Last​ year, a person wrote 123 checks. Let the random variable x represent the number of checks he wrote in one​ day, and assume that it has a Poisson distribution. What is the mean number of checks written per​ day? What is the standard​ deviation? What is the​ variance?

Answers

Answer 1

Answer:The mean number of checks written per​ day = 0.3370

The standard deviation = 0.5805

The variance = 0.3370

Step-by-step explanation:

Let the random variable x represent the number of checks he wrote in one​ day.

Given : The number of checks written in last year = 123

Let the number of days in the year must be 365.

Now, the mean number of checks written per​ day will be  :-

[tex]\lambda=\dfrac{123}{365}=0.33698630137\approx0.3370[/tex]

We know that in Poisson distribution , the variance is equals to the mean value .

[tex]\text{Thus , Variance }=\sigma^2= 0.3370[/tex]

[tex]\Rightarrow\ \sigma=\sqrt{0.3370}=0.580517010948\approx0.5805[/tex]

Thus,  Standard deviation = 0.5805


Related Questions

The annual snowfall in a town has a mean of 35 inches and a standard deviation of 11 inches. Last year there were 60 inches of snow. How many standard deviations from the mean is that

Answers

Answer:

z=2.27

Step-by-step explanation:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

where z is the deviation from mean.

mean (μ) = 35 inches

standard deviation (σ) = 11 inches

last year snow fall (x) = 60 inches

[tex]z=\frac{x-\mu}{\sigma}[/tex]

[tex]z=\frac{60-35}{11}[/tex]

z=2.27

now, the standard deviation for the 60 inches snow from the mean is calculated to be 2.27

In a class of 40 students, everyone has either a pierced nose or a pierced ear. The professor asks everyone with a pierced nose to raise his or her hand. Eight hands go up. Then the professor asked everyone with a pierced ear to do likewise. This time there are 35 hands raised. How many students have piercings both on their ears and their noses?

Answers

Answer:

3 students

Step-by-step explanation:

If everyone in the class has either a pierced nose or ear, we just simply have to add up the total number of hands raised and minus the number of students in the class.

35+8=43

43-40=3

3 students have both a pierced nose and pierced ear.

In order to start a small business, a student takes out a simple interest loan for $3000.00 for 9 months at a rate of 11.75%. a. How much interest must the student pay? b. Find the future value of the loan. a. The amount of interest is $ . (Round to the nearest cent as needed.) b. The future value is $ (Round to the nearest cent as needed.)

Answers

Answer: (a) $264.375 ⇒ Amount of Interest

(b) Future Value = $3264.375

Step-by-step explanation:

(a) Principal amount = $3000

Time period = 9 months

Interest rate = 11.75%

Simple interest(SI) = principal amount × rate of interest (i) × time period

                              = 3000 × [tex]\frac{11.75}{100}[/tex] × [tex]\frac{9}{12}[/tex]

                              = 3000 × 0.1175 × 0.75

                               = $264.375 ⇒ Amount of Interest

(b) Future value of loan = principal amount + interest amount

                                        = 3000 + 264.375

                                        = 3264.375

For a dosage of x cubic centimeters​ (cc) of a certain​ drug, assume that the resulting blood pressure B is approximated by B (x) = 0.06 x^2 - 0.3 x^3 . Find the dosage at which the resulting blood pressure is maximized. Round to two decimal places.

Answers

Answer:

The number of dosage is 0.13.

Step-by-step explanation:

Here, the given function that represents the blood pressure,

[tex]B(x)=0.06x^2 - 0.3x^3[/tex]

Where, x is the number of dosage in cubic centimeters​,

Differentiating the above function with respect to x,

[tex]B'(x)=0.12x-0.9x^2[/tex]

For maximum or minimum blood pressure,

[tex]B'(x)=0[/tex]

[tex]0.12x-0.9x^2=0[/tex]

[tex]-0.9x^2=-0.12x[/tex]

[tex]x=\frac{0.12}{0.9}=\frac{2}{15}[/tex]

Again differentiating B'(x) with respect to x,

[tex]B''(x)=0.12-1.8x[/tex]

Since, at x = 2/15,

[tex]B''(\frac{2}{15})=0.12-1.8(\frac{2}{15})=0.12-0.24=-0.12=\text{Negative value}[/tex]

So, at x = 2/15 the value of B(x) is maximum,

Hence, the number of dosage at which the resulting blood pressure is maximized = 2/15 = 0.133333333333 ≈ 0.13

Final answer:

The maximum blood pressure results from a dosage of approximately 0.13 cubic centimeters, based on the mathematical model given in the problem.

Explanation:

To find the maximum blood pressure using the formula B (x) = 0.06 x^2 - 0.3 x^3, we need to first find the derivative of this equation, as the maximum point on any curve happens when its derivative equals zero.

First, differentiate B(x) with respect to x: B'(x) = 2*0.06x - 3*0.3x^2 = 0.12x - 0.9x^2 Next, set this derivative equal to zero and solve for x: 0 = 0.12x - 0.9x^2 0 = x(0.12 - 0.9x) So x = 0 or x = 0.12/0.9 = 0.133 Lastly, we need to determine if these x-values give a maximum or minimum in B(x). We do this by either taking the second derivative of B(x) or by testing points on either side of the x-values we found. If we find the second derivative, we find that B''(x) = 0.12 -1.8x, which is negative for x = 0.133. This means that the blood pressure is maximized at an x-value of 0.133 cc, or, rounded to two decimal places, 0.13 cc

Learn more about Maximum Blood Pressure From Drug Dosage here:

https://brainly.com/question/39373110

#SPJ11

Which graph represents the function f(x) = –x^2 + 5?

Answers

Answer:

See below.

Step-by-step explanation:

This will be a parabola with axis of symmetry x = 0 and will open downwards.

The vertex will be at the point (0 , 5). The graph will intersect the x axis  at

(-√5, 0) and (√5, 0).

Answer:

its a

Step-by-step explanation:

8) Use Reduction of order to solve. One solution of homogeneo x2y" +7xy' +5y =x 1 x>0 y1 = X here y1 is a solution of the corresponding homogeneous.

Answers

I suspect there's a typo in the question, because [tex]y_1=x[/tex] is *not* a solution to the corresponding homogeneous equation. We have [tex]{y_1}'=1[/tex] and [tex]{y_1}''=0[/tex], so the ODE reduces to

[tex]0+7x+5x=12x\neq0[/tex]

Let [tex]y=x^m[/tex], then [tex]y'=mx^{m-1}[/tex] and [tex]y''=m(m-1)x^{m-2}[/tex], and substituting these into the (homogeneous) ODE gives

[tex]m(m-1)x^m+7mx^m+5x^m=0\implies m(m-1)+7m+5=m^2+6m+5=(m+5)(m+1)=0[/tex]

which then admits the characteristic solutions [tex]y_1=\dfrac1x[/tex] and [tex]y_2=\dfrac1{x^5}[/tex].

Now to find a solution to the non-homogeneous ODE. We look for a solution of the form [tex]y(x)=v(x)y_1(x)[/tex] or [tex]y(x)=v(x)y_2(x)[/tex].

It doesn't matter which one we start with, so let's use the first case. We get derivatives [tex]y'=x^{-1}v'-x^{-2}v[/tex] and [tex]y''=x^{-1}v''-2x^{-2}v'+2x^{-3}v[/tex]. Substituting into the ODE yields

[tex]x^2(x^{-1}v''-2x^{-2}v'+2x^{-3}v)+7x(x^{-1}v'-x^{-2}v)+5x^{-1}v=x[/tex]

[tex]xv''+5v'=x[/tex]

Substitute [tex]w=v'[/tex], so that [tex]w'=v''[/tex] and

[tex]xw'+5w=x[/tex]

which is linear in [tex]w[/tex], and we can condense the left side as the derivative of a product after multiplying both sides by [tex]x^4[/tex]:

[tex]x^5w'+5x^4=x^5\implies(x^5w)'=x^5\implies x^5w=\dfrac{x^6}6+C\implies w=\dfrac x6+\dfrac C{x^5}[/tex]

Integrate to solve for [tex]v[/tex]:

[tex]v=\dfrac{x^2}{12}+\dfrac{C_1}{x^4}+C_2[/tex]

Then multiply both sides by [tex]y_1=\dfrac1x[/tex] to solve for [tex]y[/tex]:

[tex]y=\dfrac x{12}+\dfrac{C_1}{x^5}+\dfrac{C_2}x[/tex]

so we found another fundamental solution [tex]y_3=x[/tex] that satisifes this ODE.

Audrey Graco plans to conduct book signings in several cities to promote her new novel. She wishes to visit Knoxville, Chattanooga, Chapel Hill, Charlotte, Raleigh, and Richmond. How many different ways can she visit each of these cities and return to her starting point in Wilmington? O A. 720 O B. 30 O C. 29 O D. 120 Click to select vour answer

Answers

Final answer:

Audrey can visit the six cities in which she plans to conduct book signings and return to her starting point in 720 different ways. This is because of the mathematical principle of permutations.

Explanation:

Audrey's problem deals with permutations because the order of the places she visits matters. In general, the number of ways to arrange 'n' items (in Audrey's case, 'n' cities) in a specific order is given by 'n things taken n at a time' which is mathematically represented as n! (n factorial). In this case, Audrey is visiting 6 cities (Knoxville, Chattanooga, Chapel Hill, Charlotte, Raleigh, and Richmond), and then returning to her original city, Wilmington. So, the number of ways she can visit these cities can be represented as 6!, which equals 720.

Learn more about Permutations here:

https://brainly.com/question/23283166

#SPJ12

25 Points! Please answer asap! Carly stated “All pairs of rectangles are dilations”. Which pair of rectangles would prove that Carly’s statement is incorrect? (Images below)

Answers

Answer:

C

Step-by-step explanation:

A. First two rectangles are dilations because

[tex]\dfrac{2}{4}=\dfrac{4}{8}=0.5[/tex]

B. Second two rectangles are dilations because

[tex]\dfrac{2}{4}=\dfrac{3}{6}=0.5[/tex]

C. Third two rectangles are not dilations because

[tex]\dfrac{3}{4}\neq \dfrac{2}{3}[/tex]

D. Fourth two rectangles are dilations because

[tex]\dfrac{3}{4}=\dfrac{1.5}{2}=0.75[/tex]

Answer:

c please correct me if im wrong

Step-by-step explanation:

The following data summarizes results from 941 pedestrian deaths that were caused by accidents. If one of the pedestrian deaths is randomly selected, find the probability that the pedestrian was intoxicated or the driver was intoxicated.
Pedestrian Pedestrian
Intoxicated Not intoxicated
Driver Intoxicated 56 71
Driver Not intoxicated 292 522

Answers

Answer:

P=0.3698  or 36.98%

Step-by-step explanation:

Complete the table by adding the totals to each column and row.

                                Pedestrian     Pedestrian

                                Intoxicated    Not intoxicated Totals

Driver Intoxicated           56                     71               127

Driver Not intoxicated   292                   522             814

Totals                            348                    593             941

The probability that the pedestrian was intoxicated or the driver was intoxicated is the opposite event of neither of them was intoxicated.  The total of cases when neither of them was intoxicated is 593. So the probability is:

P1=593/941=0.6302

The probability of the opposite event is one minus the probability calculated:

P=1-0.6302=0.3698

And this is the probability that the pedestrian was intoxicated or the driver was intoxicated.

A floor refinishing company charges $1.83 per square foot to strip and refinish a tile floor for up to 1000 square feet. There is an additional charge of $350 for toxic waste disposal for any job which includes more than 150 square feet of tile.

A) Express the cost, y, of refinishing a floor as a function of the number of square feet, x, to be refinished.
b) Graph the function, give the domain and range.

Answers

Answer:

Here x represents the number of square feet to be refinished and y represents the cost of refinishing the floor,

Given,

The cost of a tile floor for up to 1000 square feet is $1.83 per square,

So, the cost of x square feet of tile = 1.83x for x ≤ 1000

⇒ y = 1.83x for x ≤ 1000

Since, there is an additional charge of $350 for toxic waste disposal for any job which includes more than 150 square feet of tile.

That is, y = 1.83x + 350, for x > 150

So, y must be 1.83x for x ≤ 150.

A) Hence, the function that express the cost, y, of refinishing a floor as a function of the number of square feet, x, to be refinished, is,

[tex]y=\begin{cases}1.83x & \text{ if } 0\leq x\leq 150 \\ 1.83x+350 & \text{ if } 150< x\leq 1000\end{cases}-----(1)[/tex]

B) The domain of the function =  all possible value of x

⇒ Domain = 0 ≤ x ≤ 1000

Range = All possible value of y,

Since, the range of function y=1.83x, 0≤ x ≤ 150 is [0, 274.5]

While the range of function y = 1.83x + 350, for x > 150 is (624.5, 2180]

Hence, the range of the function (1) = [0, 274.5]∪(624.5, 2180]

Final answer:

The cost of refinishing a floor can be expressed as a piecewise function based on the number of square feet to be refinished. The domain of the function is all real numbers, and the range is all real numbers greater than or equal to 0.

Explanation:

Let x represent the number of square feet to be refinished.

For x ≤ 150, the cost of refinishing a floor is simply $1.83 per square foot. So, the cost function, y, for x ≤ 150 is y = 1.83x.

For x > 150, there is an additional charge of $350 for toxic waste disposal. So, the cost function, y, for x > 150 is y = 350 + 1.83x.

The overall cost function, y, is given by:

y = 1.83x, for x ≤ 150

y = 350 + 1.83x, for x > 150

The domain of the function is all real numbers, since any positive number of square feet can be refinished. The range of the function is all real numbers greater than or equal to 0, since the cost cannot be negative.

help me please i’m so far behind and i’m trying to finish before summer ends im freaking out

Answers

The correct answer is 5
Solve for x by simplifying both sides of the equation, then isolating the variable.
X=5

Answer:

The equation 2.5x -10.5 = 64(0.5^x) is true when x=5

Step-by-step explanation:

we need to solve the equation 2.5x -10.5 = 64(0.5^x)

We have to put the given values of x in the functions f(x) and g(x) and find their values

x     f(x) = 2.5x -10.5            g(x) = 64(0.5^x)

2     2.5(2)-10.5 = -5.5          64(0.5^2) = 16      

3     2.5(3) - 10.5 = -3           64(0.5^3) = 8

4     2.5(4) - 10.5 = -0.5        64(0.5^4) = 4

5     2.5(5) - 10.5 = 2            64(0.5^5) = 2

6     2.5(6) - 10.5 = 4.5         64(0.5^6) = 1

So, we need to solve the equation 2.5x -10.5 = 64(0.5^x)

This holds when x = 5 as shown in the table above.

A thief steals an ATM card and must randomly guess the correct seven​-digit pin code from a 4​-key keypad. Repetition of digits is allowed. What is the probability of a correct guess on the first​ try?

Answers

The probability of guessing the correct seven-digit pin code on the first try is very low, approximately 0.000024%.

Given that,

A thief steals an ATM card.

The thief must guess the correct seven-digit pin code.

The pin code is entered using a 4-key keypad.

The probability of guessing the correct seven-digit pin code on the first try depends on a few factors.

To break it down,

if the thief has a 4-key keypad and repetition of digits is allowed, that means there are four options for each digit.

So, there are a total of 4⁷ (4 raised to the power of 7) possible combinations.

Since the thief is trying to guess the correct pin code on the first try, there is only one correct combination out of the total possible combinations.

Therefore,

The probability of guessing the correct pin code on the first try would be 1 out of 4⁷, or approximately 0.00000024, or 0.000024%.

Learn more about the probability visit:

https://brainly.com/question/13604758

#SPJ12

The probability of randomly guessing a 7-digit PIN from a 4-key keypad is 1 in 16,384. This equals approximately 0.000061 or 0.0061%. Each digit has 4 possible options, and there are 7 digits in total.

The probability of guessing a seven-digit PIN code correctly from a 4-key keypad (where repetition of digits is allowed) can be calculated as follows:

Since each of the 7 digits in the PIN can be any of 4 possible digits (0 through 3), the total number of possible combinations is calculated by raising the number of choices per digit to the power of the number of digits:

→ Total possible combinations = 4^7

= 4⁷

= 16384

Therefore, the probability of guessing the correct PIN on the first try is the reciprocal of the total number of possible combinations:

→ Probability of a correct guess = 1 / 16384

Hence, the probability is approximately 0.000061 or 0.0061%.

Problem 4. Let m and n be two integers. Show that m^3- n^3 is even if and only if m n is even.

Answers

Answer:

The expression [tex]m^3-n^3[/tex] is even if both variables (m and n) are even or both are odd

Step-by-step explanation:

Let's remember the logical operations with even and odd numbers

odd*odd=odd

even*even=even

odd*even=even

odd-odd=even

even-even=even

even-odd=odd

Now, the original expression is:

[tex]m^3-n^3[/tex] which can be expressed as:

[tex](m*(m*m))-(n*(n*n))[/tex]

If m and n are both odd, then:

[tex](m*(m*m))=odd*(odd*odd)=odd*(odd)=odd[/tex]

[tex](n*(n*n))=odd*(odd*odd)=odd*(odd)=odd[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=odd-odd=even[/tex]

If m and n are both even, then:

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=even-even=even[/tex]

Finally if one of them is even, for example m, and the other is odd, for example n, then:

[tex](m*(m*m))=even*(even*even)=odd*(even)=even[/tex]

[tex](n*(n*n))=odd*(odd*odd)=odd*(odd)=odd[/tex]

Then, [tex](m*(m*m))-(n*(n*n))=even-odd=odd[/tex]

In conclusion, the expression [tex]m^3-n^3[/tex] is even if both variables (m and n) are even or both are odd. If one of them is even and the other one is odd, then the expression is odd.

Problem 4. Solve the following counting problems. (a) How many committees of size 6 can be formed by a club consisting of 15 people?

Answers

Answer:

5005

Step-by-step explanation:

In the question we have to form a committee of six from a club of consisting of 15 people.

This a simple case of selection of six people from a group of 15 people.

which can be done in

[tex]^{15}C_6= \frac{15!}{6!\times9!}=5005[/tex]

hence, the number of ways of forming committees of size six from a club of 15 members= 5005

The functions q and r are defined as follows.
q(x) = -2x +1
r(x) = 2x^2 - 1
Find the value of .
q(r(4))

Answers

Answer:

q(r(4)) = -61

Step-by-step explanation:

q(x) = -2x +1

r(x) = 2x^2 - 1

q(r(4))

First find r(4)

f(4) = 2 (4)^2 -1

      = 2 *16 -1

      = 32-1

     = 31

Then put this value in for x in q(x)

q(r(4)) = q(31) = -2(31)+1

                     = -62+1

                     = -61

Answer:

The value of q( r(4) ) = -61

Step-by-step explanation:

It is given that,

q(x) = - 2x +1

r(x) = 2x^2 - 1

To find the value of q(r(4))

r(x) = 2x^2 - 1

r(4) = 2( 4^2) - 1  [Substitute 4 instead of x]

 = 2(16) - 1

 = 32 - 1 = 31

q( x ) = -2x +1

q( r(4) ) = q(31)        [Substitute 31 instead of x)

 =  (-2*31) +1

 = -62 + 1 = -61

Therefore the  value of q(r(4)) = -61

Find a power series representation for the function. (Give your power series representation centered at x = 0.)f(x) = x3x2 + 1f(x) = ∞n = 0 Determine the interval of convergence. (Enter your answer using interval notation.)

Answers

I suppose you mean

[tex]f(x)=\dfrac{x^3}{x^2+1}[/tex]

Recall that for [tex]|x|<1[/tex], we have

[tex]\dfrac1{1-x}=\displaystyle\sum_{n=0}^\infty x^n[/tex]

Then

[tex]\dfrac1{1+x^2}=\dfrac1{1-(-x^2)}=\displaystyle\sum_{n=0}^\infty(-x^2)^n=\sum_{n=0}^\infty(-1)^nx^{2n}[/tex]

which is valid for [tex]|-x^2|=|x|^2<1[/tex], or more simply [tex]|x|<1[/tex].

Finally,

[tex]f(x)=\displaystyle\frac{x^3}{x^2+1}=\sum_{n=0}^\infty(-1)^nx^{2n+3}[/tex]

Q2. On a cold day, hailstones fall with a velocity of (2i− 6k) m s−1 . If a cyclist travels through the hail at 10i ms−1 , what is the velocity of the hail relative to the cyclist? At what angle are the hailstones falling relative to the cyclist

Answers

Answer:[tex]-8\hat{i}-6\hat{k}[/tex]

[tex]\theta =\tan^{-1}\left ( \frac{3}{4} \right )[/tex]

Step-by-step explanation:

Given

Velocity of hailstones fall[tex]\left ( V_h\right )=2\hat{i}-6\hat{k}[/tex] m/s

Velocity of cyclist [tex]\left ( V_c\right )=10\hat{i}[/tex] m/s

Therefore

Velocity of hail with respect to cyclist[tex]\left ( V_{hc}\right )[/tex]

[tex]V_{hc}=V_h-V_c[/tex]

[tex]V_{hc}=2\hat{i}-6\hat{k}-10\hat{i}[/tex]

[tex]V_{hc}=-8\hat{i}-6\hat{k}[/tex]

and angle of hails falling relative to the cyclist is given by

[tex]\theta =\tan^{-1}\left ( \frac{3}{4}\right )[/tex]

[tex]\theta [/tex] is the angle made with the vertical

10 men and 12 women will be seated in a row of 22 chairs. What is the probability that all men will be seated side by side in 10 consecutive positions? 1/C(22, 10) 10!/C(22, 10) 10!/22! 10! middot 12!/22! 10! middot 13!/22!

Answers

Answer:

The correct option is 4.

Step-by-step explanation:

It is given that 10 men and 12 women will be seated in a row of 22 chairs.

Total possible ways to arrange n terms is n!.

Similarly,

Total possible ways to place 22 people on 22 chairs = 22!

[tex]\text{Total outcomes}=22![/tex]

It is given that all men will be seated side by side in 10 consecutive positions.

Total possible ways to place 10 people on 10 chairs = 10!

Let 10 men = 1 unit because all men will be seated side by side in 10 consecutive positions. 12 women = 12 units because women can any where.

Total number of units = 12 + 1 = 13.

Total possible ways to place 13 units = 13!

Total possible ways to place 10 men and 12 women, when all men will be seated side by side in 10 consecutive positions is

[tex]\text{Favorable outcomes}=10!\cdot 13![/tex]

The probability that all men will be seated side by side in 10 consecutive positions

[tex]P=\frac{\text{Favorable outcomes}}{\text{Total outcomes}}=\frac{10!\cdot 13!}{22!}[/tex]

Therefore the correct option is 4.

Solve the following inequalities:

A) 2w + 17 ˃ -4w -25

B) 2.3 + 0.6t ˂ 2 + 0.8t

C) Determine if – 3.5 and 10 make the inequalities in Parts A) and B) true or not. Check both numbers in both inequalities. Show your work.

Answers

Answer:

A) w > -7

B) 1.5 < t

C) -3.5 makes A) true and B) false

    10 makes both inequalities true

Step-by-step explanation:

The idea of these exercises is to clear our variable, we need it to be alone on one side of the inequality

A) 2w + 17 ˃ -4w -25

First, we will put together on one side the terms with a w and on the other the terms without w.

For that, we have to add 4w - 17 on both sides

2w + 17 + 4w - 17 ˃ -4w -25 + 4w - 17 (Notice that 17-17=0 and -4w+4w=0, so we don't have to write them below)

2w + 4w > -25 - 17

Now we can sum the terms (we didn't do it before because we can't sum a term with a w with one without it)

6w > -42

We divide by 6 on both sides and we have

6/6w > -42/6

w > -7

B) 2.3 + 0.6t ˂ 2 + 0.8t

We start as before; in this case we have to put together the terms with a t (our variable changes name but the idea is the same)

We will add -2 - 0.6t on both sides

2.3 + 0.6t -2 - 0.6t ˂ 2 + 0.8t -2 - 0.6t  

2.3 - 2 < 0.8t - 0.6t

Now we sum the terms  

0.3 < 0.2t

We divide by 0.2 on both sides and we have

0.3/0.2 < 0.2/0.2t

1.5 < t

C) Let's check -3.5 on both inequalities:

We have to replace the variable by -3.5:

2*(-3.5) + 17 ˃ -4*(-3.5) -25 (remember that if there is no sign between a number and a variable, it means that is a multiplication)

Now we just solve the calculation

-7 + 17 > 14 -25

10 > -11

That's true, so -3.5 makes the inequality true.

Now, in the other inequality, we replace the t by -3.5 and solve as before

2.3 + 0.6*(-3.5) ˂ 2 + 0.8*(-3.5)

2.3 - 2.1 < 2 - 2.8

0.2 < -0.8

That's false because we are saying that a negative number is bigger than a positive one, so -3.5 makes the inequality not true.

  Now we do the same with 10 in both inequalities:

   2*10 + 17 ˃ -4*10 -25

   20 + 17 > -40 -25

   37 > - 65

   It's true!

   2.3 + 0.6*10 ˂ 2 + 0.8*10

   2.3 + 6 < 2 + 8

   8.3 < 10

   It's true!

Consider the integral 8 (x2+1) dx 0 (a) Estimate the area under the curve using a left-hand sum with n = 4. 250 Is this sum an overestimate or an underestimate of the true value? overestimate underestimate (b) Estimate the area under the curve using a right-hand sum with n = 4. 248

Answers

Answer:

  (a) 120 square units (underestimate)

  (b) 248 square units

Step-by-step explanation:

(a) left sum

See the attachment for a diagram of the areas being summed (in orange). This is the sum of the first 4 table values for f(x), each multiplied by 2 (the width of the rectangle). Quite clearly, the curve is above the rectangle for the entire interval, so the rectangle area underestimates the area under the curve.

  left sum = 2(1 + 5 + 17 + 37) = 2(60) = 120 . . . . square units

(b) right sum

The right sum is the sum of the last 4 table values for f(x), each multiplied by 2 (the width of the rectangle). This sum is ...

  right sum = 2(5 +17 + 37 +65) = 2(124) = 248 . . . . square units

A solid, homogeneous sphere with a mass of m0, a radius of r0 and a density of ρ0 is placed in a container of water. Initially the sphere floats and the water level is marked on the side of the container. What happens to the water level, when the original sphere is replaced with a new sphere which has different physical parameters? Notation: r means the water level rises in the container, f means falls, s means stays the same. Combination answers like 'f or s' are possible answers in some of the cases. The new sphere has a mass of m = m0 and a density of ρ > ρ0. A: r B: f C: s D: r or s E: f or s The new sphere has a mass of m < m0 and a radius of r = r0. A: r B: f C: s D: r or s E: f or s The new sphere has a mass of m > m0 and a radius of r = r0.

Answers

Answer:

A: rB: fA: r

Step-by-step explanation:

1. Greater density means the sphere has more mass in the same volume. The volume of water that must be displaced to equal that increased mass must be increased, causing the water level to rise.

__

2. Less mass means less water must be displaced to equal the mass of the new sphere, causing the water level to fall.

__

3. More mass is the same as higher density (see 1). The water level will rise.

Archimedes' principle states that the upward force acting on a body floating or immersed in a fluid is equal to the weight of the displaced fluid

The level of the water in the three situations are as follows;

Situation 1; Falls or stays the same, E: f or s

Situation 2; Falls, B: f

Situation 3, Rises A: r

The reason for the above selection is as follows;

The given details of the arrangements are;

The mass of the solid homogeneous sphere = m₀

The radius of the sphere = r₀

The density of the sphere = ρ₀

The location the sphere is placed = Floating in a container of water

The required parameter;

The provision of an estimate of the water level when the sphere is replaced with a new sphere with different physical parameters

Notation;

r = The water level rises

f = The water level falls

s = The water level stays the same

Situation 1; The mass of the new sphere, m = m₀

The density of the new sphere, ρ > ρ₀

Here, the denser sphere of equal mass = Smaller sphere, r < r₀

if the sphere floats, then the volume of the water displaced is equal to the

mass of the sphere, which is therefore, equal to the volume of the water

displaced by the original sphere

Therefore, the water level remains the same, s

However, if the sphere sinks, then the water displaced is less than the

mass m = m₀, of the sphere and therefore, the level falls, f

Therefore, the correct option is E: f or s

Situation 2: The mass of the new sphere, m < m₀

The radius of the new sphere, r = r₀

Here, we have equal radius and therefore equal volume and lesser density

Given that the volume of the water displaced for a floating body is equal to

the weight of body, and that the mass of the new sphere is less than the

mass of the original sphere, the mass of the water displaced and therefore,

the volume of water displaced is less and therefore, the water level falls

The correct option is therefore B: f falls

Situation 3: The mass of the new sphere, m > m₀, and the radius r = r₀

therefore the new sphere is denser than the original sphere and the

therefore, the mass of the water displaced where the sphere floats is m >

m₀, which is more than the water displaced for the original sphere and the

level of water rises, r, and the correct option is A: r

Therefore;

In situation 1, we have option E: f or s

In situation 2, the correct option is B: f

In situation 3, the correct option is A: r

Learn more about Archimedes' principle here:

https://brainly.com/question/4421565

Identify the radius and center.

x^2 + y^2 - 2x + 4y - 11 = 0

Answers

Hello!

The answer is:

Center: (1,-2)

Radius: 4 units.

Why?

To solve the problem, using the given formula of a circle, we need to find its standard equation form which is equal to:

[tex](x-h)^{2}+(y-k)^{2}=r^{2}[/tex]

Where,

"h" and "k"are the coordinates of the center of the circle and "r" is its radius.

So, we need to complete the square for both variable "x" and "y".

The given equation is:

[tex]x^2+y^2-2x+4y-11=0[/tex]

So, solving we have:

[tex]x^2+y^2-2x+4y=11[/tex]

[tex](x^2-2x+(\frac{2}{2})^{2} )+(y^2+4y+(\frac{4}{2})^{2})=11+(\frac{2}{2})^{2} +(\frac{4}{2})^{2}\\\\(x^2-2x+1)+(y^2+4y+4)=11+1+4\\\\(x^2-1)+(y^2+2)=16[/tex]

[tex](x^2-1)+(y^2-(-2))=16[/tex]

Now, we have that:

[tex]h=1\\k=-2\\r=\sqrt{16}=4[/tex]

So,

Center: (1,-2)

Radius: 4 units.

Have a nice day!

Note: I have attached a picture for better understanding.

Final Question Math Need help!!

Answers

Answer:

Dear, Have a look at pic

Ted is not particularly creative. He uses the pickup line​ "If I could rearrange the​ alphabet, I'd put U and I​ together." The random variable x is the number of girls Ted approaches before encountering one who reacts positively. Determine whether the table describes a probability distribution. If it​ does, find its mean and standard deviation. If a probability distribution is not​ given, identify the requirements that are not satisfied.
x P(x)
1 0.001
2 0.025
3 0.101
4 0.246
5 0.503

Answers

Answer:

Not a probability distribution

Step-by-step explanation:

The given table doesn't describe a probability distribution as in order for the given distribution to be a probability distribution the sum of probabilities is required to be equal to one.

Here,

Sum of probabilities = 0.001+0.025+0.101+0.246+0.503 = 0.876

The sum of probabilities is not equal to one.

Therefore, the given distribution is not a probability distribution ..

1) Homer and Marge have purchased a home for $189 000. The real estate agent informs them that homes in their area have generally depreciated by 11% every six years. Based on this, how much should they be able to sell their home for in 15 years? (3 points)

Answers

Answer:

They should be able to sell their home for $149706.9

Step-by-step explanation:

Let's first understand the situation.

There is an initial value for the house which is $189000. However, this value varies every 6 years because of a 11% depreciation of the total value.

Because the depreciation is not executed during the 6 years in a constant way, but instead after the whole 6 years have passed, then we can calculate how many depreciations will be applied within the next 15 years:

total years/years needed for depreciation=15years/6years=2.5

The above means that only 2 depreciations are going to be applied. Remember that depreciation is only applied if the whole 6 years have passed.  

Now, after the first 6 years the depreciation (D) is:

D = 0.11 * $189000 = $20790,

which means that the value of the house will be:

(initial value) - D = $189000 - $20790 = $168210

Now, after the following 6 years, first 12 years, the depreciation (D) is:

D = 0.11 * $168210 = $18503.1,

which means that the value of the house will be:

(initial value) - D = $168210 - $18503.1 = $149706.9

In conclusion, in 15 years from now, they should be able to sell their home for $149706.9

Please help me with this

Answers

Answer:

The correct answer is first option

24

Step-by-step explanation:

From the figure we get, mAXM = 72° and  m<AMR = 38°

Also it is given that, all triangles are isosceles triangles and

m<FXA = 96°

To find the measure of <FXM

From the figure we get,

m<FXA =  m<AXM + m<FXM

m<FXM = m<FXA - m<AXM

 = 96 - 72

 = 24

Therefore the  correct answer is first option

24

You obtain a loan of $7500 at 16.5% compounded monthly. If you make $300 payments monthly, what is the term of the loan? Find the size of the concluding payment if: a. the last full payment is increased to pay off the loan b. the last smaller payment is made one month after the last full payment.

Answers

Answer:

last installment is $540

Step-by-step explanation:

principal amount (p) = $7500

rate (r) = 16.5 %

installment = $300

to find out

full payment is increased to pay off the loan and the last smaller payment is made one month after the last full payment

solution

we know monthly installment is $300 so amount will be paid i.e.

amount = $300×12×N ..............1

here N is no of installment

and we know amount formula i.e.

amount = principal ( 1+r/100)^N

put amount value and principal rate

300×12×N = 7500 ( 1+16.5/100)^N

(3600 ×N ) / 7500 = 1.165^N

0.48N = 1.165^N

by the graphical we will get N = 3.65

so 3.65 year

so as that put N in equation 1 we get

amount = $300×12× 3.65

amount = $13140

we can say there are 43 installment so remaining money is  $13140 - ($300 × 43 installment )

i.e. = $240 and last installment will be $300 + $240 = $540

so last installment is $540

A survey among freshman at a certain university revealed that the number of hours spent studying before final exams was normally distributed with mean 25 and standard deviation 15. A sample of 36 students was selected. What is the probabiliy that the average time spent stydying for the sampe was between 28.2 and 30 hours

Answers

Answer: 0.0775

Step-by-step explanation:

Given : Mean : [tex]\mu = 25[/tex]

Standard deviation : [tex]\sigma =15[/tex]

Sample size : [tex]n=36[/tex]

Since its normal distribution , then the formula to calculate the z-score is given by :-

[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

For x= 28.2 hours

[tex]z=\dfrac{28.2-25}{\dfrac{15}{\sqrt{36}}}=1.28[/tex]

For x= 30 hours

[tex]z=\dfrac{30-25}{\dfrac{15}{\sqrt{36}}}=2[/tex]

The P- value = [tex]P(1.28<z<2)[/tex]

[tex]=P(z<2)-P(z<1.28)= 0.9772498-0.8997274=0.0775224\approx0.0775[/tex]

Hence, the probabiliy that the average time spent stydying for the sampe was between 28.2 and 30 hours = 0.0775

The probability that the average time spent studying for the sample was between 28.2 and 30 hours is calculated as 0.0775 or 75 %.

To calculate the probability that the average time spent studying for the sample was between 28.2 and 30 hours, we use the normal distribution and standardize the sample means to a z-score.

Given the population mean (μ) is 25 hours, the population standard deviation (σ) is 15 hours, and the sample size (n) is 36, the standard error of the mean (SEM) is σ/√n which is 15/6 = 2.5 hours.

The z-scores for 28.2 and 30 hours are calculated as (X - μ)/(SEM).

Z for 28.2 hours = (28.2 - 25)/2.5 = 1.28
Z for 30 hours = (30 - 25)/2.5 = 2

Now we can look up these z-scores in the standard normal distribution table (or use calculator/software) to find the probabilities for these z-scores and then find the probability that lies between them by subtracting the two.

Example: Let's assume the probability corresponding to z=1.28 is 0.8997 and to z=2 is 0.9772.

The probability that the sample mean lies between 28.2 and 30 hours is:

P(1.28 < Z < 2) = P(Z < 2) - P(Z < 1.28)

= 0.9772 - 0.8997
= 0.0775

Hence, there is a 7.75% probability that the sample mean is between 28.2 and 30 hours.

Write an equation of the horizontal asymptote for this function. Also, interpret what this asymptote means in the context of the problem (in terms of the fish population and the number of years since the fish were introduced into the lake.)

Answers

Answer:

Step-by-step explanation:

First, finding the horizontal asymptote:

[tex]\lim_{t \to \infty} = \frac{200+40t}{1+0.05t} = \frac{\frac{200}{t} 40 }{\frac{1}{t} 0.05} = 800[/tex]

In the context of the problem, the horizontal asymptote speaks about where the population of the fish is headed and capped.

10. Sketch the graph of -5x^2- 16xy +7y^2-198 0. Show the steps used in rotating the axes

Answers

so sorry i don’t know the answer but get an app called desmond, it helps a lot
Other Questions
Assume that two parallel arrays have been declared and initialized: healthOption an array of type char that contains letter codes for different healthcare options and annualCost an array of type int. The i-th element of annualCost indicates the annual cost of the i-th element of healthOption. In addition, there is an char variable, best2.Write the code necessary to assign to best2 the health option with the lower annual cost, considering only the first two healthcare options. Which of the following does not have triangular faces?A. DodecahedronB. IcosahedronC. OctahedronD. Tetrahedron If students scores were normally distributed and the mean was 200 with a standard deviation of 40, then what is the probability, in percentages, that it is below 240? Let S u, v be a linearly independent set. Prove that the {u + v,u - v} is linearly independent Read the excerpt from Amy Tans essay Mother Tongue. I know this for a fact, because when I was growing up, my mothers limited English limited my perception of her. I was ashamed of her English. I believed that her English reflected the quality of what she had to say. That is, because she expressed them imperfectly her thoughts were imperfect. What is the purpose of this text? to inform readers based on Tans childhood experience to persuade readers to speak a different way to inform readers of Tans mothers feelings to persuade readers that Tans mother is intelligen A young man walks daily through a gridded city section to visit his girlfriend, who lives m blocks East and nblocks North of where the young man resides. Because the young man is anxious to see his girlfriend, his route to her never doubles backhe always approaches her location. In terms of m and n, how many different routes are there for the young man to take? The number of corn stalks in each row of field can be modeled by arithmetic sequence.The 5th row in this field has 36 corn stalks. The 12th row in the field has 64 stalks. Write an explicit rule for an arithmetic sequence that models the number of stalks s in the nth row of the field. show your work Under which jurisdiction would further review of a federal court decision fall under? Revising and EditingDirections Read the passage and answer the question that follows.(1) The pressure to get good grades in high school has gotten out of control. (2) The need to meet requirements considered essential for admission to a college has caused students to take on exhausting challenges. (3) Some students enroll in summer classes. (4) A full-year's load of material is crammed into a six-week course. (5) Others enroll, or are enrolled unwillingly, in advanced-placement courses for which they are unprepared or unfit.(6) Some students resort to more desperate measures. (7) Cheating in the classroom has increased dramatically in recent years. (8) Students buy and sell papers that others have written. (9) They hire professionals to write term papers on spec. (10) Materials found on the Internet are plagiarized. (11) Some students even steal tests and answer keys from their teachers' files.(12) When it comes to applying for admission to a prestigious university, the stakes are high and the competition is fierce. (13) Good grades are a must. (14) Additional credits earned in advanced classes are a significant bonus and usually are expected. (15) Often, however, this is not enough. (16) Students who excel in a sport, who demonstrate artistic abilities, or who actively involve themselves in community activities have an added and distinct advantage over others. (17) To ensure success, the ideal college applicant will meet many requirements: good grades, advanced-placement credits, and an enviable record of extracurricular achievements. (18) Not surprisingly, many students go to bed at night haunted by the following question: "Have I done enough?"(19) Increasingly, parents are saying that: "Enough is enough!" (20) Many believe that the time has come to put a stop to the ever-escalating demands placed on students today. (21) A variety of solutions has been suggested. (22) They address various aspects of the problem. (23) School officials recommend closer monitoring of classrooms. (24) They suggest tighter controls on Internet use and the installation of security cameras in teachers' offices. (25) These measures might help reduce cheating.(26) Recommendations that address other aspects of the problem include the creation of a curriculum-counseling program, a relaxation of college-admission standards, and the aggressive promotion of state and community colleges as alternative higher-education options. (27) Implementation of some or all of these recommendations would no doubt be beneficial. (28) The problem, however, is not completely addressed by them. (29) For the present, students will continue to be burdened by the pressures placed on them. (30) A permanent solution to the problem needs to be found.Combining sentences 1 and 2 using a colon would be an effective way toSelect one:a. show the relationship in meaning between the two sentences.b. eliminate an unnecessary dependent clause.c. vary sentence length and structure.d. shorten and tighten the paragraph. .When a design begins with a consideration of what the systemmust accomplish, it is called:A.user-centered design B.data-driven design C.event-driven design D.task-centered design The variable z is directly proportional to x. When x is 3, z has the value 48. What is the value of z when x = 7? What are the solutions of the equation x^2=9 Frank buys 10 magazines and 25 newspapers. The magazines cost $5 each and the newspapers cost $2.50 each. Suppose that his MU from the final magazine is 10 utils while his MU from the final newspaper is also 10 utils. According to the utility-maximizing rule, Frank should: What year did barack obama became president It was found that a reversible inhibitor and a substrate bind an enzyme, but at different sites. The inhibitor was quite potent at reducing enzyme activity, but an analysis indicated it could not actually bind the enzyme unless the substrate was bound first. These results led to what conclusion? Find the equation of the line perpendicular to y=-4x+3 that also intersects the point (8,1) In this type of projection, the angles between the three axes are different:- A) Isometric B) Axonometric C) Trimetric D) Dimetnic Which of the following describes a compound event?A. Tossing a coin and getting headsB. Drawing the ace of hearts from a deck of cardsC. Rolling 2 on a dieD. Drawing an ace from a deck of cards and getting heads on a cointossHELP PLEASE A battery-operated car utilizes a 12.0 V system. Find the charge (in C) the batteries must be able to move in order to accelerate the 850 kg car from rest to 25.0 m/s, make it climb a 2.30 102 m high hill, and then cause it to travel at a constant 25.0 m/s by exerting a 4.00 102 N force for an hour. What effect did the success of the American Revolution have internationally?The American Revolution provided the blueprint for gaining independence.The American Revolution caused other empires to better respect their colonies rights.The American Revolution enabled other countries to weigh the pros and cons of revolution.The American Revolution inspired other countries to declare independence.