Multiply the polynomials. (2x+1)(x−5)

Answers

Answer 1

Answer:

2x^2-9x-5

Step-by-step explanation:

Just multiply

Answer 2

Answer:

2x^2-9x-5

Step-by-step explanataion:

multiply


Related Questions

A recent study examined hearing loss data for 1981 U.S. teenagers. In this sample, 369 were found to have some level of hearing loss. News of this study spread quickly, with many news articles blaming the prevalence of hearing loss on the higher use of ear buds by teens. At MSNBC (8/17/2010), Carla Johnson summarized the study with the headline: "1 in 5 U.S. teens has hearing loss, study says." To investigate whether this is an appropriate or a misleading headline, you will conduct a test of significance with the following hypotheses: Null: π = 0.20 Alternative: π ≠ 0.20

Answers

Answer:

There is no enough evidence to support the claim that the proportion of US teens that have some level of hearing loss differs from 20%.

P-value=0.12

Step-by-step explanation:

We have to perform a test of hypothesis on the proportion.

The claim is that the proportion of US teens that have some level of hearing loss differs from 20%.

Then, the null and alternative hypothesis are:

[tex]H_0: \pi=0.20\\\\H_a:\pi\neq0.20[/tex]

The significance level is assumed to be 0.05.

The sample, of size n=1981, has 369 positive cases. Then, the proportion is:

[tex]p=X/n=369/1981=0.186[/tex]

The standard error of the proportion is:

[tex]\sigma_p=\sqrt{\dfrac{\pi(1-\pi)}{n}}=\sqrt{\dfrac{0.2*0.8}{1981}}=\sqrt{ 0.000081 }= 0.009[/tex]

Now, we can calculate the statistic z:

[tex]z=\dfrac{p-\pi+0.5/n}{\sigma_p}=\dfrac{0.186-0.20+0.5/1981}{0.009}=\dfrac{-0.014}{0.009}=-1.556[/tex]

The P-value for this two-tailed test is:

[tex]P-value=2*P(z<-1.556)=0.12[/tex]

The P-value is below the significance level, so the effect is not significant. The null hypothesis failed to be rejected.

There is no enough evidence to support the claim that the proportion of US teens that have some level of hearing loss differs from 20%.

Since -0.700 falls within this range (-1.96 to 1.96), you fail to reject the null hypothesis (H0). This means that there is not enough evidence to conclude that the true proportion of U.S. teens with hearing loss is different from 0.20.

To investigate whether the headline "1 in 5 U.S. teens has hearing loss, study says" is appropriate or misleading, you can conduct a hypothesis test based on the given hypotheses:

Null Hypothesis (H0): π = 0.20 (The true proportion of U.S. teens with hearing loss is 0.20, or 20%.)

Alternative Hypothesis (H1): π ≠ 0.20 (The true proportion of U.S. teens with hearing loss is not equal to 0.20.)

Here, π represents the population proportion of U.S. teenagers with hearing loss.

To test these hypotheses, you can perform a hypothesis test for a population proportion using a significance level (alpha), such as 0.05 (5%). You can use the z-test for proportions to determine whether the observed proportion of hearing loss in the sample significantly differs from the claimed proportion of 0.20.

The test statistic for the z-test for proportions is calculated as:

z= (p−π)/√(π(1−π)/n)

​Where:

p is the sample proportion (369 out of 1981 in this case).

π is the hypothesized population proportion (0.20).

n is the sample size (1981).

Calculate the sample proportion:

p= 369/1981​ ≈0.186

Now, calculate the test statistic

z= (0.186−0.20)/√(0.20(1−0.20)/1981)

​Calculate the standard

SE=√(0.20(1−0.20)/1981)≈0.020

Now, calculate

z≈ (0.186−0.20)/0.020​ ≈−0.700

Now, you can find the critical values for a two-tailed test at a 95% confidence level (alpha = 0.05). You can use a standard normal distribution table or calculator to find the critical z-values. For a two-tailed test with alpha = 0.05, the critical z-values are approximately -1.96 and 1.96.

for such more question on range

https://brainly.com/question/30339388

#SPJ3

Can somone help me with 1,2,3 ????

Answers

Answer:

This is a weird assignment

Step-by-step explanation:

1)    7.5 minute per mile

10 convert hours to min (900 min) and then simply the unit of 6771 miles by 900 min. The objective is to know how far you travel in one minute.

3) Chose any country in South America:

Brazil, Argentina, Peru, Columbia, Venezuela, Bolivia, etc.

A test of [tex]H_{0}[/tex]: μ = 20 versus [tex]H_{1}[/tex]: μ > 20 is performed using a significance level of ∝ = 0.05. The value of the test statistic is z = 1.47.


If the true value of μ is 25, does the test conclusion result in a Type I error, a Type II error, or a Correct decision?

Answers

Answer:

Type II error

Step-by-step explanation:

Type 1 error occurs when:

We reject a True Null Hypothesis

Type 2 error occurs when:

We fail to reject a wrong Null Hypothesis.

The given hypothesis are:

[tex]H_{o}: \mu=20\\\\ H_{a}:\mu>20[/tex]

Level of significance = α = 0.05

The calculated z test statistic = z = 1.47

In order to make a decision we first need to convert z = 1.47 to its equivalent p-value. From the z-table the p value for z score being greater than 1.47 comes out to be:

p-value = 0.0708

Since, p-value is greater than the level of significance, we fail to reject the Null Hypothesis.

It is given that the true value of μ is 25. If the true value of μ is 25, then the Null hypothesis was false. But from the test we performed, we failed to reject the Null Hypothesis.

Since, we failed to reject a False Null Hypothesis, the conclusion resulted in a Type II error.

Find product (7m+8)(4m +1)

Answers

Step-by-step explanation:

[tex](7m + 8)(4m + 1) \\ = 7m(4m + 1) + 8(4m + 1) \\ = 28 {m}^{2} + 7m + 32m + 8 \\ \purple { \bold{= 28 {m}^{2} + 39m + 8}}[/tex]

What is the equation of the line that has a slope of -3 and goes through the point (3,-1)

Answers

Answer:

y = -3x+8

Step-by-step explanation:

We can use the slope intercept form of an equation

y = mx+b  where m is the slope and b is the y intercept

y = -3x+b

Substitute the point into the equation

-1 = -3(3)+b

-1 = -9+b

Add 9 to each side

-1+9 = -9+9+b

8 =b

y = -3x+8

A certain front-loading washing machine has a drum of diameter 23.3 inches. A small tennis ball placed inside spins in a vertical circle pressed against the inner wall of the drum. How quickly would the drum have to spin (in radians per second) in order to ensure that the tennis ball remained pinned against the wall for the entire cycle without falling off?

Answers

Answer:

33.12 rad/s

Step-by-step explanation:

We are given that

Diameter=d=23.3 in

Radius,=[tex]r=\frac{d}{2}=\frac{23.3}{2}=11.65 in=11.65\times 0.0254= 0.29591 m[/tex]

1 in=0.0254 m

We have to find the angular speed of drum would have to spin.

Force=[tex]mg[/tex]

Centripetal force=[tex]m\omega^2 r[/tex]

[tex]mg=m\omega^2 r[/tex]

[tex]\omega^2=\frac{g}{r}[/tex]

[tex]\omega=\sqrt{\frac{g}{r}}[/tex]

Where [tex]g=9.8m/s^2[/tex]

[tex]\omega=\sqrt{\frac{9.8}{0.29591}[/tex]

[tex]\omega=33.12 rad/s[/tex]

A particle moves according to a law of motion s = f(t), 0 ≤ t ≤ 6, where t is measured in seconds and s in feet. f(t) = cos(πt/3) (a) Find the velocity at time t (in ft/s). v(t) = (b) What is the velocity after 2 s? (Round your answer to two decimal places.) v(2) = ft/s

Answers

Answer:

[tex](a)v(t)=-\frac{\pi }{3}sin(\frac{\pi t}{3})[/tex]

(b)-0.91 ft/s

Step-by-step explanation:

Given the position function  s = f(t) where f(t) = cos(πt/3), 0 ≤ t ≤ 6

(a)The velocity at time t in ft/s is the derivative of the position vector.

[tex]If\: f(t)=cos(\frac{\pi t}{3})\\f'(t)=-\frac{\pi }{3}sin(\frac{\pi t}{3})\\v(t)=-\frac{\pi }{3}sin(\frac{\pi t}{3})[/tex]

(b)Velocity after 2 seconds

When t=2

[tex]v(2)=-\frac{\pi }{3}sin(\frac{\pi *2}{3})\\=-0.91 ft/s[/tex]

The particle moves 0.91 ft/s in the opposite direction.

Final answer:

The velocity v(t) of a particle moving with function s=f(t)=cos(πt/3) is given by v(t) = -(π/3)sin(πt/3). When t=2 seconds, the velocity of the particle is approximately -1.81 ft/s.

Explanation:

To find the velocity, v(t), at time t for the particle you need to find the derivative of s = f(t) = cos(πt/3) with respect to time, t. Using the chain rule, the derivative will be v(t) = -sin(πt/3) * (π/3), which simplifies to v(t) = -(π/3)sin(πt/3). This formula will provide the velocity of the particle at any time, t, within the given range.

To find the velocity of the particle after 2 seconds, substitute t = 2 into the velocity function. So, v(2) = -(π/3)sin(π*2/3). This simplifies to approximately -1.81 ft/s, when rounded to two decimal places. Therefore, the velocity of the particle at 2 seconds is -1.81 ft/s.

Learn more about Velocity of a Particle here:

https://brainly.com/question/14326156

#SPJ3

What is the final transformation in the composition of transformations that maps pre-image GHJK to image G’H”J”K”?

Answers

Answer:

B on edge 2020

Step-by-step explanation:

Applying [tex]\[M_f = M_n \cdot M_{n-1} \cdot ... \cdot M_3 \cdot M_2 \cdot M_1\][/tex] final transformation matrix to the pre-image GHJK [tex](\(P\))[/tex], we get the image G'H''J''K''.

To determine the final transformation that maps the pre-image GHJK to the image G'H''J''K'', we need to break down the transformations and apply them in the correct order.

Let's assume there are several transformations involved, such as translations, rotations, reflections, or dilations. Each transformation can be represented by a matrix or a set of rules.

Let's denote the initial pre-image GHJK as [tex]\(P\).[/tex] The series of transformations can be represented as [tex]\(T_1 \cdot T_2 \cdot T_3 \cdot ... \cdot T_n\)[/tex], where [tex]\(T_1\) to \(T_n\)[/tex] are individual transformations.

To find the final transformation, we need to multiply the matrices representing these transformations in the reverse order. If [tex]\(M_1, M_2, M_3, ..., M_n\)[/tex] are the matrices representing [tex]\(T_1, T_2, T_3, ..., T_n\)[/tex]respectively, the final transformation matrix [tex]\(M_f\)[/tex] would be:

[tex]\[M_f = M_n \cdot M_{n-1} \cdot ... \cdot M_3 \cdot M_2 \cdot M_1\][/tex]

Applying this final transformation matrix to the pre-image GHJK [tex](\(P\))[/tex], we get the image G'H''J''K''.

For more such questions on transformation matrix

https://brainly.com/question/33858693

#SPJ3

19. EL CONDENADO A MUERTE. En los tiempos de la antigüedad la gracia o el castigo se dejaban frecuentemente al azar. Así, éste es el caso de un reo al que un sultán decidió que se salvase o muriese sacando al azar una papeleta de entre dos posibles: una con la sentencia "muerte", la otra con la palabra "vida", indicando gracia. Lo malo es que el Gran Visir, que deseaba que el acusado muriese, hizo que en las dos papeletas se escribiese la palabra "muerte". ¿Cómo se las arregló el reo, enterado de la trama del Gran Visir, para estar seguro de salvarse? Al reo no le estaba permitido hablar y descubrir así el enredo del Visir.

Answers

Answer:

English plz

Step-by -step explanation:

what dose this say

Final answer:

El condenado sobrevivió al destruir una de las 'papeletas de muerte' sin leerla, y utilizar la ley del Sultán a su favor para afirmar que su 'papeleta de muerte' destruida era la 'papeleta de vida'.

Explanation:

El reo aseguró su supervivencia actuando de manera astuta. Sabiendo que ambas papeletas tenían la palabra muerte, decidió escoger una y, sin leerla, la destruyó por completo. Entonces solicitó que se leyera la papeleta restante, si en la papeleta restante dice muerte, entonces es obvio que la papeleta que destruyó debía tener la sentencia de vida, ya que según el Sultán, el Gran Visir hizo dos papeletas diferentes. De esta manera, aunque el Gran Visir deseaba que obtuviera la sentencia de muerte, el reo se salvó por su astucia sin necesidad de revelar el complot del Visir.

Learn more about solución astuta here:

https://brainly.com/question/18183542

#SPJ2

A food safety inspector is called upon to investigate a restaurant with a few customer reports of poor sanitation practices. The food safety inspector uses a hypothesis testing framework to evaluate whether regulations are not being met. If he decides the restaurant is in gross violation, its license to serve food will be revoked.

What is a Type 1 Error in this context?

Answers

Answer:

P (Type I Error) = P (Revokes the license | Restaurant is not in gross violation)

Step-by-step explanation:

A type I error occurs when we reject a true null hypothesis (H₀). It is the probability of rejecting the null hypothesis when the null hypothesis is true.

The type I error is also known as the level of significance. It is denoted by α .

P (Type I Error) = P (Rejecting H₀ | H₀ is true) = α.

In this case, the food inspector uses a hypothesis testing framework to evaluate whether regulations are not being met.

He decides the the restaurant's license to serve food will be revoked if the restaurant is in gross violation.

So the hypothesis is defined as:

H₀: The restaurant is not in gross violation.

Hₐ: The restaurant is in gross violation.

The type I error will be committed by the food inspector if he concludes that the the restaurant is in gross violation and revokes their license, when in fact the restaurant is not in gross violation.

α = P (Revokes the license | Restaurant is not in gross violation)

Final answer:

A Type 1 Error in this context would be when the food safety inspector incorrectly identifies the restaurant as violating sanitation regulations when in reality, it was following all necessary practices. It’s the wrongful rejection of the null hypothesis.

Explanation:

In statistical hypothesis testing, a Type 1 Error occurs when a true null hypothesis is rejected. In the context of the food safety inspector's investigation, the null hypothesis would likely be that the restaurant is abiding by all required sanitation practices. Therefore, a Type 1 Error would be if the food safety inspector concludes that the restaurant is in serious violation of sanitation regulations and revokes its license, but in actuality, the restaurant was not violating any regulations, i.e., the inspector incorrectly identified the restaurant as unclean and unhealthy.

Learn more about Type 1 Error here:

https://brainly.com/question/34636910

#SPJ11

An object with a mass
of 300 kg is observed to
| accelerate at the rate
Tof 4 m/s2. Calculate the
i total force required.

Answers

Step-by-step explanation:

[tex]F=ma\\\\F=(300kg)(4m/s^2)\\F=1200N[/tex]

(4x^2-10x+6) divide (4x+2)

Answers

Answer:

x = 1 or x = 3/2

Step-by-step explanation:

Solve for x:

(4 x^2 - 10 x + 6)/(4 x + 2) = 0

Multiply both sides by 4 x + 2:

4 x^2 - 10 x + 6 = 0

The left hand side factors into a product with three terms:

2 (x - 1) (2 x - 3) = 0

Divide both sides by 2:

(x - 1) (2 x - 3) = 0

Split into two equations:

x - 1 = 0 or 2 x - 3 = 0

Add 1 to both sides:

x = 1 or 2 x - 3 = 0

Add 3 to both sides:

x = 1 or 2 x = 3

Divide both sides by 2:

Answer: x = 1 or x = 3/2

please answer all of them there are 3 pages cuz i couldnt fit them all only 10 questions tho please answer it like this
1:
2:
3:
4:

Answers

Answer:

1:C

2:B

3:A

4:B

5:D

6:D

7:A

8:C

9:C

10:B

Step-by-step explanation:

The radius of a circle is 9 miles. What is the length of a 180° arc?

Answers

Final answer:

The length of a 180° arc in a circle with a radius of 9 miles is 9π miles, which is half of the circle's total circumference.

Explanation:

The radius of a circle is the distance from the center to any point on the circle, and the arc length is the distance measured along the circumference of the circle that corresponds to a particular angle. In our case, to calculate the length of a 180° arc, we first need the circumference of the circle, which can be found using the formula 2πr (where r is the radius), and then we find the proportion of the circumference that corresponds to a 180° angle, or half a circle.

The circumference of a circle with a radius of 9 miles is given by:
Circumference = 2π × 9 miles = 18π miles.
Since 180° is half of a full 360° rotation, the arc length for 180° will be half of the circumference:
Arc Length for 180° = ½ × 18π miles = 9π miles.

(5) In the center of the monument are two concentric circles of igneous rock pillars, called bluestones. The construction of these circles was never completed. These circles are known as the Bluestone Circle and the Bluestone Horseshoe. The stones in these two formations were transported to the site from the Prescelly Mountains in Pembrokeshire, southwest Wales. Excavation at the center of the monument revealed an antler, an antler tine, and an animal bone. Each artifact was submitted for dating. It was determined that this sample of three artifacts had a mean age of 2193.3 BCE, with a standard deviation of 104.1 years. Assume that the ages are normally distributed with no obvious outliers. Use an α = 0.05 significance level to test the claim that the population mean age of the Bluestone formations is different from Corbin's declared mean age of the ditch, that is, 2950 BCE.

Answers

Answer:

There is enough evidence, at a significance level of 0.05, that the population mean age of the Bluestone formations is different from 2950 BCE.

Step-by-step explanation:

We have a sample and we want to perform a hypothesis test on the mean.

The null hypothesis is the Corbin's declared age (2950 BCE). The alternative hypothesis states that the age differ from that value.

They can be expressed as:

[tex]\H_0:\mu=2950\\\\H_a:\mu\neq2950[/tex]

The significance level is 0.05.

The sample has a size of n=3, a mean of 2193.3 BCE and a standard deviation of 104.1 years.

As the standard deviation is estimated from the sample, we have to calculate the t-statistic.

[tex]t=\dfrac{\bar x-\mu}{s/\sqrt{n}}=\dfrac{2193.3-2950}{104.1/\sqrt{3}}=\dfrac{-756.7}{60.1}=-12.59[/tex]

The degrees of freedom for this test are:

[tex]df=n-1=3-1=2[/tex]

The critical value for a two side test with level of significance α=0.05 and 2 degrees of freedom is t=±4.271.

As the statistic t=-12.59 lies outside of the acceptance region, the null hypothesis is rejected.

There is enough evidence, at a significance level of 0.05, that the population mean age of the Bluestone formations is different from 2950 BCE.

Find the slope of the line that passes through each pair of points

What is the slope of -2,1 and 1,-2

Answers

Answer:

-1

Step-by-step explanation:

The slope of the line can be found by

m = (y2-y1)/(x2-x1)

    = (-2-1)/(1--2)

     =-3 /(1+2)

      =-3/3

       -1

What is the arc measure of the minor arc BC in degrees?
285
(20y - 11)
(4y+6)
(7y - 7)

Answers

Answer:

Step-by-step explanation:

131

consider circle O, in which arc XY measures 16 pie cm. The length of a radius of the circle is 32 cm. What is the circumference of the circle?

Answers

Answer:64 pi units

What is the ratio of the arc length to the circumference?Answer: 1/4

What is the measure of central angle XOY?Answer: 90 degrees

Answer:

1. 64 pi units

2. 1/4

3. 90°

Step-by-step explanation: edge

An architect is making a model of a proposed office building with the dimensions shown. To fit on a display, the longest side of the architect's
model must be 30 inches long. To make the model geometrically similar to the proposed building, what should the width and the height of the
model be?

A. Width = 20 inches, height = 8 inches

B. Width = 20 inches, height = 12 inches

C. Width = 25 inches, height = 16 inches

D. Width = 25 inches, height = 20 inches

E. Width = 20 inches, height = 25 inches

Answers

Answer:

25 20

Step-by-step explanation:

D. Width = 25 inches, height = 20 inches

write an equation for the amount of money, m that will be collected if b boxes of chocolate are sold.

Answers

Answer:

m = b(t)

t= the price per box

Answer:

m = ?b

Step-by-step explanation:

m = total

b = number of boxes sold

? = price of chocolate

A 1980 study was conducted whose purpose was to compare the indoor air quality in offices where smoking was permitted with that in offices where smoking was not permitted. Measurements were made of carbon monoxide (CO) at 1:20 p.m. in 40 work areas where smoking was permitted and in 40 work areas where smoking was not permitted. Where smoking was permitted, the mean CO level was 11.6 parts per million (ppm) and the standard deviation CO was 7.3 ppm. Where smoking was not permitted, the mean CO was 6.9 ppm and the standard deviation CO was 2.7 ppm.

To test for whether or not the mean CO is significantly different in the two types of working environments, perform a t-test for unequal variance and report the p-value

Answers

Answer:

The null hypothesis is not rejected.

There is no enough evidence to support the claim that the CO level is lower  in non-smoking working areas compared to smoking work areas.

P-value = 0.07.

Step-by-step explanation:

We have to perform a test on the difference of means.

The claim that we want to test is that CO is less present in no-smoking work areas.

Then, the null and alternative hypothesis are:

[tex]H_0: \mu_1-\mu_2=0\\\\H_a:\mu_1-\mu_2 > 0[/tex]

being μ1: mean CO level in smoking work areas, and μ2: mean CO level in no-smoking work areas.

The significance level is assumed to be 0.05.

Smoking areas sample

Sample size n1=40.

Sample mean M1=11.6

Sample standard deviation s1=7.3

No-smoking areas sample

Sample size n2=40

Sample mean M2=6.9

Sample standard deviation s2=2.7

First, we calculate the difference between means:

[tex]M_d=M_1-M_2=11.6-7.3=4.3[/tex]

Second, we calculate the standard error for the difference between means:

[tex]s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{7.3^2}{40}+\dfrac{2.7^2}{40}}=\sqrt{\dfrac{53.29+7.29}{40}}=\sqrt{\dfrac{60.58}{40}}\\\\\\s_{M_d}=\sqrt{1.5145}=1.23[/tex]

Now, we can calculate the t-statistic:

[tex]t=\dfrac{M_d-(\mu_1-\mu_2)}{s_{M_d}}=\dfrac{4.3-0}{1.23}=3.5[/tex]

The degrees of freedom are calculated with the Welch–Satterthwaite equation:

[tex]df=\dfrac{(\dfrac{s_1^2}{n_1}+\dfrac{s_2^2}{n_2})^2}{\dfrac{s_1^4}{n_1(n_1-1)}+\dfrac{s_2^4}{n_2(n_2-1)}} \\\\\\\\df=\dfrac{(\dfrac{7.3^2}{40}+\dfrac{2.7^2}{40})^2}{\dfrac{7.3^4}{40(39)}+\dfrac{2.7^4}{40(39)}} =\dfrac{(\dfrac{53.29}{40}+\dfrac{7.29}{40})^2}{\dfrac{2839.82}{1560}+\dfrac{53.14}{1560}} \\\\\\\\df=\dfrac{1.5145^2}{1.8545}=\dfrac{2.2937}{1.8545}=1.237[/tex]

The P-value for this right tail test, with 1.237 degrees of freedom and t=3.5 is:

[tex]P-value=P(t>3.5)=0.07[/tex]

The P-value is bigger than the significance level, so the effect is not significant. The null hypothesis is not rejected.

There is no enough evidence to support the claim that the CO level is lower  in non-smoking working areas compared to smoking work areas.

Final answer:

The p-value, which indicates the likelihood that the difference in CO levels in the work areas is due to chance, can be computed from the mean CO levels and the standard deviations using a t-test for unequal variance. The computation requires several steps, including calculating the degrees of freedom and the t-statistic.

Explanation:

To conduct the t-test for unequal variance, we need to follow several steps. Below are the necessary steps:

Compute the degrees of freedom: df = (s1^2/n1 + s2^2/n2)^2 / { [ (s1^2/n1)^2 / (n1-1) ]  + [ (s2^2/n2)^2 / (n2-1) ] } where s1 and s2 are the standard deviations, n1 and n2 are the sample sizes. Compute the t-statistic: t = (x1 - x2) / sqrt (s1^2/n1 + s2^2/n2) where x1 and x2 are the sample means. Finally, use a t-distribution table or an online calculator to find the p-value based on the t-statistic and the degrees of freedom

 

In this scenario, the mean CO levels and standard deviations in work areas where smoking was permitted and not permitted are given. By plugging these into the formulas, we can find the t-value and then use the t-distribution to find the corresponding p-value.

Learn more about t-test here:

https://brainly.com/question/35161872

#SPJ3

The plane x+y+2z=8 intersects the paraboloid z=x2+y2 in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin. Point farthest away occurs at ( , , ). Point nearest occurs at (

Answers

Answer:

The minimum distance of   √((195-19√33)/8)  occurs at  ((-1+√33)/4; (-1+√33)/4; (17-√33)/4)  and the maximum distance of  √((195+19√33)/8)  occurs at (-(1+√33)/4; - (1+√33)/4; (17+√33)/4)

Step-by-step explanation:

Here, the two constraints are

g (x, y, z) = x + y + 2z − 8  

and  

h (x, y, z) = x ² + y² − z.

Any critical  point that we find during the Lagrange multiplier process will satisfy both of these constraints, so we  actually don’t need to find an explicit equation for the ellipse that is their intersection.

Suppose that (x, y, z) is any point that satisfies both of the constraints (and hence is on the ellipse.)

Then the distance from (x, y, z) to the origin is given by

√((x − 0)² + (y − 0)² + (z − 0)² ).

This expression (and its partial derivatives) would be cumbersome to work with, so we will find the the extrema  of the square of the distance. Thus, our objective function is

f(x, y, z) = x ² + y ² + z ²

and

∇f = (2x, 2y, 2z )

λ∇g = (λ, λ, 2λ)

µ∇h = (2µx, 2µy, −µ)

Thus the system we need to solve for (x, y, z) is

                           2x = λ + 2µx                         (1)

                           2y = λ + 2µy                       (2)

                           2z = 2λ − µ                          (3)

                           x + y + 2z = 8                      (4)

                           x ² + y ² − z = 0                     (5)

Subtracting (2) from (1) and factoring gives

                     2 (x − y) = 2µ (x − y)

so µ = 1  whenever x ≠ y. Substituting µ = 1 into (1) gives us λ = 0 and substituting µ = 1 and λ = 0  into (3) gives us  2z = −1  and thus z = − 1 /2 . Subtituting z = − 1 /2  into (4) and (5) gives us

                            x + y − 9 = 0

                         x ² + y ² +  1 /2  = 0

however, x ² + y ² +  1 /2  = 0  has no solution. Thus we must have x = y.

Since we now know x = y, (4) and (5) become

2x + 2z = 8

2x  ² − z = 0

so

z = 4 − x

z = 2x²

Combining these together gives us  2x²  = 4 − x , so

2x²  + x − 4 = 0 which has solutions

x =  (-1+√33)/4

and

x = -(1+√33)/4.

Further substitution yeilds the critical points  

((-1+√33)/4; (-1+√33)/4; (17-√33)/4)   and

(-(1+√33)/4; - (1+√33)/4; (17+√33)/4).

Substituting these into our  objective function gives us

f((-1+√33)/4; (-1+√33)/4; (17-√33)/4) = (195-19√33)/8

f(-(1+√33)/4; - (1+√33)/4; (17+√33)/4) = (195+19√33)/8

Thus minimum distance of   √((195-19√33)/8)  occurs at  ((-1+√33)/4; (-1+√33)/4; (17-√33)/4)  and the maximum distance of  √((195+19√33)/8)  occurs at (-(1+√33)/4; - (1+√33)/4; (17+√33)/4)

In this question, we have 2 constraints:

The plane                        g ( x , y , z ) = x + y + 2 z - 8

The paraboloid             h ( x , y , z ) = x² + y² - z

We need to apply Lagrange Multipliers to answer it

The solution are:

The nearest point P = ( -9.06/4   ,   -9.06 /4  ,  6.23 )

The farthest point Q  (  (7.06) /4  ,  (7.06) /4 ,  10.26)

The Objective Function (F) is the distance between the ellipse and the origin, In this case,  we don´t need to know the equation of the ellipse

The Objective Function is

F = √ x² + y² + z²    and as this function has the same critical points that

F  = x² + y² + z²  we will use this one

Then:

     δF/δx  = 2×x               δF/δy  = 2×y                 δF/δz = 2×z

   λ ×δg/δx =  λ                  λ δg/δy = λ                  λ δg/δz = 2× λ    

   μ× δh/δx = 2× μ×x         μ× δh/δy = 2× μ×y        μ× δh/δz= - μ

Therefore we get our five equations.

2×x  =  λ   +  2× μ×x      (1)

2×y  =  λ   +  2× μ×y      (2)

2×z  = 2× λ  -  μ             (3)

x + y + 2 z - 8 = 0          (4)

x² + y² - z = 0                (5)

Subtracting equation (2) from equation (1)

2×x  - 2×y  = 2× μ×x -  2× μ×y

( x - y ) =  μ × ( x - y )       then   μ = 1   and by substitution in eq. (2)

2×y  =  λ   +  2×y        then       λ  = 0

From eq. (3)

2×z  = - 1                                   z = -1/2

By subtitution in eq. (4) and (5)

x  +  y  - 1 - 8 = 0     ⇒   x  +  y  = 9

x² + y² + 1/2  = 0        this equation has no solution.

If we make  x = y

Equation (4) and (5) become

2× x + 2× z = 8

2×x² - z = 0        ⇒         z = 2×x²

2× x + 4×x² = 8     ⇒   2×x² + x - 8 = 0

Solving for x          x₁,₂ = ( -1 ± √ 1 + 64 ) / 4

x₁,₂ = ( -1 ± √65 ) 4

x₁ = (-1 + √65) /4            x₂ = ( -1 - √65) /4          √ 65  = 8.06

x₁ = 1.765            x₂ = - 2.265

And  z = 2×x²      ⇒      z₁ =  6.23          z₂  =

And critical points are:

P ( x₁  y₁  z₁ )      (  (7.06) /4  ,  (7.06) /4 ,  6.23 )

Q ( x₂  y₂ z₂ )      ( -9.06/4   ,   -9.06 /4  ,  10.26 )

And by simple  inspeccion we see That

minimum distance is the point P = ( -9.06/4   ,   -9.06 /4  ,  6.23 )

the point Q  (  (7.06) /4  ,  (7.06) /4 ,  10.26) is the farthest point

Related Link : https://brainly.com/question/4609414

Given f(x) = x² - 10x + 22, what is the range of f?

Answers

Answer:

[-3, ∞)

Step-by-step explanation:

There are many ways to find the range but I will use the method I find the easiest.

First, find the derivative of the function.

f(x) = x² - 10x + 22

f'(x) = 2x - 10

Once you find the derivative, set the derivative equal to 0.

2x - 10 = 0

Solve for x.

2x = 10

x = 5

Great, you have the x value but we need the y value. To find it, plug the x value of 5 back into the original equation.

f(x) = x² - 10x + 22

f(5) = 5² - 10(5) + 22

      = 25 - 50 +22

      = -3

Since the function is that of a parabola, the value of x is the vertex and the y values continue going up to ∞.

This means the range is : [-3, ∞)

Another easy way is just graphing the function and then looking at the range. (I attached a graph of the function below).

Hope this helped!

Answer:

The correct answer is B

Step-by-step explanation:

What type of symmetry can the graph of a quadratic function have?

A. Symmetry about the x-axis

B. Symmetry about the y-axis

C. Symmetry about the line y=x

D. No symmetry

Answers

Answer:

B

Step-by-step explanation:

Option B is correct. A quadratic function can have symmetry about the y-axis.

What is quadratic equation?

A quadratic equation is a second-order polynomial equation in a single variable x , ax²+bx+c=0. with a ≠ 0 .

A quadratic function can have symmetry about the axis of symmetry, which is a vertical line that passes through the vertex of the parabola. The axis of symmetry is given by the equation x = -b/(2a)

where a and b are the coefficients of the quadratic function ax² + bx + c.

If a quadratic function has symmetry about the x-axis, then its equation is of the form y = ax² + c, where a and c are constants.

If it has symmetry about the y-axis, then its equation is of the form y = ax², where a is a constant.

Therefore, Option B is correct. A quadratic function can have symmetry about the y-axis.

To learn more on Quadratic equation click:

https://brainly.com/question/17177510

#SPJ3

Rockwell hardness of pins of a certain type is known to have a mean value of 50 and a standard deviation of 1.8. (Round your answers to four decimal places.)
(a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 17 pins is at least 51?
answer is 0.011

(b) What is the (approximate) probability that the sample mean hardness for a random sample of 45 pins is at least 51?

Answers

Answer:

a) 0.011 = 1.1% probability that the sample mean hardness for a random sample of 17 pins is at least 51

b) 0.0001 = 0.1% probability that the sample mean hardness for a random sample of 45 pins is at least 51

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this problem, we have that:

[tex]\mu = 50, \sigma = 1.8[/tex]

(a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 17 pins is at least 51?

Here [tex]n = 17, s = \frac{1.8}{\sqrt{17}} = 0.4366[/tex]

This probability is 1 subtracted by the pvalue of Z when X = 51. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{51 - 50}{0.4366}[/tex]

[tex]Z = 2.29[/tex]

[tex]Z = 2.29[/tex] has a pvalue of 0.9890

1 - 0.989 = 0.011

0.011 = 1.1% probability that the sample mean hardness for a random sample of 17 pins is at least 51

(b) What is the (approximate) probability that the sample mean hardness for a random sample of 45 pins is at least 51?

Here [tex]n = 17, s = \frac{1.8}{\sqrt{45}} = 0.2683[/tex]

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{51 - 50}{0.0.2683}[/tex]

[tex]Z = 3.73[/tex]

[tex]Z = 3.73[/tex] has a pvalue of 0.9999

1 - 0.9999 = 0.0001

0.0001 = 0.1% probability that the sample mean hardness for a random sample of 45 pins is at least 51

Final answer:

To find the probability that the sample mean hardness for a random sample of 17 pins is at least 51, we can convert it to a standard normal distribution and use the z-score formula. The probability is approximately 0.011. For a sample size of 45 pins, the probability is approximately 0.001.

Explanation:

To find the probability that the sample mean hardness for a random sample of 17 pins is at least 51, we can convert it to a standard normal distribution and use the z-score formula. The formula for the z-score is:

z = (x - μ) / (σ / sqrt(n))

where x is the value we are interested in (51), μ is the mean (50), σ is the standard deviation (1.8), and n is the sample size (17).

Plugging in the values, we get:

z = (51 - 50) / (1.8 / sqrt(17))

Calculating this, we find that the z-score is approximately 1.044. Looking up this z-score in the z-table, we find that the probability is 0.853. However, we are interested in the probability that the hardness is at least 51, which means we need to find the area to the right of the z-score. So, we subtract the probability from 1:

Probability = 1 - 0.853 = 0.147, or approximately 0.011 when rounded to four decimal places.

Therefore, the probability that the sample mean hardness for a random sample of 17 pins is at least 51 is approximately 0.011.

To find the probability that the sample mean hardness for a random sample of 45 pins is at least 51, we follow the same process. The only difference is that the sample size is now 45 instead of 17. Plugging in the values into the z-score formula, we find that the z-score is approximately 3.106. Looking up this z-score in the z-table, we find that the probability is 0.999. Subtracting this probability from 1, we get:

Probability = 1 - 0.999 = 0.001.

Therefore, the probability that the sample mean hardness for a random sample of 45 pins is at least 51 is approximately 0.001.

5 inches +?inches = 1 foot?

Answers

Answer:

7 inches hope this helps

Step-by-step explanation:

Answer:

7 inches

Step-by-step explanation:

12 inches is a foot

4x - 2y =7
X + 2y =3
What are x and y ??

Answers

4x - 2y = 7

x + 2y =  3

5x = 10

x=2 and y=0

Answer:

{x,y} = {2,1/2}

Step-by-step explanation:

Solve by Substitution :

1. Solve equation [2] for the variable  x  

 [2]    x = -2y + 3

2. Plug this in for variable  x  in equation [1]

  [1]    4•(-2y+3) - 2y = 7

  [1]     - 10y = -5

3.Solve equation [1] for the variable  y  

  [1]    10y = 5

  [1]    y = 1/2

By now we know this much :

   x = -2y+3

   y = 1/2

4.Use the  y  value to solve for  x  

   x = -2(1/2)+3 = 2

Solution :

{x,y} = {2,1/2}

CAN SOMEONE HELP ME PLEASEEEplease and thank u

Answers

Answer:

C,H,I..............

| 3. Find the Area of the triangle.
8.6 yd
10.9 yd

Answers

Given:

The base of the triangle = 8.6 yd

The height of the triangle = 10.9 yd

To find the area of the triangle.

Formula

The area of a triangle with b as base and h as height is

[tex]A=\frac{1}{2}bh[/tex]

Now,

Taking, b= 8.6 and h = 10.9 we get,

[tex]A=\frac{1}{2}(8.6)(10.9)[/tex] sq yd

or, [tex]A= 46.87[/tex] sq yd

Hence,

The area of the given triangle is 46.87 sq yd.

Answer:

46.87 yd^2

Step-by-step explanation:

The area of the triangle is given by

A = 1/2 bh

A = 1/2 (8.6)(10.9)

A =46.87 yd^2

What is the Pythagorean Therom

Answers

a^2 + b^2 = c^2

Where c^2 is the hypotenuse

Answer:

its a fundamental relation in Euclidean geometry among the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

Formula:

[tex]a^{2} + b^{2} = c^{2}[/tex]

Other Questions
Colonists from which of the following European nations generally had the most cooperative relations with American Indians? How did Rome govern the new territories? Rome required people to speak only Latin. Rome allowed local people to elect a governor. Rome divided the new territories into provinces. Rome barred conquered men from serving in the army. Aces Inc., a manufacturer of tennis rackets, began operations this year. The company produced 6,800 rackets and sold 5,700. Each racket was sold at a price of $98. Fixed overhead costs are $93,840 and fixed year selling and administrative costs are $66,000. The company also reports the following per unit costs for the Variable production costs Variable selling and administrative expensesS 280 $25.80 Required: Prepare an income statement under variable costing ACES INC Labels of many food products have expiration dates, at which point they are typically removed from the supermarket shelves. A particular natural yogurt degrades (reacts) with a half-life of 45 days. The manufacturer of the yogurt wants unsold product pulled from the shelves when it degrades to no more than 80% (0.8) of its original quality. Assume the degradation process is first order. What should be the "best if used before" date on the container with respect to the date the yogurt was packaged? Please select the word from the list that best fits the definitionTells when and where a book was published Flyaway Travel Company reported net income for 2021 in the amount of $101,000. During 2021, Flyaway declared and paid $3,225 in cash dividends on its nonconvertible preferred stock. Flyaway also paid $21,000 cash dividends on its common stock. Flyaway had 51,000 common shares outstanding from January 1 until 21,000 new shares were sold for cash on April 1, 2021. What is 2021 basic earnings per share A "mathematically fair bet" is one in which a gambler bets, say, $100 for a 10 percent chance to win $1,000 ($100 = 0.10 $1,000). Assuming diminishing marginal utility of dollars, this is not a fair bet in terms of utility because Dynamic routing:a) imposes an overhead cost by increasing network trafficb) decreases performance in networks which have many possible routesc) decreases performance in networks with "bursty" trafficd) does not add to the network traffic and should be used in all network environmentse) is another term for static routing in WANs In the story Maus how is a child of German and Jewish heritage portrayed and why? Ben really enjoys outdoor activities. When he isn't working, he's biking, hiking, sailing, or training to run marathons. Which of the following criteria would Ben think is the LEAST important as he decides on a career to support his lifestyle? a) high-paying b) employee benefits such as paid vacations, health insurance c) flexible work schedule d) location - away from major city Explain how the Texas oil industry has had both positive and negative influences on the state of Texas. Candy Claws Company gathered the following reconciling information in preparing its August bank reconciliation: Cash balance per books, 8/31 $19,500 Deposits in transit 900 Notes receivable and interest collected by bank 4,800 Bank charge for check printing 120 Outstanding checks 12,000 NSF check 1,020 The adjusted cash balance per books on August 31 is a. $11,160. b. $12,060.c. $23,160. d. $24,060. Which statement about PCBs is false? A. They are found at highest concentrations in Inuit women who eat herbivorous caribou. B. They originate from industrial and agricultural production. C. They cause a variety of health ailments in humans. D. They can remain in the environment for long periods of time. What does hitler believe about aryan people? What does hitler believe about Jewish people? It earth is like a greenhouse carbon gases in the atmosphere are like the A: planetsB:glass C:sunD:ground Raquel takes her pulse in order to determine her resting heart rate, measured in beats per minute (\text{bpm})(bpm)left parenthesis, start text, b, p, m, end text, right parenthesis. She takes it for three minutes, and makes the following table of the results. We'll assume that Raquel's heart rate is constant over the three-minute period.The graph below shows an ideal resting heart rate for someone Raquel's height, weight, age, and general level of fitness. The x-coordinate represents minutes, and the y-coordinate represents beats.Minute 1 2 3Beats 62 124 186 You are telling your best friend about your psychology courses because he expressed interest in changing his major. As you discuss the different psychological perspectives he says, "I think mental processes are too obscure to be studied scientifically." Your friend most likely agrees with ________. The function f(x) is shown on the provided graph.Graph the result of the following transformation on f(x).f(x)+6 what statement defines enzymatic activity The table shows the number of wins of two high school softball teams over the past ten years. Which statement BEST compares themean absolute deviation (MAD) of the two sets of data?