Machine A produces bolts at a uniform rate of 120 every 40 seconds, and Machine B produces bolts at a uniform rate of 100 every 20 seconds. If the two machines run simultaneously, how many seconds will it take for them to produce a total of 200 bolts?

Answers

Answer 1

Answer:

25 seconds

Step-by-step explanation:

Hi there!

In order to answer this question, first we need to know how many bolts per second are produced by each machine, this can be known by dividing the number of bolts by the time it takes.

For machine A:

[tex]A = \frac{120 bolts}{40 s}= 3 \frac{bolts}{s}[/tex]

For machine B:

[tex]B = \frac{100 bolts}{20 s}= 5 \frac{bolts}{s}[/tex]

So, if the two machines run simultaneously, we will have a rate of prodcution of bolts equal to the sum of both:

[tex]A+B=(3+5)\frac{bolts}{s}=8\frac{bolts}{s}[/tex]

Now, we need to know how much time it will take to producee 200 bolts, to find this out we need to divide the amount of bolts by the production rate:

[tex]t = \frac{bolts}{ProductionRate}= \frac{200 bolts}{8 \frac{bolts}{s} }[/tex]

The bolts unit cancell each other and we are left with seconds

[tex]t = \frac{200}{8} s = 25 s[/tex]

So it will take 25 seconds to produce 200 bolts with machine A and B running simultaneously.

Greetings!

Answer 2

Answer:

25 seconds.

Step-by-step explanation:

We have been given that Machine A produces bolts at a uniform rate of 120 every 40 seconds.

Bolts made by Machine A in one second would be [tex]\frac{120}{40}=3[/tex] bolts.

Machine B produces bolts at a uniform rate of 100 every 20 seconds.

Bolts made by Machine B in one second would be [tex]\frac{100}{20}=5[/tex] bolts.

The speed of making bolts in one second of both machines running simultaneously would be [tex]3+5=8[/tex] bolts per second.

[tex]\text{Time taken by both Machines to make 200 bolts}=\frac{200\text{ bolts}}{8\frac{\text{bolts}}{\text{Sec}}}[/tex]

[tex]\text{Time taken by both Machines to make 200 bolts}=\frac{200\text{ bolts}}{8}*\frac{\text{Sec}}{\text{bolts}}[/tex]

[tex]\text{Time taken by both Machines to make 200 bolts}=25\text{ Sec}[/tex]

Therefore, the both machines will take 25 seconds to make 200 bolts.


Related Questions

In the lab, robyn has two solutions that contain alcohol and is mixing them with each other. Soultion A is 6% alcohol and Solution Bis 20% alcohol. She uses 400 milliliters of Solution A. How many milliters of Solution B does she use, if the resulting mixture is a 12% alcohol solution?

Answers

Answer:

She needs 300 mililiters of Solution B so that the resulting mixture is a 12% alcohol

Step-by-step explanation:

In this problem you have to take into account that when you are talking about solutions you can't just add the porcentaje because each percentaje represent how many mililiters of the total of the solution are, in this case of alcohol.

So for solving this problem we are first going to establish the variables, because it si solved using a system of equations. In that way we are going to say that:

VT: represents the total volume of the resulting mixture of solution A and solution B at 12% of alcohol

VA: represent the mililiters of solution A, in the problem they say that this value it equals to 400 ml

VB: Represent the mililiters of solution B, that is what we need to find.

From now on, we are just going to use this variables but always keep in mind what does they represent.

VaT: Represent the total volume of alcohol in the resulting mixture solution at 12%

VaA: Represent the volume of alcohol in solution A

VaB: Represent the volume of alcohol in solution B

What comes next? we need to describe the equations from the information we have so that we create a system that can be solve after.

What can we first say about the total volume (VT)? That it is the result of the adition of solution A and B so we can state the following equation:

VT = VA + VB

As we know that VA equals to 400ml we can replace to get:

1) VT = 400ml + VB

But what happens with the other information we have? We now need to take into account the concentration of each solution, so as we can´t add the percentages of alcohol but we can add the volumes of alcohol in each solution we can say that:

2) VaT = VaA + VaB

Now we are going to start to reduce the number of variables changing does that we don't know for those that we do to solve the problem, starting first with the volumes of alcohol.

A porcentaje represents a part of the total volume so to know how much alcohol does each of the solutions has we must do rules of three so that we can leave all the variables in terms of VT, VA and VB:

- VT  → 100%

VaT → 12%

VaT = [tex]\frac{12.VT}{100}[/tex] = 0,12.VT

- VA  → 100% In this case we know that VA = 400

VaA → 6%

VaA = [tex]\frac{6x400}{100}[/tex]

VaA = [tex]\frac{6x4}{1}[/tex]

VaA=24ml

VaB  → 100%

VaB → 20%

VaB = [tex]\frac{20.VB}{100}[/tex] = 0,20.VB

Now we are going to replace this information in the equation number two to get the following expresion:

3) 0,12.VT = 24ml + 0.20VB

At this point we have a system of two equations (remember equation 1) with two variables VT and VB so we are going to do some algebra to clear the variables.

- Replace VT of equation 1 in equation 3

Remeber that VT = 400ml + VB so now we are going to put this information in equation 3) 0,12.VT = 24ml + 0.20VB to get:

4) 0,12 (400ml + VB) = 24ml + 0.20VB

- Use the distributive operation to solve the parentesis

0,12x400ml + 0.12.VB = 24ml + 0.20VB

5) 48ml + 0.12VB = 24ml + 0.20VB

- Organize the information in one side the ones with variables and in the other side just numbers:

0.12VB - 0.20VB = 24ml - 48ml

-0.08 VB = -24ml (do the operations)

As it is a minus in both sides we can divide it and cancel the sign to have:

0,08VB = 24 ml (to clear VB, we must divide in both sides by 0,08)

[tex]\frac{0,08.VB}{0,08} = \frac{24ml}{0.08}[/tex] after doing the division we get:

VB = 300ml

with this you already get the answer of how many mililiters of solution B does she use to get a resulting mixture of 12%.

To verficate we must do the following process:

VT = 300ml + 400ml = 700ml

The total volume of the solution is 700 ml of which 12% equals to:

VaT = 0,12. VT = 0,12(700ml) = 84 ml

VaA = 24ml (Volume of alcohol in solution A, we already calculated)

VaB = 0,20 VB = 0,20(300ml) = 60ml (Volume of alcohol in solution B)

VaT = VaA + VaB  (Prove the equation with the values we obtain)

84ml = 24ml + 60ml

84 ml = 84ml

As the equation is the same we have verificated our result.

Robyn needs to use 300 mL of Solution B to achieve a 12% alcohol solution when mixed with 400 mL of Solution A. This was calculated by setting up an equation based on the concentrations and solving for the quantity of Solution B.

To solve this problem, we need to find out how much Solution B (20% alcohol) Robyn needs to add to 400 mL of Solution A (6% alcohol) to get a 12% alcohol solution.

Step-by-Step Solution

First, let's set up the equation assuming she uses x milliliters of Solution B:

Since Solution A is 6% alcohol, in 400 mL of Solution A, there is:

0.06 * 400 = 24 mL of alcohol

Next, for Solution B, which is 20% alcohol, the amount of alcohol in x mL of Solution B is:

0.20 * x = 0.2x mL of alcohol

We need the resulting mixture to have a 12% concentration. The total volume of the mixture will be:

400 + x mL

The total amount of alcohol in this mixture will be 12% of the total volume:

0.12 * (400 + x) = 24 + 0.2x

Simplify and solve for x:

0.12 * 400 + 0.12 * x = 24 + 0.2x48 + 0.12x = 24 + 0.2x24 = 0.08xx = 300

So, Robyn needs to use 300 mL of Solution B.

x-3y=6
x=3y+4

solve for x and y

Answers

Answer:

1) x = 6, y = -2 + 1/3x

2)

Step-by-step explanation:

1) x-3y=6

-3y=6-x, 6-x/-3y

y = -2 + 1/3x

x - 3(-2+1/3x) = 6

x - 6 + x = 6

2x =12

x = 6

2) x=3y+4

-3y = -x+4

y = -x/-3 +4/-3

y = 1/3x + -4/3

x = 3(1/3x + -4/3)

I am unsure about x on number two...

(a⁷ - a⁴) ÷ (a³ + a²)

Answers

Answer:

a^4 - a^3 + a^2 - 2a - (2)/(a + 1)

The simplified form of (a⁷ - a⁴) ÷ (a³ + a²) is a³ - a⁴.

The given expression is: (a⁷ - a⁴) ÷ (a³ + a²)

To simplify it:

Factor out common terms: a⁴(a³ - 1) / a²(a + 1)

Cancel out common factors: a⁴(a³ - 1) / a²(a + 1) = a³ - a⁴

Therefore, the simplified form of (a⁷ - a⁴) ÷ (a³ + a²) is a³ - a⁴.

Use the graphs of f and g to solve Exercises 87, 88, and 89.

87. Find the domain of f + g.
88. Find the domain of [tex]\frac{f}{g}[/tex].
89. Graph f + g.

(You can just explain how to graph it for #89.)

Answers

Answers and explanations:

87. The domain of added functions includes the restrictions of both. So the range of the added function in this question is [-4, 3]

88. When finding the domain of a divided function we do the same as adding, but with an extra rule: g can't equal zero. So for this question the domain is (-4, 3)

89. To graph f + g you add the y-values for each x-value. I added a picture to help explain this one!

Answer:

87. [-4, 3]

88. (-4, 3)

89. See Attachment

General Formulas and Concepts:

Algebra I

Reading a Cartesian PlaneCoordinates (x, y)FunctionsFunction NotationDomains - the set of x-values that can be inputted into a function f(x)[Interval Notation] - Brackets are inclusive, (Parenthesis) are exclusive

Step-by-step explanation:

*Notes:

When adding functions, the domain of the new function is defined as the intersections of the domains of f and gWhen dividing functions, the domain of the new function is defined as the intersections of the domains of f and g except for the points where g(x) = 0 (this is because we cannot divide by 0)

Step 1: Define

Identify the domains of each function.

Domain of f(x): [-4, 3]

Domain of g(x): [-5, 5]

Step 2: Find 87.

Determine the x-values for each function that overlap/intersect.

f(x) and g(x) have intersect from -4 to 3.

Domain f + g: [-4, 3]

Step 3: Find 88.

Determine the x-values for which g(x) = 0.

The function g(x) equals 0 at x = -4 and x = 3. Therefore, these x-values are excluded in the domain.

Domain of f/g: (-4, 3)

Step 4: Find 89.

To draw a graph of the f + g, we must combine the y-values for each x-value domain in a t-chart and plot by hand.

x   |   f(x)          x   |  g(x)          x   |  f + g

-4     5             -4     0             -4      5

-3     4             -3      1             -3      5

-2     3             -2     2             -2      5

-1      3             -1      2             -1       5

0      2             0       1             0       3

1        1              1       1              1       2

2      -1             2       1              2      0

3      -3             3      0             3      -3

A researcher would like to evaluate the claim that large doses of Vitamin C can help prevent the common cold. One group of participants is given 500 mg of Vitamin C (500mg per day) and a second group is given a placebo (sugar pill). The researcher records the number of colds each individual experiences during the 3-month winter season. a. Identify the dependent variable for this study.
b. Is the dependent variable discreet or continuous?
c. What scale of measurement (nominal, ordinal, interval, or ratio) is used to measure the dependent variable.

Answers

Answer:

a. The dependent variable for this study is the "number of colds each individual experiences during the 3-month winter season" because it depends on the doses of vitamins and placebo.

b. The dependent variable is discrete because the number of colds is like 1,2,3,... so on.

c. The scale of measurement of the dependent variable is Ratio because the number of cold experiences can be 0.

Complete column 3 in the table order the masses from greater to least with a rank of 1 for the greater mass.

Answers

Answer:

The answer to your question is:

Step-by-step explanation:

1.-  1.09                                              In the table the order will be

2.- 0.99                                            1.- 6

3.- 0.919                                           2.- 10

4.- 0.66                                            3.- 7

5.- 0.647                                          4.- 11

6.- 0.394                                          5.- 5

7.-  0.298                                         6.- 4

8.- 0.256                                         7.- 9

9.- 0.23                                           8.- 8

10.- 0.136                                        9.- 1

11.- 0.112                                          10.- 2          11.- 3

How would I find r?

Answers

Answer:

  r = 29

Step-by-step explanation:

We assume your diagram is showing ...

CD = CB = rAB = x = 29

To find r, use the relationship between the side lengths of the triangle.

__

In a 30°-60°-90° triangle, the ratio of shortest to longest sides is 1 : 2. Therefore, we have ...

 CD/CA = r/(r+29) = 1/2

  2r = r +29 . . . . . . multiply by 2(r+29)

  r = 29 . . . . . . . . . .subtract r

_____

The knowledge of 30°-60°-90° triangle relationships can come from any of several sources. One such source is consideration of what happens when you cut an equilateral triangle along its altitude. (The short side is half the long side of the resulting 30-60-90 triangle.)

Another source is the sine ratio of the 30° angle (trigonometry). Sin(30°) = CD/CA = 1/2.

If 3x-y=123x−y=123, x, minus, y, equals, 12, what is the value of \dfrac{8^x}{2^y} 2 y 8 x ​ start fraction, 8, start superscript, x, end superscript, divided by, 2, start superscript, y, end superscript, end fraction ?

Answers

Answer:

[tex]2^{12}=4,096[/tex]

Step-by-step explanation:

You know that [tex]3x-y=12[/tex] and have to find

[tex]\dfrac{8^x}{2^y}[/tex]

Use the main properties of exponents:

1. [tex](a^m)^n=a^{m\cdot n}[/tex]

2. [tex]\dfrac{a^m}{a^n}=a^{m-n}[/tex]

Note that

[tex]8=2^3,[/tex]

then

[tex]7^x=(2^3)^x=2^{3\cdot x}=2^{3x}[/tex]

Now

[tex]\dfrac{8^x}{2^y}=\dfrac{2^{3x}}{2^y}=2^{3x-y}[/tex]

Since [tex]3x-y=12,[/tex] then [tex]2^{3x-y}=2^{12}=4,096[/tex]

Final answer:

The value of the expression [tex]\(\frac{8^x}{2^y}\)[/tex] given the equation 3x - y = 12 is 4096, since 8 can be expressed as 2^3 and the properties of exponents allow us to simplify the expression to 2^12.

Explanation:

The question involves determining the value of a mathematical expression given a specific equation.

Given the equation 3x - y = 12, we want to find the value of [tex]\(\frac{8^x}{2^y}\)[/tex].

This can be done by recognizing that 8 is a power of 2, specifically 8 = 2^3.

Thus, [tex]\(8^x = (2^3)^x = 2^{3x}\)[/tex]. Substituting back into the original expression, we get [tex]\(\frac{2^{3x}}{2^y}\)[/tex].

Using the properties of exponents, when dividing terms with the same base, we subtract the exponents: [tex]\(2^{3x - y}\)[/tex].

Since we know 3x - y = 12, we substitute 12 in place of 3x - y, giving us 2^12.

Therefore, the answer is 2^{12}, or 4096.

In an​ editorial, the Poughkeepsie Journal printed this​ statement: "The median price minus the price exactly in between the highest and lowest minus​..."Does this statement correctly describe the​ median? Why or why​ not?Choose the correct answer below. A.Yes. It correctly describes the median. B.No. It describes the​ midrange, not the median. C.No. It describes the​ mean, not the median. D.No. It describes the​ mode, not the median.

Answers

Answer:

B.No. It describes the​ midrange, not the median.

Step-by-step explanation:

Further,

The range is the difference between the least and largest value of data. It measures skewness using all data points.

Mean is calculated as the ratio of the sum of all the observations to the total number of observations.

Median is the middle value of the data after arranging them in ascending order.

How would you find the volume of a tower created from 1,000 cans that were each 12oz in volume?

Answers

Answer:

  Multiply the number of cans by the volume of each: 12,000 oz.

Step-by-step explanation:

You find the total volume of more than one can by adding the volumes of the cans involved.

For 2 cans, the volume would be ...

  12 oz + 12 oz = 24 oz

__

When you consider adding numbers more than a couple of times, you start looking for ways to simplify the effort. Multiplication was invented for that purpose. Here, multiplying the volume of 1 can by 1000 is the same as adding the volumes of 1000 cans.

For 1000 cans with volume of 12 oz each, the volume of the total is ...

  1000 × 12 oz = 12,000 oz.

Krystal and 4 friends were going to the movies. Each ticket cost $12. They bought 2 buckets of popcorn at $4.50 each and then each person bought their own soda at $4.75 each. How much money did they spend in total?

Answers

Answer:

Step-by-step explanation:

First you would multiply 12 by four since each person has to have a ticket ($48) next you would multiply 4.50 by two since they bought two buckets of popcorn ($9) then you would multiply 4.75 by four since they each bought their own drink ($15) then you would all three of those totals together to get the final cost of everything ($72)

Hoped that answered your question!

Answer:

$92.75

Step-by-step explanation:

Krystal and 4 friends were going to the movies.

Total person = 5

The cost of each ticket = $12.00

They bought 2 buckets of popcorn at $4.50 each

They all bought soda at $4.75 each.

Total money they spent = (12 × 5) + (4.50 × 2) + (4.75 × 5)

                                        = 60 + 9.00 + 23.75

                                        = $92.75

They spent $92.75 in total.

On a coordinate plane, a curved line with minimum values of (negative 2, 0) and (1.05, negative 41), and a maximum value of (negative 0.5, 5), crosses the x-axis at (negative 2, 0), (0, 0), and (1.5, 0), and crosses the y-axis at (0, 0). Which statement is true about the end behavior of the graphed function? As the x-values go to positive infinity, the function’s values go to positive infinity. As the x-values go to zero, the function’s values go to positive infinity. As the x-values go to negative infinity, the function’s values are equal to zero. As the x-values go to negative infinity, the function’s values go to negative infinity.

Answers

Answer:

As the x-values go to positive infinity, the function’s values go to positive infinity.

Step-by-step explanation:

With the information given you can plot a rough graph (see attachment)

As the x-values go to positive infinity, the function’s values go to positive infinity. -> True

As the x-values go to zero, the function’s values go to positive infinity. -> False, x = 0 is between a maximum and a minimum

As the x-values go to negative infinity, the function’s values are equal to zero. -> False x-values go to negative infinity, the function's values go to positive infinite

As the x-values go to negative infinity, the function’s values go to negative infinity. False x-values go to negative infinity, the function's values go to positive infinite

Answer: As the x-values go to positive infinity, the function’s values go to positive infinity.

Step-by-step explanation:

just did this

In the game of billiards called 14.1, players lose points if they receive penalties. Find the difference in the scores of the winner with 50 points and the opponent with –17 points.

Answers

Answer:

  67 points

Step-by-step explanation:

To find the difference between the winning and losing scores, subtract the losing score from the winning score:

  50 -(-17) = 50 +17 = 67

The difference is 67 points.

Suppose that, in some distant part of the universe, there is a star with four orbiting planets . One planet makes a trip around the star in 6 earth years , the second planet takes 9 earth years, the third takes 15 earth years and the fourth takes 18 earth years . Suppose that at some time the planets are lined up. How many years will it take for them to all line up

Answers

Answer: 90 Earth years.

Step-by-step explanation:

Analizing the information provided in the exercise, you need to find the Least Common Multiple (LCM) of the given numbers.

You can follow these steps:

1. You must descompose 6, 9, 15 and 18 into their prime factors:

[tex]6=2*3\\\\9=3*3=3^2\\\\15=3*5\\\\18=2*3*3=2*3^2[/tex]

2. Finally, you need to choose the commons and non commons with their greatest exponents and multiply them. Then you get:

[tex]L.C.M=2*3^2*5=2*9*5\\\\L.C.M=90[/tex]

Therefore, it will take 90 Earth years for them to all line up.

Please please help me out with this!!!!!!!

Answers

Answer:

when x= -7

h(-7) = (-7)^2 -5

= (-1)^2*(7)^2-5

= 1*49-5

= 49-5

=44

Therefore , h(-7)=5

Answer:

h(- 7) = 44

Step-by-step explanation:

To evaluate h(- 7) substitute x = - 7 into h(x), that is

h(- 7) = (- 7)² - 5 = 49 - 5 = 44

Malik’s recipe for 4 servings of a certain dish requires 3/2 cups of pasta. According to this recipe, what is the number of cups of pasta that Malik will use the next time he prepares this dish?(1) The next time he prepares this dish, Malik will make half as many servings as he did the last time he prepared the dish.(2) Malik used 6 cups of pasta the last time he prepared this dish.What's the best way to determine which statement is sufficient?

Answers

Answer:

1)3/4 cups of pasta

2)4

Step-by-step explanation:

1) as malik I use half the cups better divide the initial amount 3/4 by 2

C=[tex]\frac{3}{2} .\frac{1}{2} =3/4[/tex]

2)

As Malik use 6 cups, and each plate needs 3/2 cups, we divide 6 by 3/2

C=[tex]\frac{ \frac{6}{1} }{ \frac{3}{2} }=\frac{6.2}{3} =\frac{12}{3} =4[/tex]

A geyser Erupts every fourth day . Another geyser erupts every sixth day. Today both geysers erupted. In how many days will both geysers erupt on the same day again?

Answers

The next geyser erupts in 12 days
I believe this is the answer.

In 12 days both geysers erupt on the same day again

What is Least common multiple?

The smallest number that is a multiple of each of two or more numbers.

Given:

A geyser Erupts every fourth day.

Another geyser erupts every sixth day.

so, to find how many days will both geysers erupt on the same day again

we have to find the LCM of 4 and 6

So, 4 = 2*2

6= 2*3

LCM (4, 6) =2*2*3 = 12

Hence,  12 days  both geysers erupt on the same day again.

Learn more about Least common multiple here:

https://brainly.com/question/160358

#SPJ2

The half-life of radioactive cobalt is 5.27 years. Suppose that a nuclear accident has left the level of cobalt radiation in a certain region at 100 times the level acceptable for human habitation. How long will it be until the region is again habitable?

Answers

Answer:

  35 years

Step-by-step explanation:

The proportion p that remains after y years is ...

  p = (1/2)^(y/5.27)

In order for 1/100 to remain (the level decays from 100 times to 1 times), we have ...

  .01 = .5^(y/5.27)

  log(0.01) = y/5.27·log(0.5) . . . take logs

  y = 5.27·log(0.01)/log(0.5) ≈ 35.01 ≈ 35 . . . . years

Final answer:

Given that the radioactive isotope cobalt-60 has a half-life of 5.27 years, it will take around 36.89 years for it to decay to a level that is safe for human habitation, assuming the initial level is 100 times the safe limit.

Explanation:

The subject of this question is the half-life of radioactive substances, specifically cobalt-60. The half-life is the time it takes for half of the radioactive atoms to decay. Cobalt-60 has a half-life of 5.27 years. This implies that 50% of the cobalt-60 will remain after 5.27 years, 25% will remain after 10.54 years (two half-lives), 12.5% will remain after 15.81 years (three half-lives), and so forth.

Understanding this concept, we can calculate when the region will be habitable. Currently, the radiation level is 100 times the acceptable limit. We need to determine how many half-lives it will take for the radiation level to reduce to 1% i.e., 1/100 of its original level. Since each half-life reduces the radiation by half, this is equivalent to finding when the cobalt-60 will be reduced to a fraction of 1/(2^n), where 'n' is the number of half-lives. Using n = 7 gives us 1/128, which is less than 1/100 (it will need to be less to be within safe levels).

So, it will take approximately 7 half-lives for the area to become safe for human habitation again. Since the half-life of cobalt-60 is 5.27 years, it will therefore take about 7 * 5.27 = 36.89 years for the region to become habitable once more.

Learn more about Half-life here:

https://brainly.com/question/24710827

#SPJ11

Subtract 7a+3a-9 from 5a-6a-4 write your answer in the standard polynomial form

Answers

Answer:

  -11a +5

Step-by-step explanation:

(5a-6a-4) -(7a+3a-9) = a(5-6-7-3) -4+9 = -11a +5

Study designed 1: two hundred student were selected at random from those enrolled at large college in California each student in the simple was asked whether he or she ate sweet potatoes more than once in a typical week

Answers

Final answer:

The survey design described is a statistical study on college student eating habits, specifically focusing on sweet potato consumption, to obtain quantitative data about behaviour patterns.

Explanation:

The student in question is surveying to gather data on a particular behavioural pattern, in this case, the frequency of sweet potato consumption among college students. To achieve results that reflect the larger student body of the college, a random sample of 200 students is selected to answer the survey question. Completing the survey comprises the collection of quantitative data, which can later be analyzed statistically. Surveys are a common method in statistics to investigate various questions and hypotheses. For example, a survey similar to this might be performed to evaluate the number of movies students watch in a week or determine the daily average study time for freshmen students. The effectiveness of the survey method relies on a representative sample accurately reflecting the population of interest.

The dimensions (width and length) of room1 have been read into two variables : width1 and length1. The dimensions of room2 have been read into two other variables : width2 and length2. Write a single expression whose value is the total area of the two rooms.

Answers

Final answer:

To calculate the total area of two rectangular rooms, we multiply the length by the width of each room separately and then add the two results together. The formula used is Total Area = (width1 × length1) + (width2 × length2). This demonstrates a practical application of geometry in everyday situations.

Explanation:

The student's question is about calculating the total area of two rectangular rooms given their lengths and widths. To find the area of a rectangle, we multiply its length by its width. Therefore, to find the total area of both rooms, we calculate the area of each room separately and then add the two areas together. The formula for the total area of the two rooms would be:

Total Area = (width1 × length1) + (width2 × length2)

By inserting the specific values for width1, length1, width2, and length2 into this formula, we can calculate the exact total area covered by both rooms.

This approach utilizes basic principles of geometry to combine the areas of the two spaces, providing a clear example of how mathematical concepts are applied in practical situations like room measurements.

PLEASE HELP ASAP!!! CORRECT ANSWERS ONLY PLEASE!!! THIS IS THE LAST DAY TO COMPLETE THIS ASSIGNMENT AND I DESPERATELY NEED TO FINISH THIS ASSIGNMENT WITH AN 100%.

Answers

Answer:

  c.  7,999,999

Step-by-step explanation:

The number of possible phone numbers is the product of the number of possible digits in each position, less the excluded number:

  8·10·10 · 10·10·10·10 - 1 = 8,000,000 -1 = 7,999,999

Show that the points A (-3, 2), B (-6, 4) and C (1, 8) are vertices of a right triangle.

Answers

Answer:

See below.

Step-by-step explanation:

For the triangle to be a right triangle there must be a pair adjacent sides which are at right angles to each other - that is whose slope product = -1.

Slope of AB = (4-2)/(-6- -3) = -2/3.

Slope of BC = (8-4)/ (1 - - 6) =  2/7

Slope of AC =  (8-2) / (1 - -3) = 6/4 = 3/2.

Now 3/2 * -2/3 = -1 so sides AB and AC are at right angles and the 3 points are the vertices of a right triangle.

Final answer:

To confirm if the points A (-3, 2), B (-6, 4) and C (1, 8) are vertices of a right triangle, we use the Pythagorean theorem. After calculating the distances between each pair of points, we found that the square of the length of the longest side equals the sum of the squares of the lengths of the other two sides, proving that they form a right triangle.

Explanation:

To show that the points A (-3, 2), B (-6, 4), and C (1, 8) are vertices of a right triangle, we need to check if the square of the length of the longest side (hypotenuse) is equal to the sum of the squares of the lengths of the other two sides. This is known as the Pythagorean theorem. First, compute the distances between each pair of points using the distance formula:

AB = sqrt[(4-2)^2 + (-6-(-3))^2] = sqrt[2^2 + (-3)^2] = sqrt[4 + 9] = sqrt[13]

BC = sqrt[(8-4)^2 + (1-(-6))^2] = sqrt[4^2 + 7^2] = sqrt[16 + 49] = sqrt[65]

AC = sqrt[(8-2)^2 + (1-(-3))^2] = sqrt[6^2 + 4^2] = sqrt[36 + 16] = sqrt[52]

BC is the longest side, so we need to check if BC^2 = AB^2 + AC^2. Calculating, we find that 65 = 13 + 52, which is true. Therefore, points A, B, and C are vertices of a right triangle.

Learn more about Right Triangle here:

https://brainly.com/question/36869450

#SPJ2

At Central Online High School, 4510045100 of the students have a dog, 3010030100 have a cat, and 1810018100 have both a dog and a cat. What is the probability that a student who has a dog also has a cat? Enter your answer as a reduced fraction with the / symbol, like this: 3/14

Answers

Answer: [tex]\dfrac{2}{5}[/tex]

Step-by-step explanation:

Given : The proportion of students have a dog : [tex]P(D)=\dfrac{45}{100}[/tex]

The proportion of students have a cat  : [tex]P(C)=\dfrac{30}{100}[/tex]

The proportion of students have  both a dog and a cat  : [tex]P(C\cap D)=\dfrac{18}{100}[/tex]

Now, the conditional probability that a student who has a dog also has a cat will be :-

[tex]P(C|D)=\dfrac{P(C\cap D)}{P(D)}\\\\\\\Rightarrow\ P(C|D)=\dfrac{\dfrac{18}{100}}{\dfrac{45}{100}}\\\\\\\Rightarrow\ P(C|D)=\dfrac{18}{45}=\dfrac{2}{5}[/tex]

Hence, the probability that a student who has a dog also has a cat = [tex]\dfrac{2}{5}[/tex]

Answer:

3/5

Step-by-step explanation: I just did the test and got it right. This was after I tried 2/5 and got it wrong.

Which pairs of triangles can be shown to be congruent using rigid motions?



Select Congruent or Not Congruent for each pair of triangles.
Congruent Not Congruent
△ABC and △DEF

△ABC and △JKL

△ABC and △QRS

△JKL and △DEF

△JKL and △QRS

△QRS and △DEF


Answers

Did you ever get the answer for this?

Answer:

The order is Congruent, not congruent, not congruent, not congruent,congruent, not congruent

Step-by-step explanation:

-

Solve for x.

1+|2+x|=9



x = 4 or ​ x=−8 ​
x = 5 or ​ x=−9 ​
x = 6 or x=−10
x = 7 or ​ x=−11 ​

Answers

Answer:

Step-by-step explanation:

1+|2+x|=9

1+|2+x| -1 =9-1

|2+x| = 8

2+x = 8 or 2+x = -8

x=6 or x= -10

Answer:

c

Step-by-step explanation:

i took the k12 test

Barack is solving a problem and his final units need to be in square inches. His current answer is 8 feet squared. What is the equivalent measurement in square inches

Answers

Answer:

  1152 in²

Step-by-step explanation:

Barack can change the units using a suitable multiplier. It will have a numerator equal to its denominator, and will have units that cancel the square feet and give square inches:

  8 ft² × ((12 in)/(1 ft))² = 8×12×12 in² = 1192 in²

_____

12 in = 1 ft . . . so numerator is equal to denominator

11 1/2 and 13 3/4 is?

Answers

This would depend on what you are asking for.

If you are adding the two numbers(which the word and is implying) you’re answer is 25 1/4.

You get this by finding a common denominator. In this case, that can be 4.

Turn 1/2 in to 2/4.

Next, you add 11 and 13 to get 24.

Then, you’ll add 2/4 and 3/4. You will get 1 1/4

Add 24 and 1 1/4. You have your answer of 25 1/4

The number of vibrations n n per second of a nylon guitar string varies directly with the square root of the tension T T and inversely with the length L L of the string. If the tension is 256 256 kilograms when the number of vibrations per second is 15 15 and the length is 0.6 0.6 meters, find the tension when the length is 0.3 0.3 meters and the number of vibrations is 12 12 .

Answers

The tension when the length is 0.3 meters and the number of vibrations is 12 is 40.96 Kg.

Given, that number of vibrations 'n' per second of a nylon guitar string varies directly with the square root of the tension 'T' and inversely with the length 'L' of the string.

Formulating the relation,

[tex]n \alpha \frac{\sqrt{T} }{L}[/tex]

[tex]n = K\frac{\sqrt{T} }{L}[/tex]

[tex]L \times n = K\sqrt{T}[/tex]

Substitute the values,

T = 256 Kg

n = 15

L = 0.6

[tex]0.6 \times 15 = K \times \sqrt{256}\\K = 9/16\\K = 0.5625\\[/tex]

Now when L = 0.3 and n = 12,

[tex]0.3 \times 12 = 0.5625 \times \sqrt{T}\\\sqrt{T} = 6.4\\ T = 40.96[/tex]

Therefore tension in the string is 40.96Kg .

Know more about spring mechanism,

https://brainly.com/question/31789700

#SPJ12

Three married couples have purchased theater tickets and are seated in a row consisting of just six seats. If they take their seats in a completely random fashion (random order), what is the probability that Jim and Paula (husband and wife) sit in the two seats on the far left?

Answers

Answer:

The required probability is : [tex]\frac{1}{15}[/tex]

Step-by-step explanation:

Three married couples have purchased theater tickets and are seated in a row consisting of just six seats.

First we will check the total arrangements that is 6! ways.

6! = [tex]6\times5\times4\times3\times2\times1=720[/tex]

Jim and Paula can sit at far left in 2 ways and the remaining 4 in 4! ways,.

So, probability will be = [tex]2\times\frac{4!}{6!}[/tex]

= [tex]2\times\frac{24}{720}[/tex]

= [tex]\frac{48}{720}[/tex]

= [tex]\frac{1}{15}[/tex]

Other Questions
List and describe four communication tools that are currently popular. All electromagnetic radiation: ASAP WILL MARK BRAINLIEST!!!!!Compare the linear functions expressed by the equation, y = x + 3, and by data in the table.Explain how to determine if these two are the same function expressed in different ways Total stockholders' equity represents a. a claim to specific assets contributed by the owners. b. the maximum amount that can be borrowed by the enterprise. c. a claim against a portion of the total assets of an enterprise. d. only the amount of earnings that have been retained in the business. Which words did Andrew Jackson choose to give his audience a negativeimpression of American Indians in his message to Congress "On IndianRemoval"?OA. Opportunity and progressiveOB. Interesting and civilizedOC. Savages and annihilatedOD. Benevolent and Christian Simply, translation is a copy of _______________a. DNA from mRNAb. DNA from DNAc. protein from RNAd. RNA from DNA A 1-m3 tank containing air @ 25 oC & 500 kPa is connected to another tank containing 5 kg of air at 35 oC & 200 kPa through a valve. The valve is opened and the whole system is brought to thermal equilibrium with the surrounding of 20 oC. Determine the volume of the second tank and the final equilibrium pressure of air. Take air gas constant (R) = 0.287 kJ/(kg.oK) There are two producers of wagon wheels that together are the exclusive providers to a large community. The executives of these companies meet to set minimum prices and production levels, thereby ensuring that they each will make a higher profit than they would in a free market. This is an example of a(n) ___________. The nature of political battles over trade in the modern era A. typically centers on issues involving the trade-induced devaluation of labor skills. B. originates with the fundamental conflict between workers and capitalists. C. has remained unchanged from the battles fought throughout history. D. centers on disputes between landowners and manufacturers. Explain Mario Cuomo's cunundrum. A bag contains 99 red marbles and 99 blue marbles. Taking two marbles out of the bag, you: put a red marble in the bag if the two marbles you drew are the same color (both red or both blue), and put a blue marble in the bag if the two marbles you drew are different colors. Repeat this step (reducing the number of marbles in the bag by one each time) until only one marble is left in the bag. What is the color of that marble? which atom is a carbon atom? A. B. C. if you walk 2km from your house to a store then back home, what is your displacement An election forecasting model has a 50:50 chance of correctly predicting the election winner when there are two candidates. Before seeing the prediction of the model an election researcher estimates that there is a 75% chance that candidate Allan will defeat candidate Barnes. She then finds out that the model has predicted a victory for Barnes. Her posterior probability of a victory for Allan should be: (a) (b) (c) (d) 0.375 0.500 0.750 1.000 What caused Europes population to increase, to provoke its interest in trade, and provided its population with large amounts of gold and silver? ason and Alex are biologically unrelated adolescents who were adopted as infants and raised together. For which of the following are Jason and Alex least likely to resemble each other any more than they resemble a genetically unrelated adolescent from another home in their neighborhood? A) extraversion B) religious beliefs C) table manners D) political attitudes A certain corner of a room is selected as the origin of a rectangular coordinate system. If a fly is crawling on an adjacent wall at a point having coordinates (3.1, 0.5), where the units are meters, what is the distance of the fly from the corner of the room? Answer needs to be in appropriate significant figures. Since the late twentieth and early twenty-first centuries, the Border region, including El Paso, McAllen, and Brownsville, has remained politically a ________ bastion.a. Democratic Partyb. competitive two-partyc. Republican Partyd. Tea Partye. Liberal and Tea Party Eileen is dean of the College of Business at her University. She enjoys the pace of her work and the feeling of accomplishment she gets when she is able to initiate a new program to help students. The salary she receives is attractive and allows her to travel abroad on her vacations. Eileen is: A. intrinsically motivated. B. extrinsically motivated. C. both intrinsically and extrinsically motivated. D. has high needs for power and achievement. E. experiencing overpayment inequity. Find an equation of the line that is perpendicular to 9x + 5y = - 1. Write your answer in the form y = mx + b.