Light that is polarized along the vertical direction is incident on a sheet of polarizing material. Only 92% of the intensity of the light passes through the sheet and strikes a second sheet of polarizing material. No light passes through the second sheet. What angle does the transmission axis of the second sheet make with the vertical?

Answers

Answer 1
Final answer:

The transmission axis of the second sheet makes a right angle (90 degrees) with the vertical given that no light passes through it. This is based on Malus's Law for polarization.

Explanation:

The phenomenon described in your question is polarization, which is a characteristic of transverse waves such as light. The sheet of polarizing material allows only the light polarized in the same direction as the sheet's axis of transmission to pass through it. Following Malus's Law for polarization, we can determine that if no light passes through the second polarizer, its transmission axis must be at a right angle (90 degrees) to the initial polarization direction, which is vertical in this case.

The Malus's Law is an equation that describe the intensity of the light after passing through a polarizer as: I = I0 cos^2 θ where I0 is the initial intensity of the light, θ is the angle between the light polarization direction and the transmission axis of the polarizer. If I = 0, then cos^2 θ = 0, which indicates that θ is 90 degrees. This concept comes under the area of wave optics in Physics.

Learn more about Polarization here:

https://brainly.com/question/33242453

#SPJ12

Answer 2
Final answer:

The transmission axis of the second sheet of polarizing material makes a 90-degree angle with the vertical because it must be perpendicular to the first sheet's axis for no light to pass through. Hence, with the first polarizer vertical, the second must be horizontal.

Explanation:

The question asks about the angle that the transmission axis of the second sheet of polarizing material makes with the vertical, given that no light passes through. According to the principles of light polarization, if no light passes through a second sheet of polarizing material, it means the transmission axis of the second sheet is perpendicular to the axis of the first one.

Since the first sheet polarizes light vertically, this implies the transmission axis of the second sheet must be horizontal. Therefore, as per common geometric considerations where vertical and horizontal lines are perpendicular, the angle between the vertical (first filter axis) and horizontal (second filter axis) is 90 degrees.

Learn more about Light Polarization here:

https://brainly.com/question/29217577

#SPJ3


Related Questions

Suppose the electric company charges 10 fils per kW h. How much does it cost to use a 125 watt lamp 4 hours a day for 30 days? A) AED 1.20 B) AED I.80 C) AED 7.20 D) none of these E) AED 1.50

Answers

Answer:

150 fils

Explanation:

Power = 125 Watt

Time 4 hours a day

Energy per day = Power x time per day = 125 x 4 = 500 watt hour

Energy for 30 days = 500 x 30 watt hour = 15000 watt hour = 15 KWH

Cost of 1 KWH = 10 fils

Cost of 15 KWH = 15 x 10 = 150 fils

A 1 530-kg automobile has a wheel base (the distance between the axles) of 2.70 m. The automobile's center of mass is on the centerline at a point 1.15 m behind the front axle. Find the force exerted by the ground on each wheel.

Answers

Final answer:

To find the force exerted by the ground on each wheel of the automobile, we can analyze the forces acting on the car and use the principle of equilibrium. By considering the weight of the car and the distribution of weight between the front and rear axles, we can determine the force exerted by the ground on each wheel.

Explanation:

The force exerted by the ground on each wheel of the automobile can be determined by considering the forces acting on the car. Since the car is in equilibrium, the sum of the vertical forces must be zero. The weight of the car is distributed between the front and rear axles according to their distances from the center of mass. Using this information, we can calculate the force exerted by the ground on each wheel.

First, we find the weight of the car by multiplying its mass by the acceleration due to gravity: W = (mass of the car) x (acceleration due to gravity). In this case, the acceleration due to gravity is 9.8 m/s².

Next, we find the force exerted by the ground on the rear wheels. Since the car is in equilibrium, the sum of the torques about any point must be zero. Taking the point where the front wheels contact the ground as the pivot point, we can set up an equation using the weight of the car, the distances between the front and rear axles and the center of mass, and the force exerted by the ground on the rear wheels. Solving this equation allows us to find the force exerted by the ground on the rear wheels, and since the front and rear wheels share the weight of the car equally, the force exerted by the ground on each wheel is half of this value.

Learn more about the force here:

brainly.com/question/30526425

#SPJ12

A 66.0-kg boy and his 45.0-kg sister, both wearing roller blades, face each other at rest. The girl pushes the boy hard, sending him backward with a velocity 2.80 m/s toward the west. Ignore friction. (a) Describe the subsequent motion of the girl.

Answers

Answer:

the girl moves towards right with a velocity of 4.1m/s

Explanation:

Since the system is isolated the momentum of the system is conserved

Initial momentum = Final Momentum

Since initially the system is at rest thus [tex]\overrightarrow{p_{i}}=0[/tex]

Now the final momentum of boy = [tex]m_{boy}×velocity[/tex]

[tex]\overrightarrow{p_{boy}}=66.0\times -2.80m/s\\\\\overrightarrow{p_{boy}}=-184.8kgm/s[/tex]

Now for girl let the velocity = u hence her moumentum is 45[tex]\times u[/tex]

Thus equating final momentum to zero we have

[tex]-184.8kgm/s[/tex]+[tex]45\times u = 0[/tex]

[tex]u=\frac{184.8}{45}m/s[/tex]

hence [tex]u=4.1m/s[/tex]

Thus the girl moves towards right with a velocity of 4.1m/s

Final answer:

When the girl pushes her brother on roller blades, causing him to move backwards, the principle of conservation of momentum dictates that the girl will move in the opposite direction with a velocity of 4.16 m/s towards the east.

Explanation:

The scenario presented involves the conservation of momentum, which is a fundamental concept in physics. When the girl pushes her brother on roller blades, and he moves backward at a velocity of 2.80 m/s, by the principle of conservation of momentum, the girl will move in the opposite direction.

Since no external forces are acting on the system (assuming friction is ignored), the total momentum before and after the push remains constant. The combined momentum of the boy and girl before the push is zero because they are both initially at rest. After the push, the momentum of the boy is his mass multiplied by his velocity (66.0 kg × 2.80 m/s).

To find the subsequent motion of the girl, let's calculate:

Initial total momentum = 0 kg·m/s (since both are at rest)Final total momentum = Initial total momentum (due to conservation of momentum)Final momentum of the boy = (mass of boy) × (velocity of boy) = 66.0 kg × (-2.80 m/s)Final momentum of the girl = (mass of girl) × (velocity of girl)0 = (66.0 kg × -2.80 m/s) + (45.0 kg × velocity of girl)Velocity of girl = - (66.0 kg × -2.80 m/s)/45.0 kgVelocity of girl = 4.16 m/s (towards the east)

Therefore, the girl will move towards the east at a velocity of 4.16 m/s as a result of the push.

A spring with a mass of 0.7 kg is hanging on it and has an angular frequency of 2.4 when in oscillation. What is the spring constant? Calculate to one decimal place.

Answers

Answer:

Spring constant, k = 2.304 N/m

Explanation:

It is given that,

Mass of spring, m = 0.7 kg

Angular frequency, [tex]\omega=2.4\ rad/s[/tex]

We need to find the spring constant of the spring. It is a case of SHM. Its angular frequency is given by :

[tex]\omega=\sqrt{\dfrac{k}{m}}[/tex]

[tex]k=\omega^2\times m[/tex]

[tex]k=(2.4)^2\times 0.4\ kg[/tex]

k = 2.304 N/m

So, the spring constant of the spring is 2.304 N/m. Hence, this is the required solution.

A parallel-plate capacitor consists of plates of area 1.5 x 10^-4 m^2 separated by 2.0 mm The capacitor is connected to a 12-V battery. How much energy is stored in the capacitor? (a) 4.8 x 10^-11 J (b) 2.8 X 10^-11 J (c) 1.8 x 10^-11 J d) 4.8 X 10^-12 J

Answers

Answer:

4.78 x 10^-11 J

Explanation:

A = 1.5 x 10^-4 m^2

d = 2 mm = 2 x 10^-3 m

V = 12 V

Let C be the capacitance of the capacitor

C = ε0 A / d

C = (8.854 x 10^-12 x 1.5 x 10^-4) / (2 x 10^-3)

C = 6.64 x 10^-13 F

Energy stored, U = 1/2 CV^2

U = 0.5 x 6.64 x 10^-13 x 12 x 12

U = 4.78 x 10^-11 J

The energy stored in a parallel-plate capacitor connected to a 12-V battery, with plate area of 1.5 x 10^-4 m^2 and separation of 2.0 mm, is calculated using the formula U = (1/2)CV^2 and is found to be 4.8 x 10^-11 J.

The capacitance C of a parallel-plate capacitor is given by the formula C = ε_0 * A / d, where ε_0 is the vacuum permittivity (ε_0 = 8.85 x 10^-12 F/m), A is the area of the plates, and d is the separation between the plates.

Given that the area A is 1.5 x 10^-4 m^2, the separation d is 2.0 mm = 2.0 x 10^-3 m, and the voltage V is 12 V, we can plug in these values to first determine capacitance and then calculate the energy stored.

First, calculate the capacitance:

C = ε_0 * A / d = (8.85 x 10^-12 F/m)(1.5 x 10^-4 m^2) / (2.0 x 10^-3 m) = 6.6 x 10^-12 F

Next, calculate the energy stored:

U = (1/2)CV^2 = (1/2)(6.6 x 10^-12 F)(12 V)^2 = 4.8 x 10^-11 J

Therefore, the energy stored in the capacitor is 4.8 x 10^-11 J, which corresponds to option (a).

The protons initially are located where the electric potential has a value of 7.60 MV and then they travel through a vacuum to a region where the potential is zerdo. (a) Find the final speed of these protons m/s (b) Find the accelerating electric field strength if the potential changed uniformly over a distance of 1.70 m. MV/m

Answers

Answer:

(a) 3.82 x 10⁷ m/s

(b) 4.5 MV/m

Explanation:

(a)

ΔV = change in the electric potential as the proton moves = 7.60 x 10⁶ Volts

q = magnitude of charge on proton = 1.6 x 10⁻¹⁹ C

v = speed gained by the proton

m = mass of proton = 1.67 x 10⁻²⁷ kg

Using conservation of energy

Kinetic energy gained by proton = Electric potential energy

(0.5) m v² = q ΔV

inserting the values

(0.5) (1.67 x 10⁻²⁷) v² = (1.6 x 10⁻¹⁹) (7.60 x 10⁶)

v = 3.82 x 10⁷ m/s

(b)

d = distance over which the potential change = 1.70 m

Electric field is given as

E = ΔV/d

E = 7.60 x 10⁶/1.70

E = 4.5 x 10⁶ V/m

E = 4.5 MV/m

The membrane of the axon of a nerve cell is a thin cylindrical shell of radius r = 10-5 m, length L = 0.32 m, and thickness d = 10-8 m. The membrane has a positive charge on one side and a negative charge on the other. Thus, it acts like a parallel-plate capacitor of area A = 2pirL and separation d. Its dielectric constant is kappa = 4. If the potential difference across the membrane is 74 mV, determine the magnitude of the charge on each side of the membrane.

Answers

Answer:

5.3 x 10⁻⁹ C

Explanation:

r = radius of cylindrical shell = 10⁻⁵ m

L = length = 0.32 m

A = area

Area is given as

A = 2πrL

A = 2 (3.14) (10⁻⁵) (0.32)

A = 20.096 x 10⁻⁶ m²

d = separation = 10⁻⁸ m

[tex] k_{appa} [/tex] = dielectric constant = 4

Capacitance is given as

[tex]Q=\frac{k_{appa}\epsilon _{o}A}{d}[/tex]                               eq-1

V = Potential difference across the membrane = 74 mV = 0.074 Volts

Q = magnitude of charge on each side

Magnitude of charge on each side is given as

Q = CV

using eq-1

[tex]Q=\frac{k_{appa} \epsilon _{o}AV}{d}[/tex]

Inserting the values

[tex]Q=\frac{4 (8.85\times 10^{-12})(20.096\times 10^{-6})(0.074)}{10^{-8}}[/tex]

Q = 5.3 x 10⁻⁹ C

The membrane is parallel and act as a parallel plate capicitor.The magnitude of the charge on each side of the membrane will be 5.3×10⁻⁹C.

What is parallel plate capacitor ?

It is an type capacitor is an in which two metal plates arranged in such away so that they are connected in parallel andhaving some distance between them.

A dielectric medium is must in between these plates help to stop the flow of electric current through it due to its non-conductive nature .

The given data in the problem is;

r is the radius of cell of thin cyliner=10⁻⁵m

L is the length =0.32

d is the thickness =10⁻⁸m

K is the dielectric constant=4

v is the potential difference across the membrane=74 mv=0.074 v

q is the megnitude of charge=?

A is the area of capicitor=2πrl

[tex]\rm A = 2\pi rl\\\\\rm A= 2\times3.14\times10^{-5}\times0.32\\\\\rm A= 20.096\times10^{-6}[/tex]

The given formula for the parallel plate capicitor as ,

[tex]\rm Q=\frac{K\varepsilon _0AEr}{d} \\\\\rm Q=\frac{4\times(8.85\times10^{-12})(20.096\times10^{-6}\times0.074}{10^{-8}}\\\\\rm Q=5.3\TIMES10^{-9}\;C[/tex]

Hence the charge on each side of the membrane will be 5.3×10⁻⁹C.

To learn more about the parallel plate capicitor refer to the link;

https://brainly.com/question/12883102

A 4.0-V battery that can store 300.0 J of energy is connected to a resistor. How much electrical charge must flow between the battery's termiñals to completely drain the battery if it is fully charged? A) 1200 C B) 0.05 C C) 0.01 C D) 75 C

Answers

Answer:

Electrical charge, q = 75 C

Explanation:

It is given that,

Voltage, V = 4 V

Energy stored, E = 300 J

Energy stored in the battery is given by :

[tex]E=q\times V[/tex]

q is the electrical charge

[tex]q=\dfrac{E}{V}[/tex]

[tex]q=\dfrac{300\ J}{4\ V}[/tex]

q = 75 C

So, the electrical charge of 75 C must flow between the battery's terminals to completely drain the battery if it is fully charged. Hence, this is the required solution.

A ball is thrown straight down with a speed of Va2.00 from a building 40.00 meters high. How much S time passes before the ball reaches the ground? a.) -3.07s b.) - 2.46 s c.) =2.66s d.) =9.89s e.) None of the above.A ball is thrown straight down with a speed of Va2.00 from a building 40.00 meters high. How much S time passes before the ball reaches the ground? a.) -3.07s b.) - 2.46 s c.) =2.66s d.) =9.89s e.) None of the above.

Answers

Answer:

Option C is the correct answer.

Explanation:

Considering vertical motion of ball:-

Initial velocity, u =  2 m/s

Acceleration , a = 9.81 m/s²

Displacement, s = 40 m

We have equation of motion s= ut + 0.5 at²

Substituting

   s= ut + 0.5 at²

    40 = 2 x t + 0.5 x 9.81 x t²

   4.9t²  + 2t - 40 = 0

   t = 2.66 s   or t = -3.06 s

So, time is 2.66 s.

Option C is the correct answer.

An electron and a proton are each placed at rest in a uniform electric field of magnitude 554 N/C. Calculate the speed of each particle 52.0 ns after being released. electron m/s proton m/s Need Help?

Answers

Explanation:

It is given that,

Electric field, E = 554 N/C

Time, [tex]t=52\ ns=52\times 10^{-9}\ s[/tex]

Electric force, F = qE

For both electron and proton, [tex]F=1.6\times 10^{-19}\ C\times 554\ N/C[/tex]

[tex]F=8.86\times 10^{-17}\ N[/tex]

For electron, [tex]F=m_ea_e[/tex]

[tex]a_e=\dfrac{F}{m_e}[/tex]

[tex]a_e=\dfrac{8.86\times 10^{-17}\ N}{9.1\times 10^{-31}\ kg}[/tex]

[tex]a_e=9.73\times 10^{13}\ m/s^2[/tex]

Using first equation of motion as :

[tex]v=u+at[/tex]

u = 0

[tex]v=9.73\times 10^{13}\ m/s^2\times 52\times 10^{-9}\ s[/tex]

v = 5059600 m/s

or

v = 5.05 × 10⁶ m/s

For proton :

[tex]F=m_pa_p[/tex]

[tex]a_p=\dfrac{F}{m_e}[/tex]

[tex]a_p=\dfrac{8.86\times 10^{-17}\ N}{1.67\times 10^{-27}\ kg}[/tex]

[tex]a_p=5.3\times 10^{10}\ m/s^2[/tex]

Using first equation of motion as :

[tex]v=u+at[/tex]

u = 0

[tex]v=5.3\times 10^{10}\ m/s^2\times 52\times 10^{-9}\ s[/tex]

v = 2756 m/s

Hence, this is the required solution.

A 12.0 kg block rests on an inclined plane. The plane makes an angle of 31.0° with the horizontal, and the coefficient of friction between the block and the plane is 0.158. The 12.0 kg block is tied to a second block (mass = 38.0 kg) which hangs over the end of the inclined plane after the rope passes over an ideal pulley. (a) What is the acceleration of each of the two blocks, and (b) what is the tension in the rope?

Answers

Answer:

The acceleration of each of the two blocks and the tension in the rope are 5.92 m/s and 147.44 N.

Explanation:

Given that,

Mass = 12.0 kg

Angle = 31.0°

Friction coefficient = 0.158

Mass of second block = 38.0 kg

Using formula of frictional force

[tex]f_{\mu} = \mu N[/tex]....(I)

Where, N = normal force

[tex]N = mg\cos\theta[/tex]

Put the value of N into the formula

[tex]N =12\times9.8\times\cos 31^{\circ}[/tex]

[tex]N=100.80\ N[/tex]

Put the value of N in equation (I)

[tex]f_{mu}=0.158\times100.80[/tex]

[tex]f_{mu}=15.9264\ N[/tex]

Now, Weight of second block

[tex]W = mg[/tex]

[tex]W=38.0\times9.8[/tex]

[tex]W=372.4\ N[/tex]

The horizontal force is

[tex]F = mg\sintheta[/tex]

[tex]F=12\times9.8\times\sin 31^{\circ}[/tex]

[tex]F=60.5684\ N[/tex]....(II)

(I). We need to calculate the acceleration

[tex]a=m_{2}g-\dfrac{f_{\mu}+mg\sin\theta}{m_{1}+m_{2}}[/tex]

[tex]a=\dfrac{372.4-(15.9264+60.5684)}{12+38}[/tex]

[tex]a=5.92\ m/s^2[/tex]

(II). We need to calculate the tension in the rope

[tex]m_{2}g-T=m_{2}a[/tex]

[tex]-T=38\times5.92-38\times9.8[/tex]

[tex]T=147.44\ N[/tex]

Hence, The acceleration of each of the two blocks and the tension in the rope are 5.92 m/s and 147.44 N.

What is the average distance between the parabola yequals=77​x(1616minus−​x) and the​ x-axis on the interval left bracket 0 comma 16 right bracket[0,16]​?

Answers

Solution:

To calculate the average distance between the given parabola and the x-axis

y = 77x(1616 - x)

x ∈ [0, 16]

avg distance = [tex]\int_{0}^{16}\frac{77x(1616 - x)dx}{\int_{0}^{16} x dx}[/tex]

                     = [tex]2\int_{0}^{16}(\frac{(124432x - 77x^{2})dx}{[x^{2}]_{0}^{16}}[/tex]

                      =[tex] 2\int_{0}^{16}\frac{\frac{124432x^{2}}{2}- \frac{77x^{3}}{3}}{[x^{2}]_{0}^{16}}[/tex]

                      = [tex]16^{2}[\frac{62216 - 25.67\times 16}{16^{2}}][/tex]

avg distance = 61805 unit

The tub of a washer goes into its spin cycle, starting from rest and gaining angular speed steadily for 6.00 s, at which time it is turning at 5.00 rev/s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub smoothly slows to rest in 13.0 s. Through how many revolutions does the tub turn while it is in motion?

Answers

Answer:

16.035 revolutions

Explanation:

Part 1:

t = 6 s, f0 = 0 , f = 5 rps,

Let the number of revolutions be n1.

Use first equation of motion for rotational motion

w = w0 + α t

2 x 3.14 x 5 = 0 + α x 6

α = 5.233 rad/s^2

Let θ1 be the angle turned.

Use second equation of motion for rotational motion

θ1 = w0 t + 12 x α x t^2

θ1 = 0 + 0.5 x 5.233 x 6 x 6 = 94.194 rad

n1 = θ1 / 2π = 94.194 / 2 x 3.14 = 15 revolutions

Part 2:

f0 = 5 rps, f = 0, t = 13 s

Let the number of revolutions be n2.

Use first equation of motion for rotational motion

w = w0 + α t

0 = 2 x 3.14 x 5 + α x 13

α = - 2.415 rad/s^2

Let θ2 be the angle turned.

Use third equation of motion for rotational motion

w^2 = w0^2 + 2 x α x θ2

0 = 2 x 3.14 x 5 - 2 x 2.415 x θ2

θ2 = 6.5 rad  

n2 = θ2 / 2π = 6.5 / 2 x 3.14 = 1.035 revolutions

total revolutions n = n1 + n2 = 15 + 1.035 = 16.035 revolutions

A coil is wrapped with 300 turns of wire on the perimeter of a circular frame (radius = 8.0 cm). Each turn has the same area, equal to that of the frame. A uniform magnetic field is turned on perpendicular to the plane of the coil. This field changes at a constant rate from 20 to 80 mT in a time of 20 ms. What is the magnitude of the induced emf in the coil at the instant the magnetic field has a magnitude of 50 mT?

Answers

Answer:

Approximately 18 volts when the magnetic field strength increases from [tex]\rm 20\; mT[/tex] to [tex]\rm 80\;mT[/tex] at a constant rate.

Explanation:

By the Faraday's Law of Induction, the EMF [tex]\epsilon[/tex] that a changing magnetic flux induces in a coil is:

[tex]\displaystyle \epsilon = N \cdot \frac{d\phi}{dt}[/tex],

where

[tex]N[/tex] is the number of turns in the coil, and[tex]\displaystyle \frac{d\phi}{dt}[/tex] is the rate of change in magnetic flux through this coil.

However, for a coil the magnetic flux [tex]\phi[/tex] is equal to

[tex]\phi = B \cdot A\cdot \cos{\theta}[/tex],

where

[tex]B[/tex] is the magnetic field strength at the coil, and[tex]A\cdot \cos{\theta}[/tex] is the area of the coil perpendicular to the magnetic field.

For this coil, the magnetic field is perpendicular to coil, so [tex]\theta = 0[/tex] and [tex]A\cdot \cos{\theta} = A[/tex]. The area of this circular coil is equal to [tex]\pi\cdot r^{2} = \pi\times 8.0\times 10^{-2}\approx \rm 0.0201062\; m^{2}[/tex].

[tex]A\cdot \cos{\theta} = A[/tex] doesn't change, so the rate of change in the magnetic flux [tex]\phi[/tex] through the coil depends only on the rate of change in the magnetic field strength [tex]B[/tex]. The size of the magnetic field at the instant that [tex]B = \rm 50\; mT[/tex] will not matter as long as the rate of change in [tex]B[/tex] is constant.

[tex]\displaystyle \begin{aligned} \frac{d\phi}{dt} &= \frac{\Delta B}{\Delta t}\times A \\&= \rm \frac{80\times 10^{-3}\; T- 20\times 10^{-3}\; T}{20\times 10^{-3}\; s}\times 0.0201062\;m^{2}\\&= \rm 0.0603186\; T\cdot m^{2}\cdot s^{-1}\end{aligned}[/tex].

As a result,

[tex]\displaystyle \epsilon = N \cdot \frac{d\phi}{dt} = \rm 300 \times 0.0603186\; T\cdot m^{2}\cdot s^{-1} \approx 18\; V[/tex].

Final answer:

Using Faraday's law, the magnitude of the induced emf in the coil at the instant the magnetic field is 50 mT is found to be 18 volts. The negative sign indicates the emf opposes the change in flux according to Lenz's law.

Explanation:

The question is about the calculation of the magnitude of induced emf in the coil at the instant the magnetic field has a magnitude of 50 mT. To approach this, we can use Faraday's law of electromagnetic induction. It states that the induced emf is equal to the rate of change of the magnetic flux.  

First, let us recall the expression of the magnetic flux (Φ): Φ = B * A, where B is the magnetic field's magnitude and A is the area through which it passes. For a circular coil, A = π * (radius)^2. Applying the given radius 0.08 m, we calculate A = 0.02 m².  

Given that the magnetic field changes linearly with time from 20 mT to 80 mT in 20 ms, we can determine the rate of change of the magnetic field which is (80 mT - 20 mT) / 20 ms = 3 T/s. Therefore, the rate of change of Flux is dΦ/dt = (B * A)/dt = 3 T/s * 0.02 m² = 0.06 Wb/s.

Finally, as per Faraday's law, the induced emf = -NdΦ/dt, where N is the number of turns in the coil. Therefore, for N = 300 turns, emf = -300 * 0.06 Wb/s = -18 V. The negative sign indicates the emf would oppose the change in flux according to Lenz's law.

Learn more about Induced emf here:

https://brainly.com/question/36650405

#SPJ3

An electron moving with a velocity v = 5.0 × 10^7 m/s i enters a region of space where perpendicular electric and a magnetic fields are present. The electric field is E = 104 V/m j. What magnetic field will allow the electron to go through the region without being deflected?

Answers

Answer:

2.08 x 10⁻⁶ T

Explanation:

[tex]v[/tex] = velocity of electron = 5.0 x 10⁷ m/s

q = charge on electron

B = magnetic field = ?

E = electric field = 104 V/m

Magnetic force on the electron is given as

[tex]F_{B} = qvB[/tex]

Electric force on the electron is given as

[tex]F_{E} = qE[/tex]

For the electron to pass without being deflected, we must have

[tex]F_{B} = F_{E}[/tex]

[tex]qvB = qE[/tex]

[tex]vB = E[/tex]

(5.0 x 10⁷) B = 104

B = 2.08 x 10⁻⁶ T

Beats are the difference in (a) Frequency (b) Amplitude (c) Intensity (d) None

Answers

Answer:

Beats are the difference in frequency.

(a) is correct option.

Explanation:

Beat :

Beat is the difference of the frequency of two waves.

The difference in frequency is equal to the number of beat per second.

Amplitude :

Amplitude of the wave is the maximum displacement.

Frequency :

Frequency is the number oscillations of wave in per second.

Intensity :

Intensity is the power per unit area.

Hence, Beats are the difference in frequency.

Find the net work done by friction on the body of a snake slithering in a complete circle of 1.04 m radius. The coefficient of friction between the ground and the snake is 0.25, and the snake's weight is 78.0 N.

Answers

Final answer:

The net work done by friction on the body of a snake slithering in a complete circle can be found by calculating the work done by the friction force. The friction force is equal to the coefficient of friction multiplied by the normal force. The net work done by friction is -2πr × friction force = -2π(1.04 m) × 19.5 N = -129.77 J.

Explanation:

The net work done by friction on the body of a snake slithering in a complete circle can be found by calculating the work done by the friction force. The friction force is equal to the coefficient of friction multiplied by the normal force. In this case, the friction force is opposing the motion of the snake, so the work done by friction is negative.

Considering a complete circle of radius 1.04 m, the distance traveled by the snake is equal to the circumference of the circle, which is 2πr. The normal force is equal to the weight of the snake, which is 78.0 N. The friction force is equal to the coefficient of friction (0.25) multiplied by the normal force (78.0 N), so the friction force is 19.5 N.

The net work done by friction is then calculated by multiplying the friction force by the distance traveled and taking into account the negative sign to indicate the opposing direction of friction. Therefore, the net work done by friction on the body of the snake is -2πr × friction force = -2π(1.04 m) × 19.5 N = -129.77 J.

Learn more about net work done by friction here:

https://brainly.com/question/20559584

#SPJ3

A cylindrical gasoline tank is placed so that the axis of the cylinder is horizontal. Find the fluid force on a circular end of the tank when the tank is half full, where the diameter is 3 feet and the gasoline weighs 42 pounds per cubic foot.

Answers

1. Area of Circular End: [tex]A = π x (1.5)^2 = 7.07 sq ft.[/tex]

2. Weight of Gasoline: W = 133.5π lbs.

3. Fluid Force: F = 2043.45π lbs on half-full tank end.

let's break down the problem step by step.

1. Identify Relevant Parameters:

  - Diameter of the tank (D) = 3 feet

  - Radius of the tank (r) = D/2 = 1.5 feet

  - Density of gasoline (ρ) = 42 pounds per cubic foot

  - Depth of the gasoline (h) when the tank is half full = 1.5 feet

2. Calculate the Area of the Circular End:

  - The area (A) of a circle is given by the formula:[tex]A = π x r^2[/tex]

  - Substituting the value of radius (r = 1.5 feet), we get:

  - [tex]A = πx (1.5)^2 = π x 2.25 = 7.07[/tex] square feet

3. Determine the Weight of the Gasoline:

  - The weight (W) of the gasoline can be calculated using the formula: W = ρx V

  - Where V is the volume of the gasoline.

  - Since the tank is half full, the volume of the gasoline is half the volume of the cylinder.

  - The volume (V) of the cylinder is given by the formula: [tex]V = πxr^2 x h[/tex]

  - Substituting the values of radius (r = 1.5 feet) and height (h = 1.5 feet), we get:

[tex]- V = π x (1.5)^2 x 1.5 = π x 2.25x 1.5 = 3.375π cubic feet[/tex]

  - So, the weight of the gasoline (W) is: W = 42x3.375π = 133.5π pounds

4. Calculate the Fluid Force:

  - The fluid force (F) on a circular end of the tank can be calculated using the formula: F = ρ x g x V x h

  - Where g is the acceleration due to gravity.

  - Since we're working in pounds and feet, we'll use the value of acceleration due to gravity, [tex]g ≈ 32.2 ft/s^2.[/tex]

  - Substituting the values, we get:

  - F = 42x 32.2x3.375π x 1.5 = 2043.45π pounds

5.Final Calculation:

  - Therefore, the fluid force on a circular end of the tank when the tank is half full is approximately 2043.45π pounds.

So, the complete calculation and explanation show that the fluid force on a circular end of the tank when it is half full is about 2043.45π pounds.

A large container, 120 cm deep is filled with water. If a small hole is punched in its side 77.0 cm from the top, at what initial speed will the water flow from the hole? Please use a equation and explain every step

Answers

Answer:

The water will flow at a speed of 3,884 m/s

Explanation:

Torricelli's equation

v = [tex]\sqrt{2gh}[/tex]

*v = liquid velocity at the exit of the hole

g = gravity acceleration

h = distance from the surface of the liquid to the center of the hole.

v = [tex]\sqrt{2*9,8m/s^2*0,77m}[/tex] = 3,884 m/s

We have that for the Question"A large container, 120 cm deep is filled with water. If a small hole is punched in its side 77.0 cm from the top, at what initial speed will the water flow from the hole" it can be said that initial speed  the water flow from the hole is

v=3.88m/s

From the question we are told

A large container, 120 cm deep is filled with water. If a small hole is punched in its side 77.0 cm from the top, at what initial speed will the water flow from the hole? Please use a equation and explain every step

Generally the equation for the water flow speed   is mathematically given as

[tex]v=\sqrt(2gh)\\\\v=\sqrt{2*9.8*0.77}[/tex]

v=3.88m/s

Therefore

initial speed  the water flow from the hole is

v=3.88m/s

For more information on this visit

https://brainly.com/question/23379286

The air pressure inside the tube of a car tire is 430 kPa at a temperature of 13.0 °C. What is the pressure of the air, if the temperature of the tire increases to 59.5 °C? Assume that the volume of the tube doesn't change.

Answers

Answer:

The pressure of the air is 499.91 kPa.

Explanation:

Given that,

Initial pressure = 430 kPa

Temperature = 13.0+273=286 K

Final temperature = 59.5+273=332.5 K

We need to calculate the final pressure

Using relation of pressure and temperature

At constant volume,

[tex]\dfrac{P'}{P}=\dfrac{T'}{T}[/tex]

[tex]\dfrac{P'}{430}=\dfrac{332.5}{286}[/tex]

[tex]P'=\dfrac{332.5}{286}\times430[/tex]

[tex]P'=499.91\ kPa[/tex]

Hence,The pressure of the air is 499.91 kPa.

A circular coil of 216 turns has a radius of 2.32 cm. (a) Calculate the current that results in a magnetic dipole moment of magnitude 2.89 A·m2. (b) Find the maximum magnitude of the torque that the coil, carrying this current, can experience in a uniform 46.0 mT magnetic field.

Answers

Answer:

(a) 7.92 A

(b) 0.133 Nm

Explanation:

N = 216

r = 2.32 cm = 0.0232 m

(a) M = 2.89 Am^2

M = N i A

Where, A be the area of the coil and i be the current in the coil

2.89 = 216 x i x 3.14 x 0.0232 x 0.0232

i = 7.92 A

(b) B = 46 mT = 0.046 T

Torque, τ = M B Sin 90

τ = 2.89 x 0.046 x 1 = 0.133 Nm

The current required to produce a magnetic dipole moment of 2.89 A·m² in a coil of 216 turns and radius 2.32 cm is approximately 7.92 A. The maximum torque this coil can experience in a 46.0 mT magnetic field is about 0.133 N·m.

To solve these problems, we'll use the relationship between the magnetic dipole moment, current, and torque in a magnetic field.

Part (a): Calculate the Current

The magnetic dipole moment (μ) of a coil is given by:

μ = NIA

where N is the number of turns, I is the current, and A is the area of the coil.

Given:

N = 216 turns

μ = 2.89 A·m²

Radius (r) = 2.32 cm = 0.0232 m

The area (A) of the coil is:

A = πr² = π(0.0232 m)² ≈ 1.69 × 10⁻³ m²

To find the current (I), rearrange the formula:

I = μ / (N × A)

Substitute the values:

I = 2.89 A·m² / (216 × 1.69 × 10⁻³ m²) ≈ 7.92 A

Part (b): Calculate the Maximum Torque

The maximum torque (τ) experienced by the coil in a magnetic field (B) is given by:

τ = μB

Given the magnetic field (B) is 46.0 mT = 0.046 T, substitute the values:

τ = 2.89 A·m² × 0.046 T ≈ 0.133 N·m

Thus, the current required to achieve the given magnetic dipole moment is approximately 7.92 A, and the maximum torque experienced by the coil in a 46.0 mT magnetic field is approximately 0.133 N·m.

The initial velocity of a 4.0-kg box is 11 m/s, due west. After the box slides 4.0 m horizontally, its speed is 1.5 m/s. Determine the magnitude and the direction of the non-conservative force acting on the box as it slides.

Answers

Answer:

F = - 59.375 N

Explanation:

GIVEN DATA:

Initial velocity = 11 m/s

final velocity = 1.5 m/s

let force be F

work done =  mass* F = 4*F

we know that

Change in kinetic energy = work done

kinetic energy = [tex]= \frac{1}{2}*m*(v_{2}^{2}-v_{1}^{2})[/tex]

kinetic energy = [tex]= \frac{1}{2}*4*(1.5^{2}-11^{2})[/tex] = -237.5 kg m/s2

-237.5 = 4*F

F = - 59.375 N

Final answer:

The magnitude of the non-conservative force acting on the box is 236 J and it acts horizontally.

Explanation:

The magnitude and direction of the non-conservative force acting on the box can be determined using the work-energy theorem. The work done by the non-conservative force is equal to the change in kinetic energy of the box. From the given information, the initial kinetic energy of the box is 0.5 * 4.0 kg * (11 m/s)^2 = 242 J and the final kinetic energy is 0.5 * 4.0 kg * (1.5 m/s)^2 = 6 J. Therefore, the work done by the non-conservative force is 242 J - 6 J = 236 J. Since the box moves horizontally, the non-conservative force acts horizontally as well.

Learn more about Non-conservative force here:

https://brainly.com/question/199265

#SPJ3

A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic field strength is 2.0 mT inside the solenoid near its center when a certain current flows through the coils. If the coils of the solenoid are now pulled apart slightly, stretching it to 21 cm without appreciably changing the size of the coils, what does the magnetic field become near the center of the solenoid when the same current flows through the coils

Answers

Answer:

[tex]B_2 = 1.71 mT[/tex]

Explanation:

As we know that the magnetic field near the center of solenoid is given as

[tex]B = \frac{\mu_0 N i}{L}[/tex]

now we know that initially the length of the solenoid is L = 18 cm and N number of turns are wounded on it

So the magnetic field at the center of the solenoid is 2 mT

now we pulled the coils apart and the length of solenoid is increased as L = 21 cm

so we have

[tex]\frac{B_1}{B_2} = \frac{L_2}{L_1}[/tex]

now plug in all values in it

[tex]\frac{2.0 mT}{B_2} = \frac{21}{18}[/tex]

[tex]B_2 = 1.71 mT[/tex]

Final answer:

The magnetic field strength inside a solenoid is dependent on the density of the coils per unit length. If a solenoid is extended, spreading the same number of coils over a greater distance, the magnetic field strength at its center decreases proportionally.

Explanation:

The magnetic field strength (B) inside a solenoid is proportional to the number of coils per unit length (n) and the current flowing through the coils (I). We can express this mathematically as B = μonI. The key concept here is that the field strength, B, depends on the density of the coils (n); in other words, how tightly or loosely coiled the wires are.

When you initially have a solenoid 18 cm long, and you extend it to 21 cm without changing the current or the size of the coils, the coil density per unit length decreases. Therefore, the magnetic field strength should decrease proportionally. In effect, you are spreading the same number of coils (field lines) over a greater distance, which dilutes the strength of the magnetic field at the solenoid's center. The exact strength would require knowing more specifics about the solenoid, but this discussion gives the general principle.

Learn more about Magnetic field in a solenoid here:

https://brainly.com/question/11462606

#SPJ3

A baseball leaves a bat with a horizontal velocity of 20.0 m/s. When it has left the bat for a time of 0.250 s (Assume air resistance is negligible). How far will it have moved horizontally?

Answers

Answer:

The distance is 5 m.

Explanation:

Given that,

Horizontal velocity = 20.0 m/s

Time t = 0.250 s

We need to calculate the horizontal distance

The distance traveled by the baseball with horizontal velocity in time t is given by

Using formula for horizontal distance

[tex]d = v\times t[/tex]

[tex]d = 20.0\times0.250[/tex]

[tex]d=5\ m[/tex]

Hence, The distance is 5 m.

A fan blade is rotating with a constant angular acceleration of +14.1 rad/s2. At what point on the blade, as measured from the axis of rotation, does the magnitude of the tangential acceleration equal that of the acceleration due to gravity?

Answers

Answer:

0.695 m

Explanation:

α = angular acceleration of the fan blade = 14.1 rad/s²

a = tangential acceleration at the point concerned = acceleration due to gravity = 9.8 m/s²

r = distance of the point from axis of rotation at which tangential acceleration is same as acceleration due to gravity

We know the relation between

a = r α

Inserting the values

9.8 = 14.1 r

r = 0.695 m

In the absence of friction, how much work would a child do while pulling a 12 kg wagon a distance of 3.9 m with a 22 N force? O 47J O 60J O 86 J O991

Answers

Answer:

W = 86 J

Explanation:

Work done by friction force is given by the formula

[tex]W = F_f . d[/tex]

here since the wagon is pulled by horizontal force such that speed remains constant

so here we will have

[tex]F_f = F_{ext} = 22 N[/tex]

Now we will have

[tex]W = 22\times 3.9 [/tex]

[tex]W = 86 J[/tex]

so work done against friction force will be equal to 86 J

The correct answer is option c 86.

Calculating Work Done by the Child:

In this  problem, we need to determine the amount of work done by a child who is pulling a 12 kg wagon over a distance of 3.9 meters with a force of 22 Newtons, assuming there is no friction.

The formula to calculate work (W) is:

W = F * d

where W is work, F is the force applied, and d is the distance covered.

Let's plug in the values provided:

F = 22 N
d = 3.9 m

Thus, the work done is:

W = 22 N * 3.9 m

W = 85.8 J

Therefore, the correct answer is approximately 86 J.

A projectile is fired at an upward angle of 35.6° from the top of a 208-m-high cliff with a speed of 170-m/s. What will be its speed (in m/s) when it strikes the ground below?

Answers

Answer:

Final velocity is 181.61 m/s at angle 40.44° below horizontal.

Explanation:

Initial horizontal velocity = 170 cos 35.6 = 138.23 m/s

Final horizontal velocity = 138.23 m/s

Considering vertical motion of projectile:

Initial vertical velocity, u = 170 sin 35.6 = 98.96 m/s

Acceleration, a = -9.81 m/s²

Displacement, s = -208 m

We have v² = u² + 2as

Substituting

             v² = 98.96² + 2 x -9.81 x -208

             v = 117.79 m/s

Final velocity,

            [tex]v=\sqrt{138.23^2+117.79^2}=181.61m/s[/tex]

            [tex]\theta =tan^{-1}\left ( \frac{117.79}{138.23}\right )=40.44^0[/tex]

Final velocity is 181.61 m/s at angle 40.44° below horizontal.

The volume of a cantaloupe is approximated by Upper V equals four thirds pi font size decreased by 5 r cubedV= 4 3π r3. The radius is growing at the rate of 0.5 cm divided by week0.5 cm/week​, at a time when the radius is 5.85.8 cm. How fast is the volume changing at that​ moment?

Answers

Answer:

68.445 cm³/s

Explanation:

Given:

Volume, V = [tex]\frac{4}{3}\pi r^3[/tex]

radius = 5.85 cm

Growth rate of radius = 0.5 cm/week

now

differentiating the volume with respect to time 't', we get:

[tex]\frac{dV}{dt}=\frac{d(\frac{4}{3}\pi r^3)}{dt}[/tex]

or

[tex]\frac{dV}{dt}=(\frac{4}{3}\pi )3r^2\frac{dr}{dt}[/tex]

now, substituting the value of r (i.e at r = 5.85cm) in the above equation, we get:

[tex]\frac{dV}{dt}=4\pi 5.85^2\times 0.5[/tex]

or

[tex]\frac{dV}{dt}=68.445cm^3/s[/tex]

hence, the rate of change of volume at r = 5.85cm is 68.445 cm³/s

A rectangular key was used in a pulley connected to a line shaft with a power of 7.46 kW at a speed of 1200 rpm. If the shearing stress of the shaft and key are 30 MPa and 240 MPa, respectively what is the length of the rectangular key if the width is one fourth that of the shaft diameter?

Answers

Answer:

The length of the rectangular key is 0.4244 m

Explanation:

Given that,

Power = 7.46 kW

Speed = 1200 rpm

Shearing stress of shaft = 30 MPa

Mini shearing stress of key = 240 MPa

We need to calculate the torque

Using formula of power

[tex]P=\dfrac{2\pi NT}{60}[/tex]

Where, P = power

N = number of turns

Put the value into the formula

[tex]7.46\times10^{3}=\dfrac{2\pi\times1200\times T}{60}[/tex]

[tex]T=\dfrac{7.46\times10^{3}\times60}{2\pi\times1200}[/tex]

[tex]T=59.36\ N-m[/tex]

We need to calculate the distance

[tex]\tau_{max}=\dfrac{16T}{\pi d^3}[/tex]

[tex]d^3=\dfrac{16\times59.36}{\pi\times30}[/tex]

[tex]d=(10.077)^{\dfrac{1}{3}}[/tex]

[tex]d=2.159\ m[/tex]

Width of key is one fourth of the shaft diameter

[tex]W=\dfrac{1}{4}\times2.159[/tex]

[tex]W=0.53975\ m[/tex]

The shear stress induced in key

[tex]\tau_{max}=\dfrac{F}{Wl}[/tex]

[tex]\tau_{max}=\dfrac{\dfrac{T}{\dfrac{d}{2}}}{wl}[/tex]

[tex]\tau_{max}=\dfrac{2T}{dWl}[/tex]

[tex]240=\dfrac{2\times59.36}{2.159\times0.53975\times l}[/tex]

[tex]l=\dfrac{2\times59.36}{2.159\times0.53975\times240}[/tex]

[tex]l=0.4244\ m[/tex]

Hence, The length of the rectangular key is 0.4244 m

An iron container has a mass of 200 g and contains 50 g of water @ 40°C. 50 g of ice @ -6°C are poured. Calculate the equilibrium temperature and describe the final composition.

Answers

Answer:

final equilibrium temperature of the system is ZERO degree Celcius

Explanation:

Hear heat given by water + iron = heat absorbed by ice

so here first we will calculate the heat given by water + iron

[tex]Q_1 = m_1s_2\Delta T_1 + m_2 s_2 \Delta T_1[/tex]

[tex]Q_1 = (200)(0.450)(40 - T) + (50)(4.186)(40 - T)[/tex]

now the heat absorbed by ice so that it will melt and come to the final temperature

[tex]Q_2 = m s \Delta T + mL + m s_{water}\Delta T'[/tex]

[tex]Q_2 = 50(2.09)(0 + 6) + 50(335) + 50(4.186)(T - 0)[/tex]

now we will have

[tex]17377 + 209.3T = 3600 - 90T + 8372 - 209.3T[/tex]

[tex]17377 + 209.3T + 90T + 209.3T = 11972[/tex]

[tex]T = -10.6[/tex]

since it is coming out negative which is not possible so here the ice will not completely melt

so final equilibrium temperature of the system is ZERO degree Celcius

Other Questions
If 5 cans of baked beans cost $2.85, howmany cans of baked beans can be boughtfor $19.38? Water is flowing in a pipe with a varying cross-sectional area, and at all points the water completely fills the pipe. At point 1 the cross-sectional area of the pipe is 0.070m2, and the magnitude of the fluid velocity is 3.50m/s.part AWhat is the fluid speed at point in the pipe where the cross-sectional area is 0.105m2?part bWhat is the fluid speed at point in the pipe where the cross-sectional area is 0.047m2?part cCalculate the volume of water discharged from the open end of the pipe in 1.00hour. From the following balanced equation,4NH3(g)+5O2(g)4NO(g)+6H2O(g)how many grams of H2O can be formed from 6.12g NH3? Mrs. Vanwhy made a two-way table to show which students made honor roll and which students study a foreign language.Which is the best two-way table for Mrs. Vanwhy to organize her data? Find the indicated area under the curve of the standard normal distribution; then convert it to a percentage and fill in the blank. About ______% of the area is between z equals minus 2 and z equals 2 (or within 2 standard deviations of the mean). The cost in dollars to manufacture x pairs of shoes is given by 12,000 + 19x. This month, the manufacturer produced 1000 more pairs of shoes than last month. The average cost per pair dropped by $0.43.a) Write an expression for the average cost per pair of shoes. Use this expression to write an equation to represent there situation.b) Solve your equationc) Are there any mathematical restrictions on the domain? Explain.d) Determine reasonable domain in the context of the problem. Use your answers to parts I and II to answer the question. Convert 4x/3 to degrees.A. 60B. 120C. 240D. 480 why should people move to the west A chemical company makes pure silver by reacting silver nitrate with zinc. The company needs to make 800 grams of pure silver for a client. They have 300 grams of zinc and 600 grams of silver nitrate. Will they be able to make enough silver to fill the order? A new board game comes with a deck of 20 cards: 5 red, 3 blue, 2 orange, and 10 green.After the deck is shuffled, the player is to choose the top card and note its color, replacethe card, shuffle the deck again, and then choose the top card again and note its color.What is the probability that both cards selected are blue? In SI units, the electric field in an electromagnetic wave is described by Ey = 112 sin(1.40 107x t). (a) Find the amplitude of the corresponding magnetic field oscillations. T (b) Find the wavelength . m (c) Find the frequency f. Hz Which sentence contains an error in parallel structure?A. The directions for the game were terribly complicated and awkwardly phrased. B.The company manager is intelligent, highly creative, and shares her ideas openly. C.The featured dishes at the new restaurant were expensive, complicated, and spicy.D. The team captain is a strong leader, enthusiastic motivator, and good example. what is y=2x-5 and x+3y=27 graphed rounding 1137 to the nearest hundred A sample of an unknown compound is vaporized at 180.C. The gas produced has a volume of 2010.mL at a pressure of 1.00atm, and it weighs 2.73g. Assuming the gas behaves as an ideal gas under these conditions, calculate the molar mass of the compound. Round your answer to 3 significant digits. Louise mowed a neighbor's yard to earn \$25$25dollar sign, 25. She mowed a few more yards and earned an additional \$75$75dollar sign, 75. She continued to mow all of the yards each week for a total of 555 weeks, earning money at the same rate. At the end of the 555 weeks, she spent \$250$250dollar sign, 250.Write a numerical expression with parentheses for the amount of money Louise has left. A 81 cm long brass rod has a diameter of 3 mm. The temperature of one end is 50 degrees higher than the other end. How much heat is conducted in 1.8 mins? why did china want to participate in world war 1 x^5y^3/x^2-x-6 * x^2 -9/x^2y^4 The potential difference between the accelerating plates of a TV set is about 25 kV. If the distance between the plates is 1.0 cm, find the magnitude of the uniform electric field in the region between the plates.