

Given the actual yield as 42.9 g Fe and the theoretical yield as 47.2 g Fe, we can substitute these values into the formula:

Calculating -

[tex]\text{Percentage Yield} &= \left( \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \right) \times 100\% \\\\\text{Percentage Yield} &= \left( \frac{42.9 \, \text{g}}{47.2 \, \text{g}} \right) \times 100\% \\\\\text{Percentage Yield} &= \left( \frac{42.9}{47.2} \right) \times 100\% \\\\\text{Percentage Yield} &\approx 0.9091 \times 100\% \\\\\text{Percentage Yield} &\approx 90.91\%[/tex]

Therefore, the percentage yield of the reaction is E) 90.9%.


Related Questions

A jar contains several different types of atoms. The proportions of these atoms can be changed slightly without changing any substance in the jar. This jar contains A. A molecule. B. A single element. C. A compound. D. A mixture.

Answers

The jar contains A Mixture

Explanation:

A mixture consists of different atoms that are not chemically bonded. It is of two types of the heterogeneous mixture and homogeneous mixture. The chemical substances can be differentiated visually in the heterogeneous mixture.

In a mixture, the proportion of atoms can be slightly changed without changing  or modifying any substance. This is because the individual substances in mixture keep their properties when mixed together. Further, mixtures have variable compositions and substances. these mixtures can be are separated using physical methods.  

The jar contains A Mixture

Explanation:

A mixture consists of different atoms that are not chemically bonded. It is of two types of the heterogeneous mixture and homogeneous mixture. The chemical substances can be differentiated visually in the heterogeneous mixture.

In a mixture, the proportion of atoms can be slightly changed without changing  or modifying any substance. This is because the individual substances in mixture keep their properties when mixed together. Further, mixtures have variable compositions and substances. these mixtures can be are separated using physical methods.

How many molecules of N2 are in a 400.0 mL container at 780 mm Hg and 135°C? Avogadro’s number = 6.022 x 1023A) 7.01 × 1021 moleculesB) 7.38 × 1021 moleculesC) 2.12 × 1022 moleculesD) 2.23 × 1022 molecules

Answers

Answer:

B

Explanation:

Firstly, we will need to calculate the number of moles. To do this, we make use of the ideal gas equation

PV = nRT

n = PV/RT

The parameters have the following values according to the question:

P = 780mmHg, we convert this to pascal.

760mHG = 101325pa

780mmHg = xpa

x = (780 * 101325)/760 = 103,991 Pa

V= 400ml = 0.4L

T = 135C = 135 + 273.15 = 408.15K

n = ?

R = 8314.463LPa/K.mol

Substituting these values into the equation yields the following:

n = (103991 * 0.4)/(8314.463 * 408.15)

= 0.012 moles

Now we know 1 mole contains 6.02 * 10^23 molecules, hence, 0.012moles will contain = 0.012 * 6.02 * 10^23 = 7.38 * 10^21 molecules

Answer: The number of nitrogen molecules in the container are [tex]7.38\times 10^{21}[/tex]

Explanation:

To calculate the moles of gas, we use the equation given by ideal gas which follows:

[tex]PV=nRT[/tex]

where,

P = pressure of the gas = 780 mmHg  

V = Volume of the gas = 400.0 mL = 0.4 L     (Conversion factor:  1 L = 1000 mL)

T = Temperature of the gas = [tex]135^oC=[135+273]K=408K[/tex]

R = Gas constant = [tex]62.364\text{ L.mmHg }mol^{-1}K^{-1}[/tex]

n = number of moles of nitrogen gas = ?

Putting values in above equation, we get:

[tex]780mmHg\times 0.4L=n\times 62.364\text{ L. mmHg }mol^{-1}K^{-1}\times 408K\\\\n=\frac{780\times 0.4}{62.364\times 408}=0.01226mol[/tex]

According to mole concept:

1 mole of a compound contains [tex]6.022\times 10^{23}[/tex] number of molecules

So, 0.01226 moles of nitrogen gas will contain = [tex](0.012\times 6.022\times 10^{23})=7.38\times 10^{21}[/tex] number of molecules

Hence, the number of nitrogen molecules in the container are [tex]7.38\times 10^{21}[/tex]

A standardized solution that is 0.0500 0.0500 M in Na + Na+ is necessary for a flame photometric determination of the element. How many grams of primary-standard-grade sodium carbonate are necessary to prepare 800.0 800.0 mL of this solution?

Answers

Answer:

2.12 grams of primary-standard-grade sodium carbonate are necessary to prepare 800.0 mL of this solution.

Explanation:

Molarity of sodium ions = [tex][Na^+][/tex] = 0.0500 M

Moles of sodium ions = n

Volume of the solution = V = 800.0 mL = 0.800 L

[tex]Molarity=\frac{n}{V(L)}[/tex]

[tex][Na^+]=\frac{n}{V}[/tex]

[tex]n=[Na^+]\times V=0.0500 M\times 0.800 L=0.04 mol[/tex]

[tex]Na_2SO_4(aq)\rightarrow 2Na^+(aq)+CO_3^{2-}(aq)[/tex]

1 mole sodium carbonates gives 2 moles of sodium ion and 1 mole of carbonate ions.

Then 0.04 moles of sodium ions will be obtained from:

[tex]\frac{1}{2}\times 0.04 mol=0.02 mol[/tex] of sodium m carbonation.

Mass of 0.02 moles of sodium carbonate = 0.02 mol × 106 g/mol= 2.12 g

2.12 grams of primary-standard-grade sodium carbonate are necessary to prepare 800.0 mL of this solution.

An industrial chemist studying bleaching and sterilizing prepares a hypochlorite buffer using 0.350 M HClO and 0.350 M NaClO. (Ka for HClO = 2.9 × 10−8) Find the pH of 1.00 L of the solution after 0.030 mol of NaOH has been added.

Answers

Answer:

pH = 7.45

Explanation:

This is a buffer solution and we can solve it by using the Henderson-Hasselbalch equation:

pH = pKa + log ((A⁻)/(HA))

Here we will first have to calculate the  A⁻ formed  in the 1. 0 L solution which is formed by the reaction of  HClO with the strong base NaOH and add  it to the original mol of NaClO

mol NaClO = mole NaCLO originally present in the 1L of M solution + 0.030 mol produced in the reaction of HCLO with NaOH

0.350 mol + .030 mol = 0.380 mol

New concentrations :

HClO = 0. 350 mol-0.030 mol  = 0.320 M (have to sustract the 0.030 mol reacted with NaOH)

NaClO = 0.380 mol/ 1 L = 0.380 M

Now we have all the values required and we can plug them into the equation

pH = -log (2.9 x 10^-8) + log (0.380/.320) = 7.45

The pH of 1.00 L of the solution is 7.45.

What is pH?

This is defined as the power of hydrogen and it measures how acidic or basic a substance is.

Using Henderson-Hasselbalch equation:

pH = pKa + log ((A⁻)/(HA))

mol of NaClO = mole NaCLO initially present in the 1L of M solution + 0.030 mol produced in the reaction of HClO with NaOH

0.350 mol + .030 mol = 0.380 mol

We can then calculate the new concentrations below:

HClO = 0. 350 mol-0.030 mol  = 0.320 M

NaClO = 0.380 mol/ 1 L = 0.380 M

Substitute the values into the equation

pH = -log (2.9 x 10⁻⁸) + log (0.380/.320)

     = 7.45

Read more about pH here https://brainly.com/question/22390063

A formula that shows the arrangement of all bonds in a molecule is called a(n) ________.
a. molecular formula expanded
b. structural formula condensed
c. structural formula condensed.
d. molecular formula .
e. isomeric formula

Answers

Answer:

Correct answer is structural formula expanded.

Explanation:

A. is wrong.

The molecular formula only show the number of atoms of each element present and the ratio in which they are present. It does not provide any information as regards the bonds whether in its expanded or condensed form.

B. is wrong

While the structural formula will show the inter linkage between the atoms, the condensed structural formula won't provide complete information as regards these interlinkages.

D. is wrong

As established in A above, the molecular formula only provides the number of atoms and their ratios. It does not elucidate the types of bonds present therein.

E. is wrong

The isometric formula, although will elucidate to an extent does not serve the purpose of providing bonding details. It only provides comparisons between isomers.

Final answer:

A formula that displays all bonds in a molecule is called a structural formula, which may be written as an expanded structure or, more commonly, as a condensed structural formula. So the correct option is b.

Explanation:

A formula that shows the arrangement of all bonds in a molecule is called a structural formula. A structural formula can come in various forms such as an expanded structure, which shows all the carbon and hydrogen atoms as well as the bonds attaching them. However, as molecules increase in size, structural formulas can become complex. To simplify this, chemists often use a condensed structural formula, which provides a shorthand representation of the molecule by listing the atoms bonded to each carbon atom directly next to it. This helps to visualize the molecule's structure in a more compact form.

Scientific knowledge A. Never changes because scientists are never wrong. B. Changes as the public's opinion of a given topic changes. C. Can change as new research and experiments are done. D. Is always accurate because scientists know everything about the natural world.

Answers

Answer:can change as new researches and experiments are done

Explanation:

Mothballs are comprised primarily of naphthalene (C10H8). When 1.025 g of Naphthalene burns in a bomb calorimeter, the temperature rises from 24.25 degrees Celsius to 32.33 degrees Celsius. Find the change in energy for the combustion of a mole of naphthalene. The heat capacity of the bomb calorimeter is 5.11 kJ/degree Celsius.

Answers

Answer:

The change in energy for the combustion of a mole of naphthalene is 79 kJ

Explanation:

An excersise where you have to apply the Heat Capacity formula

C =  Q . ΔT

where C is Heat Capacity and Q is Heat

ΔT means (T° final - T° initial)

5.11 kJ/°C = Q (32.33°C - 24.25°C)

5.11 kJ/°C = Q (32.33°C - 24.25°C)

5.11 kJ/°C = Q . 8.08°C

5.11 kJ / 8.08°C = Q

0.632 kJ = Q

This heat is released by 1.025 grams of naphtalene.

Molar mass Naphtalene : 128.17 g/m

1.025 g / 128.17 g/m = 0.008 moles

This are the moles, so we have to divide heat/moles to get the change in energy for one mole.

0.632 kJ/0.008 mol = 79 kJ/m

A sample of impure tin of mass 0.526 g is dissolved in strong acid to give a solution of Sn2 . The solution is then titrated with a 0.0448 M solution of NO3−, which is reduced to NO(g). The equivalence point is reached upon the addition of 3.67×10−2 L of the NO3− solution.
Find the percent by mass of tin in the original sample, assuming that it contains no other reducing agents.

Answers

Answer:

55.7%

Explanation:

The reaction that takes place is:

3Sn²⁺ + 2NO₃⁻ + 8H⁺ → 2NO + 3Sn⁺⁴ + 4H₂O

With the volume and concentration of NO₃⁻ solution, we can calculate the moles of Sn²⁺ that reacted:

3.67x10⁻² L * 0.0448 M = 1.64x10⁻³ mol NO₃⁻1.64x10⁻³ mol NO₃⁻ * [tex]\frac{3molSn^{2+}}{2molNO_{3}^{-}}[/tex] = 2.47x10⁻³mol Sn²⁺

Now we convert moles of Sn to mass, using its atomic weight:

2.47x10⁻³mol Sn²⁺ * 118.71 g/mol = 0.293 g Sn

Finally we calculate the percent by mass of Sn:

0.293 g / 0.526 g * 100% = 55.7%

Our atmosphere is composed primarily of nitrogen and oxygen, which coexist at 25°C without reacting to any significant extent. However, the two gases can react to form nitrogen monoxide according to the reaction: N2(g) + O2(g) = 2 NO(g)

a. Calculate AGⓇ and K, for this reaction at 298 K. Is the reaction spontaneous?
b. Estimate AGⓇ at 2000 K. Does the reaction become more spontaneous as temperature increases?

Answers

Final answer:

To determine the spontaneity of the reaction between N2 and O2 to form 2NO and the equilibrium constant K, one would use the Gibbs Free Energy (ΔG) formula and the equilibrium constant (K) formula. While exact values can't be computed without data for the standard enthalpy and entropy changes, it can be inferred that this reaction is typically not spontaneous at room temperature (298 K), but becomes more spontaneous as temperature increases toward 2000 K.

Explanation:

The given chemical reaction is between nitrogen and oxygen to form nitrogen monoxide: N2(g) + O2(g) = 2 NO(g). To answer your question, we'll need to use the Gibbs Free Energy (ΔG) formula and the equilibrium constant (K) formula which are linked by the equation ΔG = -RTlnK. These formulas are what we use to determine the spontaneity of a reaction and the equilibrium state at a given temperature.

Without the specific values of the standard enthalpy (ΔH) and entropy (ΔS) changes for this reaction, it's impossible to calculate ΔG and K exactly. However, at room temperature (298 K), the reaction is typically not spontaneous because the formation of NO requires high-energy conditions - usually above 2000 K. This is inferred by the presence of NO only in extreme conditions such as lightning strikes or in high-temperature combustion processes.

At 2000 K, although I can't give an exact numerical estimate without the ΔH and ΔS values, we can say that the reaction becomes more spontaneous as temperature increases since high energy and high temperature favor the formation of NO. It's always important to remember that whether a chemical reaction is spontaneous or not depends not only on the change in enthalpy (ΔH), but also on the change in entropy (ΔS) and the absolute temperature (T).

Learn more about Spontaneity of Chemical Reactions here:

https://brainly.com/question/32580212

#SPJ12

Final answer:

The reaction N2(g) + O2(g) = 2NO(g) is not spontaneous at 298 K, with a very small equilibrium constant (K). However, at 2000 K, the reaction becomes more spontaneous as the free energy change (ΔG) is negative.

Explanation:

The reaction N2(g) + O2(g) = 2NO(g) has a standard free energy change (ΔG°) of 173.4 kJ/mol at 298 K. To find the equilibrium constant (K) at this temperature, we use the equation ΔG° = -RT ln(K), where R is the gas constant and T is the temperature in Kelvin. Rearranging the equation, we get K = e-ΔG°/(RT).

Substituting the values into the equation and solving, we find K to be 6.95 x 10-31, which is a very small value. Since K is less than 1, the reaction is not spontaneous at 298 K.

To estimate ΔG° at 2000 K, we can use the equation ΔG = ΔH - TΔS, where ΔH is the enthalpy change and ΔS is the entropy change. Assuming ΔH and ΔS do not change significantly with temperature, we can use the same values as at 298 K.

Substituting the values into the equation, we find ΔG to be -545.4 kJ/mol at 2000 K. Since ΔG is negative, the reaction becomes more spontaneous as temperature increases.

Learn more about Reaction spontaneity here:

https://brainly.com/question/32580212

#SPJ12

What is the entropy change for freezing 2.71 g of C2H5OH at 158.7 K? ∆H = −4600 J/mol. Answer in units of J/K.

Answers

Answer:

-1.71 J/K

Explanation:

To solve this problem we use the formula

ΔS = n*ΔH/T

Where n is mol, ΔH is enthalpy and T is temperature.

ΔH and T are already given by the problem, so now we calculate n:

Molar Mass C₂H₅OH = 46 g/mol

2.71 g C₂H₅OH ÷ 46g/mol = 0.0589 mol

Now we calculate ΔS:

ΔS = 0.0589 mol * −4600 J/mol / 158.7 K

ΔS = -1.71 J/K

Consider the following information. The lattice energy of CsCl is Δ H lattice = − 657 kJ/mol. The enthalpy of sublimation of Cs is Δ H sub = 76.5 kJ/mol. The first ionization energy of Cs is IE 1 = 376 kJ/mol. The electron affinity of Cl is Δ H EA = − 349 kJ/mol. The bond energy of Cl 2 is BE = 243 kJ/mol. Determine the enthalpy of formation, Δ H f , for CsCl ( s ) .

Answers

Final answer:

The enthalpy of formation, ΔHf, for CsCl, can be determined using the Born-Haber cycle by summing up the energy changes in various steps including the sublimation of Cs, ionization of Cs, dissociation of Cl2, and the formation of CsCl. The lattice energy of CsCl is an exothermic process and is equal to the negative of the enthalpy of formation.

Explanation:

The enthalpy of formation, ΔHf, for CsCl(s) can be determined using the Born-Haber cycle. The cycle involves several steps including the sublimation of Cs(s), ionization of Cs(g), dissociation of Cl2(g), and the formation of CsCl(s). The lattice energy of CsCl is an exothermic process and is equal to the negative of the enthalpy of formation. By summing up the energy changes in all the steps, we can calculate the enthalpy of formation for CsCl.

Learn more about enthalpy of formation here:

https://brainly.com/question/14563374

#SPJ3

Final answer:

To find the enthalpy of formation for CsCl, the enthalpy changes from sublimation, ionization, bond dissociation, electron affinity, and lattice energy are combined resulting in an enthalpy of formation of -390.5 kJ/mol.

Explanation:

To determine the enthalpy of formation (ΔHf) of cesium chloride (CsCl), we must use the Born-Haber cycle which involves several energy changes related to the formation of ionic compounds. These are the steps to calculate ΔHf for CsCl(s):

The enthalpy of sublimation of Cs (ΔHsub)

The first ionization energy of Cs (IE1)

The bond energy of Cl2 (BE)

The electron affinity of Cl (ΔHEA)

The lattice energy of CsCl (ΔHlattice)

To calculate the enthalpy of formation, first, we need to break the Cl2 bond energy into two Cl atoms which takes 1/2 of the bond energy (1/2 x BE) for one mole of Cl atoms. The total enthalpy change of formation is:

ΔHf = ΔHsub + IE1 + (1/2 x BE) - ΔHEA + ΔHlattice

Substituting the given values:

ΔHf = 76.5 + 376 + (1/2 x 243) - (-349) - 657
=76.5 + 376 +121.5 + 349 - 657

= -657 + 266.5 kJ/mol

= -390.5 kJ/mol

In a voltaic cell, electrons flow from the ________ to the ________. In a voltaic cell, electrons flow from the ________ to the ________.
a. anode, salt bridge.
b. salt bridge, cathode.
c. anode, cathode.
d. salt bride, anode.
e. cathode, anode

Answers

Answer:

c. anode, cathode.

Explanation:

In a voltaic cell, electrons flow from the anode to the cathode.

In the anode takes place the oxidation, in which the reducing agent loses electrons. Those electrons flow to the cathode where reduction takes place, that is, the oxidizing agent gains electrons. The salt bridge has the function of maintaining the electroneutrality.

Answer:

Electrons will move across the salt bridge from the anode to the cathode.

Explanation:

Educere/ Founder's Education Answer

Predict the sign of the entropy change of the system for each of the following reactions. (a) N2(g)+3H2(g)→2NH3(g) (b) CaCO3(s)→CaO(s)+CO2(g) (c) 3C2H2(g)→C6H6(g) (d) Al2O3(s)+3H2(g)→2Al(s)+3H2O(g) socratic.org

Answers

Answer:

a. Negative

b. Positive

c. Negative

d. zero

Explanation:

Entropy is measure of disorder. Positive entropy implies that a system is becoming more disordered. The opposite is true.

(a) N2(g)+3H2(g) → 2NH3(g) Negative because the system is becoming less disordered since the number of gaseous moles is decreasing

(b) CaCO3(s)→CaO(s)+CO2(g)  Positive because a solid produces a gas which is more disorder therefore there is an increase in entropy

(c) 3C2H2(g)→C6H6(g) Negative because the number of moles of a gas decrease meaninng there is less disorder

(d) Al2O3(s)+3H2(g) → 2Al(s)+3H2O(g) zero because the gaseous moles do not change

Final answer:

The sign of the entropy change depends on the change in the number of gas molecules and the phases of the reactants and products. Generally, when gases are produced or the number of particles increases, entropy increases, and vice versa.

Explanation:

Predict the sign of the entropy change of the system for each of the following reactions:

(a) N2(g) + 3H2(g) → 2NH3(g): The entropy change would be negative because the number of gas molecules is decreasing from 4 to 2.(b) CaCO3(s) → CaO(s) + CO2(g): The entropy change is positive since a solid reactant is producing a solid and a gas, increasing the number of molecules and the disorder.(c) 3C2H2(g) → C6H6(g): The entropy change would likely be negative because six molecules of gas are producing one molecule of gas, thus reducing the disorder.(d) Al2O3(s) + 3H2(g) → 2Al(s) + 3H2O(g): Though solids are forming, the entropy change is unclear without additional information such as the specific conditions of the reaction. Generally, producing water vapor from hydrogen gas could increase the entropy, but the transition from a gas to solid aluminum may decrease it.

Entropy, a measurement of disorder or randomness in a system, tends to increase when solids or liquids turn into gases, when the temperature increases, or when the number of individual particles in a system increases.

Arrange the colors of visible light, green, red, and blue, in order of increasing wavelength.
blue < green < red
Shortest wavelength red < green < blue Longest wavelength
green < blue < red

Answers

Answer: The increasing wavelength of colors:

Red > Green > Blue

Explanation:

Wavelength: This is the property of wave which includes the distance between two consecutive crests or trough. This is denoted by the Greek letter Lambda and it is found by dividing the velocity of the wave with its frequency.

Wavelength of colours are

Violet: 400 - 420 nm

Indigo: 420 - 440 nm

Blue: 440 - 490 nm

Green: 490 - 570 nm

Yellow: 570 - 585 nm

Orange: 585 - 620 nm

Red: 620 - 780 nm

In visible light, the wavelength increases from violet to red. For the colors mentioned, in order of increasing wavelength, it is blue < green < red and blue < yellow < red for the additional colors provided.

The question asks to arrange the colors of visible light (green, red, and blue) in order of increasing wavelength and then provides a similar task with the colors yellow, blue, and red. For visible light, wavelengths increase from violet through to red. Hence, using the mnemonic ROY G BIV (Red, Orange, Yellow, Green, Blue, Indigo, Violet), we can deduce that blue has a shorter wavelength than green, which in turn has a shorter wavelength than red.

Part A: For the colors yellow, blue, and red, in order of increasing wavelength, it would be: blue < yellow < red.

Part B: Since the frequency of light waves is inversely proportional to their wavelength, the order according to frequency, from lowest to highest, would inversely mirror the wavelengths: red < yellow < blue.

A hypothetical metal crystallizes with the face-centered cubic unit cell. The radius of the metal atom is 234 picometers and its molar mass is 195.08 g/mol. Calculate the density of the metal in g/cm3.

Answers

Final answer:

The density of a metal that crystallizes in a face-centered cubic unit cell can be calculated by determining the number of atoms per unit cell, calculating the volume of a unit cell, and finally calculating the mass of the atoms in the unit cell using the given molar mass. The density is then found by dividing the mass by the volume.

Explanation:

To answer this question, we need to know a couple of key pieces of information. First, a face-centered cubic unit cell consists of four atoms: one-eighth of an atom at each of the eight corners and half of an atom on each of the six faces (1/8*8+1/2*6=4 atoms).

Secondly, we need to find the volume of the atom that is engulfed in the cubic unit cell. Given that the radius of the metal is 234 picometers (or 234*10^-12 meters), the volume of the unit cell can be found by applying the formula for the volume of a cube (side^3) where the side equals 2*sqrt(2)*r.

We can then calculate the number of moles of atoms in the unit cell, convert them to grams using the molar mass, and finally calculate the density by dividing the calculated mass by the calculated volume.

We first convert the volume of the unit cell from cubic meters to cubic centimeters (1m^3 = 10^6 cm^3).

Then, we calculate the mass of the atoms in the unit cell using the molar mass (195.08 g/mol).

V=4/3*Pi*r^3Mass=No. of atoms per unit cell * Molar mass/Avogadro's number

Finally, we calculate the density. Density = Mass/Volume.

Learn more about Density Calculation here:

https://brainly.com/question/30804235

#SPJ12

Final answer:

To calculate the density of a metal in a face-centered cubic structure, you need to determine the volume of the unit cell and the molar mass of the metal.

Explanation:

The density of a metal can be calculated using the formula:

Density = (Molar Mass ×Avogadro's Number) / (Volume of Unit Cell)

First, let's calculate the volume of the face-centered cubic (FCC) unit cell. The FCC unit cell consists of 4 atoms at the corners and 8 atoms at the face centers. The radius of the atom can be used to calculate the edge length of the unit cell using the formula:

Edge Length = 4×Radius / √2

Once we have the edge length, we can calculate the volume of the unit cell using the formula:

Volume of Unit Cell = Edge Length³

Finally, we can plug the values into the density formula and calculate the density of the metal.

Learn more about Calculating density of metals in face-centered cubic structures here:

https://brainly.com/question/35356164

#SPJ2

There are some data that suggest that zinc lozenges can significantly shorten the duration of a cold. If the solubility of zinc acetate, Zn(CH3COO)2, is 43.0 g/L, what is the solubility product Ksp of this compound?

Answers

Answer:

[tex]K_{sp}[/tex] of [tex]Zn(CH_{3}COO)_{2}[/tex] is 0.0513

Explanation:

Solubility equilibrium of [tex]Zn(CH_{3}COO)_{2}[/tex]:

[tex]Zn(CH_{3}COO)_{2}\rightleftharpoons Zn^{2+}+2CH_{3}COO^{-}[/tex]

Solubility product of [tex]Zn(CH_{3}COO)_{2}[/tex] ([tex]K_{sp}[/tex]) is written as-            [tex]K_{sp}=[Zn^{2+}][CH_{3}COO^{-}]^{2}[/tex]

Where [tex][Zn^{2+}][/tex] and [tex][CH_{3}COO^{-}][/tex] represents equilibrium concentration (in molarity) of [tex]Zn^{2+}[/tex] and [tex]CH_{3}COO^{-}[/tex] respectively.

Molar mass of [tex]Zn(CH_{3}COO)_{2}[/tex] = 183.48 g/mol

So, solubility of [tex]Zn(CH_{3}COO)_{2}[/tex] = [tex]\frac{43.0}{183.48}M[/tex] = 0.234M

1 mol of [tex]Zn(CH_{3}COO)_{2}[/tex] gives 1 mol of [tex]Zn^{2+}[/tex] and 2 moles of [tex]CH_{3}COO^{-}[/tex] upon dissociation.

so,   [tex][Zn^{2+}][/tex] = 0.234 M and [tex][CH_{3}COO^{-}][/tex] = [tex](2\times 0.234)M=0.468M[/tex]

so, [tex]K_{sp}=(0.234)\times (0.468)^{2}=0.0513[/tex]          

Based on the data provided, the Ksp of zinc acetate is 0.051 M^{2}.

What is the solubility product of Zinc acetate?

The solubility product, Ksp, of zinc acetate is derubed from the equation for the dissolution of Zinc acetate given below:

Zn(CH_{3}COO)_{2} <------> Zn^{2+} + 2 CH_{3}COO^{-}

The solubility product, is given below:

Ksp = [Zn^{2+] × [CH_{3}COO^{-}]^{2}

Molar concentration of the zinc acetate = mass concentration/molar mass

Molar mass of Zinc acetate = 183.48 g/mol

Molar concentration of Zinc acetate = 43.0/183.48

Molar concentration of Zinc acetate = 0.234 M

From the equation of the reaction:

1 mole of Zn(CH_{3}COO)_{2} produces 1 mole Zn^{2+} and 2 CH_{3}COO^{-}

Hence;

[Zn^{2+] = 0.234[CH_{3}COO^{-}]^{2} = 0.234 × 2 = 0.468

Ksp = 0.234 × 0.468^{2}

Ksp = 0.051 M^{2}

Therefore, the Ksp of zinc acetate is 0.051 M^{2}.

Learn more about solubility product at: https://brainly.com/question/15546566

Given the following data:

P4(s) + 6 Cl2(g) → 4 PCl3(g) ΔH = −1225.6 kJ

P4(s) + 5 O2(g) → P4O10(s) ΔH = −2967.3 kJ

PCl3(g) + Cl2(g) → PCl5(g) ΔH = −84.2 kJ

PCl3(g) + 1/2 O2(g) → Cl3PO(g) ΔH = −285.7 kJ

Calculate ΔH for the reaction P4O10(s) + 6 PCl5(g) → 10 Cl3PO(g).

Answers

Answer:

ΔH = -610.1 kJ

Explanation:

By the Hess Law, when a reaction is formed by various steps, the enthalpy change (ΔH) of the global reaction is the sum of the enthalpy change of the steps reactions. Besides, if it's necessary for a change in the reaction, ΔH will suffer the same change. If the reaction multiplied by a number, ΔH will be multiplied by the same number, and if the reaction is inverted, the signal of ΔH is inverted.

P₄(s) + 6Cl₂(g) → 4 PCl₃(g) ΔH = -1225.6 kJ

P₄(s) + 5O₂(g) → P₄O₁₀(s) ΔH = -2967.3 kJ (inverted)

PCl₃(g) + Cl₂(g) → PCl₅(g) ΔH = -84.2 kJ (inverted and multiplied by 6)

PCl₃(g) + 1/2O₂(g) → Cl₃PO(g) ΔH = -285.7 kJ (multiplied by 10)

P₄(s) + 6Cl₂(g)4 PCl₃(g) ΔH = -1225.6 kJ

P₄O₁₀(s) → P₄(s) + 5O₂(g) ΔH = +2967.3 kJ

6PCl₅(g) → 6PCl₃(g) + 6Cl₂(g) ΔH = +505.2 kJ

10PCl₃(g) + 5O₂(g) → 10Cl₃PO(g) ΔH = -2857.0 kJ

----------------------------------------------------------------------------

The bolded substances will be eliminated because have the same amount in product and reactant:

P₄O₁₀(s) + 6PCl₅(g) → 10Cl₃PO(g)

ΔH = -1225.6 + 2967.3 + 505.2 -2857.0

ΔH = -610.1 kJ

Based on the data provided, the enthalpy change ΔH for the given reaction is -610.1 kJ.

What is enthalpy change of a reaction?

The enthalpy change of a reaction is the energy evolved or absorbed when reactant molecules react to form products.

From Hess' Law of constant heat summation, the enthalpy change (ΔH) of the reaction is the sum of the enthalpy change of the several reaction steps. reactions.

Considering the sum of the intermediate reaction steps:

P₄(s) + 6Cl₂(g) → 4 PCl₃(g) ΔH = -1225.6 kJP₄(s) + 5O₂(g) → P₄O₁₀(s) ΔH = -2967.3 kJ (reversing)PCl₃(g) + Cl₂(g) → PCl₅(g) ΔH = -84.2 kJ (reversed and multiplied by 6)PCl₃(g) + 1/2O₂(g) → Cl₃PO(g) ΔH = -285.7 kJ (multiplied by 10)

The reactions and enthalpy changes become:

P₄(s) + 6Cl₂(g) → 4 PCl₃(g) ΔH = -1225.6 kJP₄O₁₀(s) → P₄(s) + 5 O₂(g) ΔH = +2967.3 kJ6 PCl₅(g) → 6 PCl₃(g) + 6 Cl₂(g) ΔH = +505.2 kJ10 PCl₃(g) + 5 O₂(g) → 10 Cl₃PO(g) ΔH = -2857.0 kJ

Summing 1, 2, 3 and 4 gives:

P₄O₁₀(s) + 6 PCl₅(g) → 10Cl₃PO(g)

Enthalpy change, ΔH is then calculated thus:

ΔH = -1225.6 + 2967.3 + 505.2 -2857.0

ΔH = -610.1 kJ

Therefore, the enthalpy change ΔH for the given reaction is -610.1 kJ.

Learn more about enthalpy change at: https://brainly.com/question/26491956

A piston has an external pressure of 8.00 atm. How much work has been done in joules if the cylinder goes from a volume of 0.130 liters to 0.600 liters? Express your answer with the appropriate units.

Answers

Final answer:

The work done on a piston going from 0.130 liters to 0.600 liters under an external pressure of 8.00 atm is 380.882 Joules. This is calculated using the formula for work done under constant pressure, which is W = PΔV.

Explanation:

The subject of this question is regarding the computation of work done on a piston due to change in volume under constant external pressure, and this is a concept in Physics. To compute the work done when a gas expands or compresses, we can use the formula W = PΔV, where W is work done, P is the external pressure, and ΔV is the change in volume.

Here, the external pressure (P) is 8.00 ATM. But to obtain the work done in Joules, we first need to convert this pressure from ATM to Pa (Pascals): 1 ATM = 101325 Pa, thus 8.00 ATM = 8.00 * 101325 = 810600 Pa.

The change in volume (ΔV) is the final volume minus the initial volume, which is 0.600 liters - 0.130 liters = 0.470 liters. But again to match units, we should convert this volume from liters to cubic meters: 1 liter = 0.001 cubic meters, so 0.470 liters = 0.470 * 0.001 cubic meters = 0.00047 m^3.

Therefore, substituting the values into the formula, we get: Work W = PΔV = 810600 Pa * 0.00047 m^3 = 380.882 Joules.

Learn more about Work Done here:

https://brainly.com/question/35917320

#SPJ12

Final answer:

In order to calculate how much work has been done, it is crucial to convert the provided values to SI units before using the formula for work done by a gas at constant pressure. In this particular case, the amount of work done is approximately 380.9 joules.

Explanation:

The work done by a gas when it expands or contracts at constant pressure can be calculated using the formula W = PΔV, where W is the work done, P is the pressure, and ΔV is the change in volume. However, the pressure is given in atm and the volume in liters, we need to convert these to SI units. The conversion factors are 1 atm = 101.3 kPa = 101,300 Pa and 1 liter = 1 x 10-3 m3. Using these conversion factors, the pressure is 8.00 atm x 101,300 Pa/atm = 810,400 Pa and the change in volume is 0.600 liters - 0.130 liters = 0.470 liters = 0.470 x 10-3 m3. Substituting these values into the formula gives W = (810,400 Pa)(0.470 x 10-3 m3) = 380.9 J.

Learn more about Work Done by Gas here:

https://brainly.com/question/32263955

#SPJ11

Consider the following equilibrium:
O2(g)+ 2F2(g) ↔ 2OF2(g); Kp = 2.3×10-15

Which of the following statements is true?

a. If the reaction mixture initially contains only OF2(g), then at equilibrium, the reaction mixture will consist of essentially only O2(g) and F2(g).
b. For this equilibrium, Kc=Kp.
c. If the reaction mixture initially contains only OF2(g), then the total pressure at equilibrium will be less than the total initial pressure.
d. If the reaciton mixture initially contains only O2(g) and F2(g), then at equilibrium, the reaction mixture will consist of essentially only OF2(g).
e. If the reaction mixture initially contains only O2(g) and F2(g), then the total pressure at equilibrium will be greater than the total initail pressure.

Answers

Answer:

a. If the reaction mixture initially contains only OF2(g), then at equilibrium, the reaction mixture will consist of essentially only O2(g) and F2(g).

Explanation:

The answer is a) because the value for Kp is really close to zero (having x10⁻¹⁵), this means that at equilibrium O₂ and F₂ will be significantly more present than OF₂.

Final answer:

For the equilibrium O2(g) + 2F2(g) ↔ 2OF2(g) with Kp = 2.3×10^-15, the reaction favors the reactants, making the correct answer that a mixture initially containing only OF2(g) will consist of essentially only O2(g) and F2(g) at equilibrium.

Explanation:

The question considers the equilibrium O2(g) + 2F2(g) ↔ 2OF2(g); Kp = 2.3×10-15 and asks which statement is true. Given the extremely low value of Kp, this indicates a strong preference for reactants at equilibrium. Therefore, the correct answer is: If the reaction mixture initially contains only OF2(g), then at equilibrium, the reaction mixture will consist of essentially only O2(g) and F2(g). This is because a very small Kp value means the equilibrium lies heavily on the side of the reactants, making statement (a) true.

What gas is produced when calcium metal is dropped in water

Answers

hydrogen gas

Calcium + Water. In the following demonstration, a chunk of calcium metal is dropped into a beaker of distilled water. After a second or so, the calcium metal begins to bubble vigorously as it reacts with the water, producing hydrogen gas, and a cloudy white precipitate of calcium hydroxide.

Earth’s oceans have an average depth of 3800 m, a total surface area of 3.63×108km2, and an average concentration of dissolved gold of 5.8×10−9g/L.
Assuming the price of gold is $1595/troy oz, what is the value of gold in the oceans
(1 troy oz 5 31.1 g; d of gold 5 19.3 g/cm3)?

Answers

Answer:

The value of gold in the oceans is 4.07x10¹⁴ $

Explanation:

A problem with relation between the units.

This are the data, 3800 m (depth of the ocean)

The total surface 3.63×10⁸ km² (total surface)

5.8×10⁻⁹g/L (gold concentration)

$1595 (value of each troy oz)

31.1 g (mass of each troy oz in grams)

19.3 g/cm³ (density of gold)

As we have a depth (a kind of height) and the total surface we can know the volume that the ocean occupies. This height is in m, the surface in km².

We should convert eveything in dm to work with concentration.

3800 m to cm = 3800 . 10 = 3800 → 3.8 x10⁴ dm

3.63×10⁸ km² to dm² = 3.63×10⁸ . 1x10⁸ = 3.63×10¹⁶ dm²

(1 km² = 1x10⁸dm)

3.8 x10⁴ dm  . 3.63×10¹⁶ dm² = 1.37 x10²¹ dm³

This is the volume that the ocean occupies. By using concentration, we can know the mass of gold in all the ocean.

1L = 1 dm³

1L _____ 5.8×10⁻⁹g

1.37 x10²¹ L ____ 7.9 x10¹² g

So 1 troy oz pays $1595 and 1 troy oz is 31.1 grams, so 31.1 grams pay $1595.

The final rule of three will be

31.1 g __ pay ___ $1595

7.9 x10¹² g ___ pay (8 x10¹¹ g . $1595) / 31.1 g = 4.07x10¹⁴ $

This detailed answer explains how to calculate the value of gold in Earth's oceans based on surface area, depth, and gold concentration. The value of gold in the oceans is found to be around $8.1 trillion.

Earth's oceans have a total surface area of 3.63×[tex]10^8 km^2[/tex] and an average depth of 3800 m. The oceans have an average concentration of dissolved gold of 5.8×[tex]10^{-9}[/tex] g/L. Given the price of gold as $1595 per troy oz, we can calculate the value of gold in the oceans.

To calculate the value of gold in the oceans, we first determine the total mass of gold present in oceans, which is approximately 1.4 × [tex]10^{14}[/tex] g. By using the density of gold as 19.3 [tex]g/cm^{3}[/tex] and the conversion factor of 1 troy oz = 31.1 g, we can find the total value of gold in the oceans.

The value of gold in the oceans is found to be around $8.1 trillion based on the given data points and calculations.

The action of some commercial drain cleaners is based on the following reaction: 2 NaOH(s) + 2 Al(s) + 6 H2O(l) → 2 NaAl(OH)4(s) + 3 H2(g) What is the volume of H2 gas formed at STP when 6.32 g of Al reacts with excess NaOH?

Answers

Answer : The volume of [tex]H_2[/tex] gas formed at STP is 7.86 liters.

Explanation :

The balanced chemical reaction will be:

[tex]2NaOH(s)+2Al(s)+6H_2O(l)\rightarrow 2AnAl(OH)_4(s)+3H_2(g)[/tex]

First we have to calculate the moles of [tex]Al[/tex].

[tex]\text{Moles of }Al=\frac{\text{Mass of }Al}{\text{Molar mass of }Al}[/tex]

Molar mass of Al = 27 g/mole

[tex]\text{Moles of }Al=\frac{6.32g}{27g/mole}=0.234mole[/tex]

Now we have to calculate the moles of [tex]H_2[/tex] gas.

From the reaction we conclude that,

As, 2 mole of [tex]Al[/tex] react to give 3 mole of [tex]H_2[/tex]

So, 0.234 moles of [tex]Al[/tex] react to give [tex]\frac{0.234}{2}\times 3=0.351[/tex] moles of [tex]H_2[/tex]

Now we have to calculate the volume of [tex]H_2[/tex] gas formed at STP.

As, 1 mole of [tex]H_2[/tex] gas contains 22.4 L volume of [tex]H_2[/tex]  gas

So, 0.351 mole of [tex]H_2[/tex] gas contains [tex]0.351\times 22.4=7.86L[/tex] volume of [tex]H_2[/tex] gas

Therefore, the volume of [tex]H_2[/tex] gas formed at STP is 7.86 liters.

The thermosphere is: 1. the layer of atmosphere closest to the Earth’s surface where weather occurs. 2. supports long distance communication because it reflects outgoing radio waves back to Earth without the use of satellites. 3. the layer where auroras form when electrically charged particles from the sun collide with gas molecules releasing energy visible as light of different colors

Answers

Final answer:

The thermosphere is a layer of Earth's atmosphere located 80-700km above sea level. It supports long-distance communication by reflecting radio waves back to Earth and is also where auroras form due to the collision of charged particles and gas molecules.

Explanation:

The thermosphere is the fourth layer of Earth's atmosphere, located above the mesosphere and extend from about 80 to 700 kilometers above sea level. This layer holds a unique property due to the presence of electrically charged particles, or ions which allows it to support long-distance communication by reflecting radio waves back to Earth, bypassing the need for satellites. This is also the layer in which auroras form. Auroras occur when these charged particles from the sun collide with gas molecules in the Earth's atmosphere, releasing energy that manifests as visible, colorful light.

The Earth's atmosphere is divided into five main layers: The troposphere, the stratosphere, the mesosphere, the thermosphere and the exosphere. The Troposphere being the one closest to the Earth's surface and is where weather is generally observed. This layer expands to a height of roughly 12 km above the sea level and makes up around 80% of the atmosphere's mass. The Thermosphere is not the layer of atmosphere closest to the Earth’s surface where weather typically occurs, this property represents the troposphere.

Learn more about Thermosphere here:

https://brainly.com/question/15289804

#SPJ3

The third option is correct.

3. The thermosphere is the layer where auroras form when electrically charged particles from the sun collide with gas molecules releasing energy visible as light of different colors.

Write a balanced chemical equation between magnesium chloride and sodium phosphate. Determine the grams of magnesium chloride that are needed to produce 1.33 x 10^{23} formula units of magnesium phosphate.

Answers

Answer:

The grams of MgCl₂ that are needed are 63.1 g

Explanation:

First of all, try to think the equation and ballance it. This is it:

3MgCl₂  +  2Na₃PO₄  →  Mg₃(PO₄)₂  +  6NaCl

Let's convert our f.u in mol

1 mol =  6.02x10²³ formula units (Avogadro's number)

So f.u / Avogadro = mol

1.33x10²³ / 6.02x10²³ = 0.221 moles.

So 1 mol of phosphate sodium comes from 3 mol of magnesium chloride.

How many mol of magnesium chloride are necessary, for 0.221 mol of phosphate.?

0.221 moles .3 = 0.663 moles.

Molar mass of MgCl₂ is 95.2 g/m

0.663 moles . 95.2 g/m = 63.1 g

Final answer:

The balanced chemical equation between magnesium chloride and sodium phosphate is 3 MgCl2 + 2 Na3PO4 -> Mg3(PO4)2 + 6 NaCl. To determine the grams of magnesium chloride needed to produce a specific number of formula units of magnesium phosphate, stoichiometry calculations can be used.

Explanation:

The balanced chemical equation between magnesium chloride (MgCl2) and sodium phosphate (Na3PO4) is:

3 MgCl2 + 2 Na3PO4 → Mg3(PO4)2 + 6 NaCl

To determine the grams of magnesium chloride needed to produce 1.33 x 10^23 formula units of magnesium phosphate (Mg3(PO4)2), we need to use stoichiometry.

   

As more nitrogen (or any other inert gas) is added to a flame, the flame temperature drops and the oxidation reactions cannot proceed fast enough to keep going and sustain the flame. This point is known as the:

Answers

Answer:

Lean Flammability limit ,or lean limit.

Explanation:

The point is know as Lean Flammability limit ,or lean limit. The lean limit is usually expressed in volume percent. It can be defined as the lower range of concentration of over which a flammable mixture of gas and vapor can be fired at a constant temperature and pressure.

Here in this case also As more nitrogen (or any other inert gas) is added to a flame, the oxidation reaction stops as the concentration has dropped below the  Lean Flammability limit.

Calculate the mass of oxygen (in mg) dissolved in a 5.00 L bucket of water exposed to a pressure of 1.13 atm of air. Assume the mole fraction of oxygen in air to be 0.21 given that kH for O2 is 1.3 × 10-3 M/ atm at this temperature.

Answers

Explanation:

It is known that relation between partial pressure, mole fraction and pressure is as follows.

      Partial pressure of gas = mole fraction of gas × Pressure of gas

Therefore, putting the given values into the above formula as follows.

   Partial pressure of gas = mole fraction of gas × Pressure of gas

                                          = [tex]0.21 \times 1.13 atm[/tex]

                                           = 0.237 atm

According to Henry's law,

       Concentration of oxygen = Henry's law constant × partial pressure of oxygen

             = [tex]1.3 \times 10^{-3} M/atm \times 0.2373 atm[/tex]

             = [tex]3.08 \times 10^{-4}[/tex] M

Therefore, calculate moles of oxygen in 5.00 L present as follows.

   Moles of oxygen in 5.00 L = volume × concentration

                                                 = [tex]5.00 \times 3.0849 \times 10^{-4}[/tex]

                                                 = [tex]1.542 \times 10^{-3}[/tex] mol

Now, we will calculate the mass of oxygen as follows.

        Mass of oxygen = moles × molar mass of oxygen

                                    = [tex]1.542 \times 10^{-3} mol \times 32 g/mol[/tex] mol    

                                    = 0.0494 g

or,                                 = 49.4 mg           (As 1 g = 1000 mg)

thus, we can conclude that the mass of given oxygen (in mg) is 49.4 mg.

The mass of oxygen dissolved in water has been 49.4 mg.

The partial pressure of oxygen in the air:

Partial pressure = Mole fraction [tex]\times[/tex] Pressure of gas

Partial pressure = 0.21 [tex]\times[/tex] 1.13 atm

Partial pressure of oxygen = 0.237 atm.

The concentration of oxygen can be given by Henry's law.

Concentration of Oxygen = Henry's constant ([tex]\rm k_H[/tex]) [tex]\times[/tex] Partial pressure

Concentration = 1.3 [tex]\rm \times\;10^-^3[/tex] M/atm [tex]\times[/tex] 0.237 atm

Concentration of oxygen = 3.08 [tex]\rm \times\;10^-^4[/tex] M

Moles can be given by:

Moles = Molarity [tex]\times[/tex] Volume

Moles of oxygen =  3.08 [tex]\rm \times\;10^-^4[/tex] M [tex]\times[/tex] 5

Moles of oxygen = 1.542  [tex]\rm \times\;10^-^3[/tex] mol

Moles = [tex]\rm \dfrac{weight}{molecular\;weight}[/tex]

Weight of oxygen = Moles [tex]\times[/tex] Molecular weight

Weight of oxygen =  1.542  [tex]\rm \times\;10^-^3[/tex] mol [tex]\times[/tex] 32 g/mol

Weight of oxygen = 0.0494 grams

Weight of oxygen = 49.4 mg.

The mass of oxygen dissolved in water has been 49.4 mg.

For more information about the mass of gas, refer to the link:

https://brainly.com/question/2216031

Covalent network solids typically have blank melting points and blank boiling points

Answers

Answer:

Covalent network solids typically have high melting points and high boiling points

Explanation:

Covalent solids are the solids which have covalent bonds as intermolecular or interatomic interactions.

As covalent bonds are very strong, these solids are generally characterized by high melting points and high boiling points.

The examples of such solids are: Diamond and Graphite.

The other classes of solids are

i) ionic

ii) molecular

iii) metallic.

Identify each of the following energy exchanges as primarily heat or work and determine whether the sign of is positive or negative for the system. a. A rolling billiard ball collides with another billiard ball. The first billiard ball (defined as the system) stops rolling after the collision. b. A book is dropped to the floor (the book is the system). c. A father pushes his daughter on a swing (the daughter and the swing are the system

Answers

Answer:

A) Work (positive)

B) Heat (negative) and work (positive)

C) Work (negative) and heat (negative)

Explanation:

A) This energy change is work given that the first ball is using this energy to move the other one. The system (fist ball) is doing the work so it has + sign.

B) The book loses part of its energy by friction (heat) and part by applying a force to the floor (work). The heat is taken from the system so it has - sign and the work is done by the system and it has + sign.  

C) The daughter is receiving the work done by the father. This work done to the system has - sign. Also, you can say that the system (daughter and swing) loses energy by friction (heat) and because of that it slows down.

Note: the sign of work and heat is defined by convention.

A 25.00 mL aliquot of concentrated hydrochloric acid (11.7M) is added to 175.00 mL of 3.25M hydrochloric acid. Determine the number of moles of hydrochloric acid from 175.00 mL of 3.25 M hydrochloric acid solution.

Answers

Answer:

The number of moles of hydrochloric acid are 0.861

Explanation:

In first solution, the [HCl] is 11.7 M, which it means that 11.7 moles are present in 1 liter.

So we took 25 mL and we have to know how many moles, do we have now.

1000 mL ____ 11.7 moles

25 mL _____ (25 . 11.7)/1000 = 0.2925 moles

This are the moles, we add to the solution where the [HCl] is 3.25 M

In 1000 mL __ we have __ 3.25moles

175 mL ____ we have __ (175 . 3.25)/1000 = 0.56875 moles

Total moles: 0.2925 + 0.56875 = 0.861 moles

The number of moles of hydrochloric acid from 175.00 mL of 3.25 M hydrochloric acid solution is 0.56875 mol.

To determine the number of moles of hydrochloric acid (HCl) in the 175.00 mL of 3.25 M hydrochloric acid solution, we can use the formula for molarity (M), which is:

[tex]\[ M = \frac{\text{moles of solute (mol)}}{\text{volume of solution (L)}} \][/tex]

 Rearranging the formula to solve for the moles of solute, we get:

[tex]\[ \text{moles of solute (mol)} = M \times \text{volume of solution (L)} \][/tex]

 Given that the molarity (M) of the hydrochloric acid solution is 3.25 M and the volume is 175.00 mL, we first need to convert the volume from milliliters to liters because molarity is defined in terms of moles per liter.

[tex]\[ \text{Volume in liters (L)} = \frac{175.00 \text{ mL}}{1000 \text{ mL/L}} = 0.175 \text{ L} \][/tex]

Now, we can calculate the moles of HCl:

[tex]\[ \text{moles of HCl} = 3.25 \text{ M} \times 0.175 \text{ L} \][/tex]

[tex]\[ \text{moles of HCl} = 0.56875 \text{ mol} \][/tex]

 Therefore, the number of moles of hydrochloric acid from 175.00 mL of 3.25 M hydrochloric acid solution is 0.56875 mol.

When iron (III) oxide combines with sulfuric acid H2 S04 the product formed are water and iron (III) sulfate. What is the coefficient needed for water in the balanced equation

Answers

Answer:

coefficient 3 is needed t with water molecule to balance the equation.

Explanation:

Chemical equation:

Fe₂O₃ + H₂SO₄ →  Fe₂(SO₄)₃ + H₂O

Balanced chemical equation:

Fe₂O₃ + 3H₂SO₄ →  Fe₂(SO₄)₃ + 3H₂O

The equation is balanced. There are two iron three sulfate six hydrogen and three oxygen atoms are present on both side of equation.

The given equation completely follow the law of conservation of mass.

According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.

Coefficient with reactant and product:

Fe₂O₃             1

H₂SO₄             3

Fe₂(SO₄)₃        1

H₂O                 3

So coefficient 3 is needed t with water molecule to balance the equation.

Other Questions
Suppose that we are testing a coin to see if it is fair, so our hypotheses are: H0: p = 0.5 vs Ha: p 0.5. In each of (a) and (b) below, use the "Edit Data" option on StatKey to find the p-value for the sample results and give a conclusion in the test. a. We get 56 heads out of 100 tosses. b. We get 560 heads out of 1000 tosses. c. Compare the sample proportions in parts (a) and (b). Compare the p-values. Why are the p-values so different? When salespeople are able to provide balance to their lives by permitting them to network from home (email, video conferencing, etc.) with customers and even their office, they are _____.A.outputtingB.buzzingC.virtuallingD.telecommutingE.networking If the other student chose to test the variable selected in the previous question, which of the following independent variables should not be kept constant throughout the experiment?A. the amount of soil that is provided to each plantB. the amount of water that is provided to each plantC. the amount of sunlight that is provided to each plantD. the type of plant used in each pot . Gins Cutillas posee un talento nico para escribir microcuentos. cierto falso 2. Su particular ingenio ha sido merecedor de mltiples premios, entre ellos el Premio Granada. cierto falso 3. Es un escritor que apoya a nuevos autores con sus textos. cierto falso 4. Trabaja como crtico literario y colaborador en varios peridicos y revistas espaolas. cierto falso 5. Cutillas es internacionalmente reconocido por sus poesas cortas. cierto falso 6. Public su primera coleccin de microcuentos en 2008. cierto falso NTD Consulting Partners conducted a survey of top executives that found that that 35% of them regularly read Time magazine, 20% read Newsweek, and 40% read U.S. News & World Report. A total of 10% read both Time and U.S. News & World Report. What is the probability that a particular top executive reads either Time or U.S. News & World Report regularly? Factor the expression.6y^2 + 13y + 5 The diagram below describes events leading to the Declaration of Independence.A flowchart of four boxes, the ones on the left pointing to the ones on the right. The first box says, British fight the French and Indian War. The second has a question mark. The third says, British ignore colonial grievances. The fourth says, Declaration of Independence is approved.Which is the most likely reason for an event that could fill Box 2? American colonies are wealthier than other British colonies. American colonists raise money to support the troops. The British lose the French and Indian War. The French and Indian war is expensive. Bacterial encephalitis and meningitis are difficult to treat because Sheridan Companys standard labor cost per unit of output is $33.00 (3.00 hours x $11.00 per hour). During August, the company incurs 2,970 hours of direct labor at an hourly cost of $12.10 per hour in making 1,100 units of finished product. Compute the total, price, and quantity labor variances. On December 1, Year 3, Wall Co. Paid $860,000 in cash for all of the outstanding stock of Hart Corp. The book valueof Harts assets and liabilities were $800,000 and $180,000. The fair values were $840,000 and $140,000. During December, Wall Co spent an additional $80,000 to maintain "goodwill" in Harts business by starting a customer loyalty program. What amount should Wall Co report as goodwill related to Hart in its 12/31/Year3 balance sheet? Identify the complete adjective clause. She went to the department where complaints are handled. to the department where complaints are handled where complaints are handled complaints are handled She went to the department to the department where complaints are handled She went to the department Consider the following simplified balance sheet of a commercial bank: ASSETS LIABILITIES Vault cash $200 $3500 Deposits Deposits at the Federal Reserve $300 Loans $3000 The required reserve ratio is 10 percent. Find Actual Reserves $ , Required Reserves $ , and Excess Reserves $ . By how much can this bank increase its loans? $ What is the money (deposit) multiplier equal to? By how much can the entire banking system expand their loans? $ How much new wealth is directly created from this expansion of deposits? $ Lakers Company produces two products. The following information is available: Product X Product Y Selling price per unit $46 $36 Variable cost per unit $38 $24 Total fixed costs are $234,000. Lakers plans to sell 21,000 units of Product X and 7,000 units of Product Y. Required: A) Compute the contribution margin for each product. B) What is the expected net income? C) Assume the sales mix is 3 units of Product X for every 1 unit of Product Y. What is the break-even point in units for each product? D) Assume the sales mix is 3 units of Product X for every 2 units of Product Y. What is the break-even point in units for each product? find the solution in slope-intercept form y+7=-3(x-1) and 3x+y=-4 Does the segregation of Mexican-American public school children in the absence of a state law mandating their segregation violate California law as well as the equal protection of the law clause of the Fourteenth Amendment to the U.S. Constitution? The Emerald City was soon left far behind. As they advanced the ground became rougher and hillier, for there were no farms nor houses in this country of the West, and the ground was untilled.In the afternoon the sun shone hot in their faces, for there were no trees to offer them shade; so that before night Dorothy and Toto and the Lion were tired, and lay down upon the grass and fell asleep, with the Woodman and the Scarecrow keeping watch. The setting illustrated in the first two paragraphs of the passage can best be described asA)happy and joyousB)peaceful and mildC)rough and unpleasantD)wonderful and strange The Arizona poppy is a plant that is native to the Southwestern United States. Its orange flower blooms in the summer and the plant is covered in small hairs. It is an important part of an ecosystem because at least 46 different species of insects visit the flower for food.As an Arizona poppy plant carries out photosynthesis, which of the following would not occur during stage 1 of the process?A.Chlorophyll absorbs light energy.B.Oxygen is released as a waste.C.Water splits into hydrogen and oxygen.D.Carbon dioxide is used to make glucose. What is Half of 7 minutes 24 seconds 2.Rock can read 10 books in 30 minutes. How long does it takeRock to read 15 books, if the speed is consistent? 100 POINTS AND BRAINLIEST PLEASE HELP ASAP!!!!!!Why should you as a reader look for textual evidence that supports an article's main idea?