One piece of copper jewelry at 111°C has exactly twice the mass of another piece, which is at 28°C. Both pieces are placed inside a calorimeter whose heat capacity is negligible. What is the final temperature inside the calorimeter (c of copper = 0.387 J/g·K)?

Answers

Answer 1

Answer:

83.33 C

Explanation:

T1 = 111 C, m1 = 2m

T2 = 28 C, m2 = m

c  = 0.387 J/gK

Let the final temperature inside the calorimeter of T.

Use the principle of calorimetery

heat lost by hot body = heat gained by cold body

m1 x c x (T1 - T) = m2 x c x (T - T2)

2m x c X (111 - T) = m x c x (T - 28)

2 (111 - T) = (T - 28)

222 - 2T = T - 28

3T = 250

T = 83.33 C

Thus, the final temperature inside calorimeter is 83.33 C.


Related Questions

A vector has components Ax = 52.0 m and Ay = 41.0 m. Find: (a) The length of the vector A.
(b) The angle it makes with the x-axis (in degrees).

Answers

Answer:

Part a)

A = 66.2 m

Part b)

Angle = 38.35 degree

Explanation:

Part a)

Length of the vector is the magnitude of the vector

here we know that

[tex]A_x = 52.0 m[/tex]

[tex]A_y = 41.0 m[/tex]

now we have

[tex]A = \sqrt{A_x^2 + A_y^2}[/tex]

[tex]A = \sqrt{52^2 + 41^2}[/tex]

[tex]A = 66.2 m[/tex]

Part b)

Angle made by the vector is given as

[tex]tan\theta = \frac{A_y}{A_x}[/tex]

[tex]tan\theta = \frac{41}{52}[/tex]

[tex]\theta = 38.25 degree[/tex]

The position vector of a particle of mass 1.70 kg as a function of time is given by r with arrow = (6.00 î + 5.70 t ĵ), where r with arrow is in meters and t is in seconds. Determine the angular momentum of the particle about the origin as a function of time.

Answers

Final answer:

The angular momentum of a particle about the origin is given by the cross product of its position vector and linear momentum. In this case, the position vector of the particle is (6.00 î + 5.70 t ĵ) and the mass of the particle is 1.70 kg. To find the angular momentum, calculate the linear momentum and take the cross product with the position vector.

Explanation:

The angular momentum of a particle about the origin is given by the cross product of its position vector and linear momentum. In this case, the position vector of the particle is represented by r = (6.00 î + 5.70 t ĵ) and the mass of the particle is 1.70 kg. To find the angular momentum, we need to calculate the linear momentum first.

The linear momentum of a particle is given by the product of its mass and velocity. The velocity vector is given by the derivative of the position vector with respect to time, which in this case is v = (0 î + 5.70 ĵ) m/s. Substituting the values, we can find the linear momentum, which is p = (1.70 kg)(0 î + 5.70 ĵ) m/s.

To find the angular momentum, we take the cross product of the position vector and linear momentum:

ŕ × p = (6.00 î + 5.70 t ĵ) × (1.70 kg)(0 î + 5.70 ĵ) m/s = (0 î + 34.65 î t + 9.69 ĵ) kg·m²/s

Therefore, the angular momentum of the particle about the origin as a function of time is (0 î + 34.65 î t + 9.69 ĵ) kg·m²/s.

The angular momentum of the particle about the origin as a function of time is L(t) = 58.14 t k kg·m²/s. This result was obtained by calculating the cross product of the position and linear momentum vectors.

To determine the angular momentum of a particle about the origin as a function of time, we start by using the given position vector r(t) = (6.00 î + 5.70t ĵ) in meters.

The linear momentum p of the particle is given by p = m v, where m is the mass and v is the velocity. Since mass m = 1.70 kg, we first need the velocity. The velocity v(t) is the derivative of the position vector:

v(t) = d(r(t))/dt = 0 î + 5.70 ĵ = 5.70 ĵ m/s

Now, the linear momentum p(t) is:

p(t) = m v(t) = 1.70 kg * 5.70 ĵ m/s = 9.69 ĵ kg·m/s

The angular momentum L about the origin is given by L = r × p. Performing the cross product calculation:

r = 6.00 î + 5.70t ĵ

p = 9.69 ĵ

r × p = (6.00 î + 5.70t ĵ) × (9.69 ĵ)

Calculating the cross product, we get:

i-component: 0j-component: 0k-component: 6.00 * 9.69 - 0 = 58.14 t k

Thus, the angular momentum as a function of time is:

L(t) = 58.14 t k kg·m²/s

A tennis ball bounces on the floor three times. If each time it loses 11% of its energy due to heating, how high does it rise after the third bounce, provided we released it 4.4 m from the floor?

Answers

Answer:

h = 3.10 m

Explanation:

As we know that after each bounce it will lose its 11% of energy

So remaining energy after each bounce is 89%

so let say its initial energy is E

so after first bounce the energy is

[tex]E_1 = 0.89 E[/tex]

after 2nd bounce the energy is

[tex]E_2 = 0.89(0.89 E)[/tex]

After third bounce the energy is

[tex]E_3 = (0.89)(0.89)(0.89)E[/tex]

here initial energy is given as

[tex]E = mgH_o[/tex]

now let say final height is "h" so after third bounce the energy is given as

[tex]E_3 = mgh[/tex]

now from above equation we have

[tex]mgh = (0.89)(0.89)(0.89)(mgH)[/tex]

[tex]h = 0.705H[/tex]

[tex]h = 0.705(4.4 m)[/tex]

[tex]h = 3.10 m[/tex]

What is the common trade name of the polymer polytetrafluoroethylene? For what is it commonly used?

Answers

Answer:

Common trade name of polytetrafluoroethylene is Teflon

Many uses are there some of them are given in explanation.

Explanation:

Common trade name of polytetrafluoroethylene is Teflon.

Main uses of polytetrafluoroethylene:

1) To coat non stick pans

2) Used as ski bindings

3)  Used as fabric protector to repel stains on formal school-wear

4) Used to make to make a waterproof, breathable fabric in outdoor apparel.

how large can the kinetic energy of an electron be that is localized within a distance (change in) x = .1 nmapproximately the diameter of a hydrogen atom (ev)

Answers

Answer:

The kinetic energy of an electron is [tex]1.54\times10^{-15}\ J[/tex]

Explanation:

Given that,

Distance = 0.1 nm

We need to calculate the momentum

Using uncertainty principle

[tex]\Delta x\Delta p\geq\dfrac{h}{4\pi}[/tex]

[tex]\Delta p\geq\dfrac{h}{\Delta x\times 4\pi}[/tex]

Where, [tex]\Delta p[/tex] = change in momentum

[tex]\Delta x[/tex] = change in position

Put the value into the formula

[tex]\Delta p=\dfrac{6.6\times10^{-34}}{4\pi\times10^{-10}}[/tex]

[tex]\Delta p=5.3\times10^{-23}[/tex]

We need to calculate the kinetic energy for an electron

[tex]K.E=\dfrac{p^2}{2m}[/tex]

Where, P = momentum

m = mass of electron

Put the value into the formula

[tex]K.E=\dfrac{(5.3\times10^{-23})^2}{2\times9.1\times10^{-31}}[/tex]

[tex]K.E=1.54\times10^{-15}\ J[/tex]

Hence, The kinetic energy of an electron is [tex]1.54\times10^{-15}\ J[/tex]

A rock, with a density of 3.55 g/cm^3 and a volume of 470 cm^3, is thrown in a lake. a) What is the weight of the rock out of the water? b) What is the buoyancy force on the rock? c) What is the mass of the water that the rock displaces? d) What is the weight of the rock under water?

Answers

Answer:

a) Weight of the rock out of the water = 16.37 N

b) Buoyancy force = 4.61 N

c) Mass of the water displaced = 0.47 kg

d) Weight of rock under water = 11.76 N

Explanation:

a) Mass of the rock out of the water = Volume x Density

   Volume = 470 cm³

   Density = 3.55 g/cm³

   Mass = 470 x 3.55 = 1668.5 g = 1.6685 kg

   Weight of the rock out of the water = 1.6685 x 9.81 = 16.37 N

b) Buoyancy force = Volume x Density of liquid x Acceleration due to gravity.

   Volume = 470 cm³

   Density of liquid = 1 g/cm³

   [tex]\texttt{Buoyancy force}= \frac{470\times 1\times 9.81}{1000} = 4.61 N[/tex]

c) Mass of the water displaced = Volume of body x Density of liquid

   Mass of the water displaced = 470 x 1 = 470 g = 0.47 kg

d) Weight of rock under water = Weight of the rock out of the water - Buoyancy force

   Weight of rock under water = 16.37 - 4.61  =11.76 N

When a 13-cm pipeline is filled with air at 30'C a. what is the maximum speed (in m/s) the air could be traveling if flow were laminar? b. what would be the maximum speed (in m/s)'to maintain laminar flow if the pipeline were filled with water at the same temperature instead of air?

Answers

Answer:[tex]V_{air}=0.259m/s[/tex]

[tex]V_{water}=0.01293m/s[/tex]

Explanation:

Given data

Length of pipe[tex]\left ( L\right )[/tex]=13cm=0.13m

From tables at [tex]T=30^{\circ}[/tex]

Kinematic viscosity of air[tex]\left ( \mu\right )=1.6036\times 10{-5} m^{2}/s[/tex]

and reynolds number is given by

Re=[tex]\frac{V\times \characteristic\ length}{Kinematic visocity}[/tex]

Flow is laminar up to Re.no. 2100

Re=[tex]\frac{V\times L}{1.6036\times 10{-5}}[/tex]

2100=[tex]\frac{V\times 0.13}{1.6036\times 10{-5}}[/tex]

V=0.259 m/s

For water

Kinematic viscosity of water[tex]\left ( \mu\right )=0.801\times 10{-6}m^{2}/s[/tex]

2100=[tex]\frac{V\times 0.13}{0.801\times 10{-6}}[/tex]

V=0.01293 m/s

Two ships leave a harbor at the same time, traveling on courses that have an angle of 110∘ between them. If the first ship travels at 22 miles per hour and the second ship travels at 34 miles per hour, how far apart are the two ships after 1.2 hours?

Answers

Answer:

49.07 miles

Explanation:

Angle between two ships = 110° = θ

First ship speed = 22 mph

Second ship speed = 34 mph

Distance covered by first ship after 1.2 hours = 22×1.2 = 26.4 miles = b

Distance covered by second ship after 1.2 hours = 34×1.2 = 40.8 miles = c

Here the angle between the two sides of a triangle is 110° so from the law of cosines we get

a² = b²+c²-2bc cosθ

⇒a² = 26.4²+40.8²-2×26.4×40.8 cos110

⇒a² = 2408.4

⇒a = 49.07 miles

A proton moves through a region of space where there is a magnetic field B⃗ =(0.64i+0.40j)T and an electric field E⃗ =(3.3i−4.5j)×103V/m. At a given instant, the proton's velocity is v⃗ =(6.6i+2.8j−4.8k)×103m/s.

Determine the components of the total force on the proton.

Express your answers using two significant figures. Enter your answers numerically separated by commas.

Answers

Answer:

[tex]F = (8.35 \times 10^{-16})\hat i - (12.12 \times 10^{-16})\hat j +(1.35 \times 10^{-16})\hat k[/tex]

Explanation:

When a charge is moving in constant magnetic field and electric field both then the net force on moving charge is vector sum of force due to magnetic field and electric field both

so first the force on the moving charge due to electric field is given by

[tex]\vec F_e = q\vec E[/tex]

[tex]\vec F_e = (1.6 \times 10^{-19})(3.3 \hat i - 4.5 \hat j) \times 10^3[/tex]

[tex]\vec F_e = (5.28 \times 10^{-16}) \hat i - (7.2 \times 10^{-16}) \hat j[/tex]

Now force on moving charge due to magnetic field is given as

[tex]\vec F_b = q(\vec v \times \vec B)[/tex]

[tex]\vec F_b = (1.6 \times 10^{-19})((6.6 \hat i+2.8 \hat j−4.8 \hat k) \times 10^3 \times (0.64 \hat i + 0.40 \hat j) )[/tex]

[tex]\vec F_b = (4.22 \times 10^{-16})\hat k - (2.87 \times 10^{-16})\hat k - (4.92 \times 10^{-16})\hat j + (3.07 \times 10^{-16}) \hat i[/tex]

[tex]\vec F_b = (3.07\times 10^{-16})\hat i - (4.92 \times 10^{-16})\hat j + (1.35 \times 10^{-16})\hat k[/tex]

Now net force due to both

[tex]F = F_e + F_b[/tex]

[tex]F = (8.35 \times 10^{-16})\hat i - (12.12 \times 10^{-16})\hat j +(1.35 \times 10^{-16})\hat k[/tex]

Final answer:

An electric and magnetic field exerts force on a proton moving with velocity in that field. The total force can be calculated from the Lorentz Force equation, which requires knowledge of the charge of the proton, its velocity, and the electric and magnetic fields it is experiencing.

Explanation:

In Physics, the total force acting on a charged particle moving through an electric field E and a magnetic field B is given by the Lorentz Force equation: F = q(E + v × B), where q is the charge of the particle, and v is its velocity.

By given that the proton's charge is q = 1.6×10^-19 C and proton's velocity v = (6.6i+2.8j-4.8k)x10^3 m/s, electric field E = (3.3i-4.5j)x10^3 V/m, and magnetic field B = (0.64i+0.40j)T, we can plug these values into the equation.

To find the cross product of v and B, we use the determinant of a 3x3 matrix. The value for the F vector can be calculated as follows: F = q [E + v × B] and the cross product 'v × B' is calculated as the determinant of a 3x3 matrix. This yields force values that are expected to be in i, j, and k components. These calculations need to be done carefully to ensure accuracy, but are straightforward with the use of any standard physics formula sheet.

Learn more about Lorentz Force here:

https://brainly.com/question/15552911

#SPJ3

A pair of eyeglass frames are made of an epoxy plastic (coefficient of linear expansion = 1.30 ✕ 10−4°C−1). At room temperature (20.0°C), the frames have circular lens holes 2.34 cm in radius. To what temperature must the frames be heated if lenses 2.35 cm in radius are to be inserted into them? °C

Answers

Answer:

Final temperature = 52.44 °C

Explanation:

We have equation for thermal expansion

        ΔL = LαΔT

We have change in length = Circumference of 2.35 cm radius - Circumference of 2.34 cm radius = 2π x 2.35 - 2π x 2.34 = 0.062 cm

Length of eyeglass frame = 2π x 2.34 = 14.70 cm

Coefficient of linear expansion, α = 1.30 x 10⁻⁴ °C⁻¹

Substituting

        0.062 = 14.70 x 1.30 x 10⁻⁴ x ΔT    

         ΔT = 32.44°C

         Final temperature = 32.44 + 20 = 52.44  °C

Final answer:

To fit lenses of 2.35 cm radius into eyeglass frames with lens holes of 2.34 cm radius at room temperature, the frames made of an epoxy plastic should be heated to about 52°C. This fact is obtained using the physics concept of thermal expansion.

Explanation:

The question relates to the concept of thermal expansion typically studied in physics. The change in radius due to thermal expansion in a one-dimensional system like the eyeglass frames can be given by the formula Δr = αr(ΔT), where Δr is the change in radius, α is the coefficient of expansion, r is the initial radius, and ΔT is the change in temperature. Upon heating, the frames will expand and their lens holes will become larger. Here, we are trying to determine the temperature needed to increase the hole radius from 2.34 cm to 2.35 cm. Using the above formula:

0.01 cm = 1.30 × 10−4°C−1 * 2.34 cm * ΔT

Solving for ΔT (the change in temperature), we get ΔT = about 32°C. Thus, the frames need to be heated to about 32°C above room temperature, i.e., 20°C + 32°C = 52°C.

Learn more about Thermal Expansion here:

https://brainly.com/question/30242448

#SPJ11

In the two-slit experiment, monochromatic light of frequency 5.00 × 1014 Hz passes through a pair of slits separated by 2.20 × 10-5 m. (c = 3.00 × 108 m/s) (a) At what angle away from the central bright spot does the third bright fringe past the central bright spot occur? (b) At what angle does the second dark fringe occur?

Answers

Explanation:

It is given that,

Frequency of monochromatic light, [tex]f=5\times 10^{14}\ Hz[/tex]

Separation between slits, [tex]d=2.2\times 10^{-5}\ m[/tex]

(a) The condition for maxima is given by :

[tex]d\ sin\theta=n\lambda[/tex]

For third maxima,

[tex]\theta=sin^{-1}(\dfrac{n\lambda}{d})[/tex]

[tex]\theta=sin^{-1}(\dfrac{n\lambda}{d})[/tex]

[tex]\theta=sin^{-1}(\dfrac{nc}{fd})[/tex]  

[tex]\theta=sin^{-1}(\dfrac{3\times 3\times 10^8\ m/s}{5\times 10^{14}\ Hz\times 2.2\times 10^{-5}\ m})[/tex]  

[tex]\theta=4.69^{\circ}[/tex]

(b) For second dark fringe, n = 2

[tex]d\ sin\theta=(n+1/2)\lambda[/tex]

[tex]\theta=sin^{-1}(\dfrac{5\lambda}{2d})[/tex]

[tex]\theta=sin^{-1}(\dfrac{5c}{2df})[/tex]

[tex]\theta=sin^{-1}(\dfrac{5\times 3\times 10^8}{2\times 2.2\times 10^{-5}\times 5\times 10^{14}})[/tex]

[tex]\theta=3.90^{\circ}[/tex]

Hence, this is the required solution.

(a) The angle of the third bright fringe (θ₃) is approximately 4.69 degrees (b) The angle of the second dark fringe (θ₂) is approximately 3.90 degrees.

To solve this problem, we can use the formula for the angles of the maxima and minima in a Double-Slit Experiment diffraction pattern. For the third bright fringe, the condition for constructive interference is given by:

[tex]\[ d \sin(\theta_m) = m \lambda \][/tex]

where:

- d is the slit separation,

- [tex]\( \theta_m \)[/tex] is the angle of the mth bright fringe,

- m is the order of the fringe

- λ is the wavelength of the light.

For the second dark fringe, the condition for destructive interference is given by:

[tex]\[ d \sin(\theta_n) = \left( n + \frac{1}{2} \right) \lambda \][/tex]

where:

- [tex]\( \theta_n \)[/tex] is the angle of the nth dark fringe,

- n is the order of the dark fringe

Given that the frequency f is related to the wavelength λ by the speed of light (c) as c = fλ, we can express λ in terms of f.

Part (a): Third Bright Fringe

[tex]\[ d \sin(\theta_m) = m \lambda \][/tex]

[tex]\[ \sin(\theta_3) = \frac{3 \lambda}{d} \][/tex]

[tex]\[ \sin(\theta_3) = \frac{3 c}{d f} \][/tex]

[tex]\[ \theta_3 = \sin^{-1}\left(\frac{3 c}{d f}\right) \][/tex]

Part (b): Second Dark Fringe

[tex]\[ d \sin(\theta_n) = \left( n + \frac{1}{2} \right) \lambda \][/tex]

[tex]\[ \sin(\theta_2) = \frac{(2 + 0.5) \lambda}{d} \][/tex]

[tex]\[ \sin(\theta_2) = \frac{2.5 c}{d f} \][/tex]

[tex]\[ \theta_2 = \sin^{-1}\left(\frac{2.5 c}{d f}\right) \][/tex]

Now, plug in the values:

Given:

- [tex]\( d = 2.20 \times 10^{-5} \)[/tex] m,

- [tex]\( f = 5.00 \times 10^{14} \)[/tex] Hz,

- [tex]\( c = 3.00 \times 10^8 \)[/tex] m/s,

- m = 3,

- n = 2.

[tex]\[ \theta_3 = \sin^{-1}\left(\frac{3 \times 3.00 \times 10^8}{2.20 \times 10^{-5} \times 5.00 \times 10^{14}}\right) \][/tex]

[tex]\[ \theta_3 \approx 4.69^\circ \][/tex] (rounded to two decimal places, as given)

[tex]\[ \theta_2 = \sin^{-1}\left(\frac{2.5 \times 3.00 \times 10^8}{2.20 \times 10^{-5} \times 5.00 \times 10^{14}}\right) \][/tex]

[tex]\[ \theta_2 \approx 3.90^\circ \][/tex] (rounded to two decimal places, as given)

So, the correct answers are indeed [tex]\( \theta_3 \approx 4.69^\circ \)[/tex] for part (a) and [tex]\( \theta_2 \approx 3.90^\circ \)[/tex] for part (b).

Learn more about Double-Slit Experiment here:

https://brainly.com/question/28108126

#SPJ6

A tree is 257 ft high. To the nearest tenth of a meter, how tall is it in meters? There are 3.28 ft in 1 m.

Answers

Answer:

Height of tree = 78.35 meters.

Explanation:

We have

          1 meter = 3.28 feet

That is

          [tex]1 ft = \frac{1}{3.28}=0.3048m[/tex]

Here height of tree = 257 ft

Height of tree = 257 x 0.3048 = 78.35 m

Height of tree = 78.35 meters.

The deepest part of the Atlantic Ocean is called Milwaukee Deep with a depth of 8648 m. Determine the pressure in the ocean water at the base of Milwaukee Deep.

Answers

Answer:

8.475 x 10^7 Pa

Explanation:

h = 8648 m, g = 9.8 m/s^2, density of water, d = 1000 kg/m^3

Pressure at a depth is defined as the product of depth of water , acceleration due to gravity and density of water.

P = h x d x g

P = 8648 x 1000 x 9.8 = 8.475 x 10^7 Pa

Relationship between elastic shear stress and shear strain is a) Young's modulus b) Poissons ratio c) Saint-Venant's principle d) Modulus of rigidity e) None of these

Answers

Answer:

Option D is the correct answer.

Explanation:

Young's modulus is the ratio of tensile stress and tensile strain.

Bulk modulus is the ratio of pressure and volume strain.

Rigidity modulus is the ratio of shear stress and shear strain.

Here we are asked about relationship between elastic shear stress and shear strain. We have rigidity modulus is the ratio of shear stress and shear strain.

Option D is the correct answer.

The relationship between elastic shear stress and shear strain is characterized by the modulus of rigidity or shear modulus, which is a key property in understanding a material's deformation under shear forces.

The relationship between elastic shear stress and shear strain is represented by the modulus of rigidity, also known as the shear modulus. This modulus is a type of elastic modulus specific to shear stress and is the proportionality constant that relates shear stress to shear strain within the linear elastic region of a material's response to stress, as described by Hooke's Law.

There are different types of elastic modulus for different types of stress and strain; for tensile stress, the modulus is known as Young's modulus, for bulk stress, it is the bulk modulus, and for shear stress - which is the focus of this question - it is the shear or rigidity modulus. The modulus of rigidity is crucial for determining how a material will deform under shear forces and is a fundamental property used in engineering and construction to ensure materials behave as expected under load.

A far sighted person can not see clearly objects that are closer to his eyes than 60.0 cm. Which one of the following combinations represents the correct focal length and the refractive power of the contact lenses that will enable him to see the objects at a distance of 25.0 cm from his eyes?

A) -42.9 cm, +2.33 diopters

B) -42.9 cm, -2.33 diopters

C) +60 cm, +42.9 diopters

D) +42.9 cm, +2.33 diopters

E) +42.9 cm, -2.33 diopters

Answers

Answer:

[tex]f = +42.9 cm[/tex]

[tex]P =+2.33Dioptre[/tex]

Explanation:

As we know that Far sighted person has near point shifted to 60 cm distance

so he is able to see the object 60 cm

and the person want to see the objects at distance 25 cm

so here the image distance from lens is 60 cm and the object distance from lens is 25 cm

now from lens formula we have

[tex]\frac{1}{d_i} + \frac{1}{d_0} = \frac{1}{f}[/tex]

[tex]-\frac{1}{60} + \frac{1}{25} = \frac{1}{f}[/tex]

[tex]f = +42.9 cm[/tex]

Now we know that power of lens is given as

[tex]P = \frac{1}{f}[/tex]

[tex]P = \frac{1}{0.429} = +2.33Dioptre[/tex]

What is the angular momentum of a 3-kg uni- form cylindrical grinding wheel of radius 0.2 m when rotating at 1500 rpm (Rotational Inertia of a cylinder is mR^2/2).

Answers

Answer:

[tex]L = 9.42 kg m^2/s[/tex]

Explanation:

Angular speed of the cylinder is given as

[tex]f = 1500 rpm[/tex]

[tex]f = 1500 round/60 s[/tex]

[tex]\omega = 2\pi f[/tex]

[tex]\omega = 2\pi(25) = 50 \pi[/tex]

now moment of inertia of the cylinder is given as

[tex]I = \frac{1}{2}mR^2[/tex]

[tex]I = \frac{1}{2}(3)(0.2)^2[/tex]

[tex]I = 0.06 kg m^2[/tex]

now we have

[tex]L = I\omega[/tex]

[tex]L = (0.06)(50\pi)[/tex]

[tex]L = 9.42 kg m^2/s[/tex]

A robot car drives off a cliff that is 11 meters above the water below. The car leaves the cliff horizontally with some initial speed and travels down to the water. The car hits the water a distance of 15 meters from the base of the cliff (it has no air resistance as it falls). What was the driving speed of the car? g =< 0,-9.8,0> N/kg.

Answers

Answer:

Driving speed of the car = 10 m/s

Explanation:

The car hits the water a distance of 15 meters from the base of the cliff.

Horizontal displacement = 11 m

A robot car drives off a cliff that is 11 meters above the water below.

Vertical displacement = 11 m

We have

     s = ut + 0.5 at²

     11 = 0 x t + 0.5 x 9.81 x t²

      t = 1.50 s

So the car moves 15 meters in 1.50 seconds.

     Velocity

             [tex]v=\frac{15}{1.5}=10m/s[/tex]

Driving speed of the car = 10 m/s

A 0.2 cm diameter wire must carry a 20-A current. If the maximum power dissipation along the wire is 4W/m, what is the minimum allowable conductivity of the wire in Ohm-m? (a) 3.18x10 (b) 3.18x10 () 3.18x10 (d) 3.18x10

Answers

Answer:

The conductivity of the wire is [tex]3.18\times10^{7}\ ohm-m[/tex].

Explanation:

Given that,

Diameter = 0.2 cm

Current = 20 A

Power = 4 W/m

We need to calculate the conductivity

We know that,

[tex]\sigma = \dfrac{1}{\rho}[/tex]

Using  formula of resistance

[tex]R = \dfrac{\rho l}{A}[/tex]....(I)

Where,

[tex]\rho[/tex] = resistivity

A = area

l = length

Using formula of power

[tex]P = i^2 R[/tex]

[tex]R = \dfrac{P}{i^2}[/tex]

Put the value of R in equation (I)

[tex]\dfrac{P}{i^2}=\dfrac{\rho l}{\pi r^2}[/tex]

[tex]\rho=\dfrac{P\pi r^2}{l\timesi^2}[/tex]

[tex]\sigma=\dfrac{l\times i^2}{P\pi r^2}[/tex]

Put the all values into the formula

[tex]\sigma=\dfrac{1\times(20)^2}{4\times3.14\times(0.1\times10^{-2})^2}[/tex]

[tex]\sigma=3.18\times10^{7}\ ohm-m[/tex]

Hence, The conductivity of the wire is [tex]3.18\times10^{7}\ ohm-m[/tex].

To solve for the minimum allowable conductivity of the wire, we calculate the resistance based on the maximum power dissipation and then rearrange the formula for resistance to solve for conductivity. The minimum allowable conductivity for the wire is 3.18
* 10^4 (
Ω
m)^-1.

Minimum Allowable Conductivity of the Wire

To find the minimum allowable conductivity of a 0.2 cm diameter wire carrying a 20-A current with a maximum power dissipation of 4W/m, we first need to calculate the resistance of a 1-meter length of the wire based on the power dissipation.

Since power dissipation (
P) along the wire is given by P = I^2
* R, where I is the current and R is the instantaneous resistance of the wire, we can rearrange to find R = P / I^2. Substituting the given values, we get R = 4W / (20A)^2 = 0.01
Ω/m.

The resistance R of a conductor is also given by R =
L / (
σ
* A), where L is the length, σ (sigma) is the conductivity, and A is the cross-sectional area. We can rearrange and solve for the conductivity σ = L / (R
* A).

For a wire with a diameter of 0.2 cm, the cross-sectional area A is
π
* (0.1 cm)^2. Converting to meters, A = 3.14 * (0.001 m)^2 = 3.14
* 10^-6 m^2.

Now, substitute L = 1 m, R = 0.01 Ω/m, and A = 3.14
* 10^-6 m^2 into the formula to find the conductivity σ. The minimum allowable conductivity can then be calculated as σ = 1m / (0.01 Ω/m
* 3.14
* 10^-6 m^2) which yields σ = 3.18
* 10^4 (
Ω
*m)^-1.

A gas sample has a volume of 0.225 L with an unknown temperature. The same gas has a volume of 0.180 L when the temperature is 35 ∘C, with no change in the pressure or amount of gas. Part A What was the initial temperature, in degrees Celsius, of the gas?

Answers

Answer:

The initial temperature of the gas was of T1= 112ºC .

Explanation:

T1= ?

T2= 35 ºC = 308.15 K

V1= 0.225 L

V2= 0.18 L

T2* V1 / V2 = T1

T1= 385.18 K = 112ºC

A Canadian driving from Quebec to Montreal finds he has traveled 271 km. How many miles is this? There are 1.61 km in 1 mi

Answers

Answer:

168.32 mile

Explanation:

1 mile = 1.61 km

1.61 km = 1 mile

1 km = 1 / 1.61 mile

So, 271 km = 271 / 1.61 = 168.32 mile

A solenoid 28.0 cm long with a cross sectional area 0.475 cm^2 contains 645 turns and carries a current 85.0 A. a. Find the inductance of this solenoid. b. Find the total energy contained in the coil's magnetic field (assuming that the field is uniform throughout).

Answers

Explanation:

It is given that,

Length of solenoid, l = 28 cm = 0.28 m

Area of cross section, A = 0.475 cm² = 4.75 × 10⁻⁵ m²

Current, I = 85 A

(a) The inductance of the solenoid is given by :

[tex]L=\dfrac{\mu_oN^2A}{l}[/tex]

[tex]L=\dfrac{4\pi\times 10^{-7}\times (645)^2\times 4.75\times 10^{-5}}{0.28}[/tex]

L = 0.0000886 H

[tex]L=8.86\times 10^{-5}\ H[/tex]

(b) Energy contained in the coil's magnetic field is given by :

[tex]U=\dfrac{1}{2}LI^2[/tex]

[tex]U=\dfrac{1}{2}\times 8.86\times 10^{-5}\ H\times (85\ A)^2[/tex]

U = 0.3200675 Joules

or

U = 0.321 Joules

Hence, this is the required solution.

Two 20 ohm resistors are connected in parallel and two 10 ohm resistors are connected in parallel. If these two combinations are connected in series the equivalent resistance of the combination is: a) 20 ohm b) 10 ohm c) 15 Ohm d) 30 Ohm

Answers

The equivalent resistance of the combination is 15 ohm. Option C is correct.

What is resistance?

Resistance is a type of opposition force due to which the flow of current is reduced in the material or wire. Resistance is the enemy of the flow of current.

Case 1: Two 20 ohm resistors are connected in parallel;

[tex]\rm \frac{1}{R_{eq}_1} =\frac{1}{R_1} +\frac{1}{R_2} \\\\ \rm \frac{1}{R_{eq}_1} =\frac{1}{20} +\frac{1}{20} \\\\ R_{eq}_1}= 10 \ ohm[/tex]

Case 2: Two 10-ohm resistors are connected in parallel.

[tex]\rm \frac{1}{R_{eq}_2} =\frac{1}{R_1} +\frac{1}{R_2} \\\\ \rm \frac{1}{R_{eq}_2} =\frac{1}{10} +\frac{1}{10} \\\\ R_{eq}_2}= 5 \ ohm[/tex]

Case 3; Two combinations are connected in series.

[tex]\rm R= R_{eq_1}+R_{eq_2}\\\\ \rm R= 10+ 5 \\\\ R=15 \ ohm[/tex]

The equivalent resistance of the combination is 15 ohm.

Hence, option C is correct.

To learn more about the resistance refer to the link;

https://brainly.com/question/20708652

#SPJ1

Final answer:

Two 20 ohm resistors in parallel have an equivalent resistance of 10 ohms, two 10 ohm resistors in parallel have an equivalent resistance of 5 ohms. When these two combinations are connected in series, the total equivalent resistance is the sum of both, which is c) 15 ohms.

Explanation:

To find the equivalent resistance of the given combinations of resistors, we first need to understand how resistors combine in parallel and in series.

When resistors are in parallel, the reciprocal of the equivalent resistance is the sum of the reciprocals of the individual resistances:

Req = 1 / (1/R1 + 1/R2)

For two 20 ohm resistors in parallel:

Req = 1 / (1/20 + 1/20) = 1 / (2/20) = 10 ohms

For two 10 ohm resistors in parallel:

Req = 1 / (1/10 + 1/10) = 1 / (2/10) = 5 ohms

When we have resistors in series, their resistances simply add up:

Rtotal = Req1 + Req2

So, for the 10 ohm equivalent and the 5 ohm equivalent resistors in series:

Rtotal = 10 ohms + 5 ohms = 15 ohms

Therefore, the correct answer to the student's question is (c) 15 Ohm.

A 0.5 kg air-hockey puck is initially at rest. What will its kinetic energy be after a net force of 0.4 N acts on it for a distance of 0.7 m?

Answers

Answer:

0.28 J

Explanation:

Since the air-hockey puck was initially at rest

KE₀ = initial kinetic energy of the air-hockey puck = 0 J

KE = final kinetic energy of the air-hockey puck

m = mass of air-hockey puck 0.5 kg

F = net force = 0.4 N

d = distance moved = 0.7 m

Using work-change in kinetic energy

F d = (KE - KE₀)

(0.4) (0.7) = KE - 0

KE = 0.28 J

A 20.0 kg box slides down a 12.0 m long incline at an angle of 30.0 degrees with the horizontal. A force of 50.0 N is applied to the box to try to pull it up the incline. The applied force makes an angle of 0.00 degrees to the incline. If the incline has a coefficient of kinetic friction of 0.100, then the increase in the kinetic energy of the box is: 300 J.
372 J.
410 J.
455 J.
525 J.

Answers

Answer:

[tex]KE_f = 372 J[/tex]

Explanation:

The forces on the box while it is sliding down are

1). Component of the weight along the inclined plane

2). Friction force opposite to the motion of the box

3). Applied force on the box

now we know that component of the weight along the inclined plane is given as

[tex]F_g = mgsin\theta[/tex]

[tex]F_g = (20.0)(9.8)sin30 = 98 N[/tex]

Now we know that other component of the weight of object is counterbalanced by the normal force due to inclined plane

[tex]F_n = mgcos\theta[/tex]

[tex]F_n = (20.0)(9.8)cos30 = 170 N[/tex]

now the kinetic friction force on the box is given as

[tex]F_k = \mu F_n[/tex]

[tex]F_k = 0.100(170) = 17 N[/tex]

now the Net force on the box which is sliding down is given as

[tex]F_{net} = F_g - F_k - F_{applied}[/tex]

[tex]F_{net} = 98 - 17 - 50 = 31 N[/tex]

now the work done by net force = change in kinetic energy of the box

[tex]F.d = KE_f - KE_i[/tex]

[tex]31(12) = KE_f - 0[/tex]

[tex]KE_f = 372 J[/tex]

Final answer:

The increase in the kinetic energy of the box is calculated by finding the net work done on the box as it slides down the incline, which is found to be 373.2 J. The closest answer from the options provided is 372 J.

Explanation:

We need to calculate the increase in the kinetic energy of the box as it slides down the incline. First, let's determine the forces acting on the box:

Gravitational force component along the incline: Fg = m*g*sin(θ) = 20.0 kg * 9.81 m/s2 * sin(30°) = 98.1 N

Kinetic friction force: [tex]F_{k}[/tex] = μk * N = μk * m*g*cos(θ) = 0.100 * 20.0 kg * 9.81 m/s2 * cos(30°) = 17.0 N

Applied force up the incline: Fa = 50.0 N

Next, calculate the net force on the box:

Fnet = Fg - [tex]F_{k}[/tex] - Fa = 98.1 N - 17.0 N - 50.0 N = 31.1 N

Now, calculate the work done by the net force, which equals the increase in kinetic energy:

Work = Fnet * d = 31.1 N * 12.0 m = 373.2 J

The closest answer to this calculated value is 372 J.

A young man and woman are sitting on opposite sides of a park bench (1m). If the young man has a mass of 70kg and the woman has a mass of 60kg, what is the force between them?

Answers

Answer:

130N

Explanation:

F=(M1+M2)V

F= (70+60)*1

F=130*1

F=130N//

A record of travel along a straight path is as follows:

1. Start from rest with constant acceleration of 2.04 m/s2 for 11.0 s.
2. Maintain a constant velocity for the next 2.85 min.
3. Apply a constant negative acceleration of −9.73 m/s2 for 2.31 s.

(a) What was the total displacement for the trip?

(b) What were the average speeds for legs 1, 2, and 3 of the trip, as well as for the complete trip?

(C)COMPLETE TRIP:

Answers

Answer:

a) Total displacement  = 3986.54 m

b) Average speeds

      Leg 1 ->  11.22 m/s

      Leg 2 ->  22.44 m/s

      Leg 3 ->  11.20 m/s

      Complete trip ->  21.63 m/s

Explanation:

a) Leg 1:

Initial velocity, u =  0 m/s

Acceleration , a = 2.04 m/s²

Time, t = 11 s

We have equation of motion s= ut + 0.5 at²

Substituting

   s= ut + 0.5 at²

    s = 0 x 11 + 0.5 x 2.04 x 11²

    s = 123.42 m

Leg 2:

We have equation of motion v = u + at

Initial velocity, u =  0 m/s

Acceleration , a = 2.04 m/s²

Time, t = 11 s

Substituting

   v = 0 + 2.04 x 11 = 22.44 m/s

We have equation of motion s= ut + 0.5 at²

Initial velocity, u =  22.44 m/s

Acceleration , a = 0 m/s²

Time, t = 2.85 min = 171 s

Substituting

   s= ut + 0.5 at²

    s = 22.44 x 171 + 0.5 x 0 x 171²

    s = 3837.24 m

a) Leg 3:

Initial velocity, u =  22.44 m/s

Acceleration , a = -9.73 m/s²

Time, t = 2.31 s

We have equation of motion s= ut + 0.5 at²

Substituting

   s= ut + 0.5 at²

    s = 22.44 x 2.31 + 0.5 x -9.73 x 2.31²

    s = 25.88 m

Total displacement = 123.42 + 3837.24 + 25.88 = 3986.54 m

Average speed is the ratio of distance to time.

b) Leg 1:

        [tex]v_{avg}=\frac{123.42}{11}=11.22m/s[/tex]

 Leg 2:

        [tex]v_{avg}=\frac{3837.24}{171}=22.44m/s[/tex]

Leg 3:

        [tex]v_{avg}=\frac{25.88}{2.31}=11.20m/s[/tex]

Complete trip:

        [tex]v_{avg}=\frac{3986.54}{11+171+2.31}=21.63m/s[/tex]

                           

Three blocks of metal at the same temperature are placed on a hot stove. Their specific heat capacities are listed below. Rank them from greatest to least in how quickly each warms up. Steel, 450 J/(kg⋅∘C) Aluminum, 910 J/(kg⋅∘C) Copper, 390 J/(kg⋅∘C)

Answers

Answer:

Greatest amount of time to warm up: Aluminum

Then steel,

then copper

Explanation:

The higher the heat capacity, the longer it takes to warm the metal up.

Final answer:

To determine which metal heats up the fastest, you must consider their specific heat capacities. Copper, with the lowest specific heat capacity of 390 J/(kg°C), will heat up the fastest, followed by steel (450 J/(kg°C)) and aluminum (910 J/(kg°C)).

Explanation:

The concept of specific heat capacity is critical in understanding the rate at which different materials will heat up or cool down. Specific heat capacity, denoted by Cmetal, refers to the amount of heat needed to raise the temperature of one kilogram of a substance by one degree Celsius.

The metals in question are steel at 450 J/(kg°C), aluminum at 910 J/(kg°C) and copper at 390 J/(kg°C). The lower the specific heat capacity, the faster a material will reach a higher temperature when exposed to a constant heat source. Hence, according to their specific heat capacities, the metals rank in the following order in terms of heating up quickly: copper (390 J/(kg°C)), steel (450 J/(kg°C)), and aluminum (910 J/(kg°C)). This is because copper has the lowest specific heat capacity and therefore will require less energy to increase in temperature compared to steel and aluminum.

The slotted arm revolves in the horizontal plane about the fixed vertical axis through point O. The 2.2-lb slider C is drawn toward O at the constant rate of 3.6 in./sec by pulling the cord S. At the instant for which r = 7.5 in., the arm has a counterclockwise angular velocity ω = 6.3 rad/sec and is slowing down at the rate of 2.1 rad/sec 2. For this instant, determine the tension T in the cord and the force N exerted on the slider by the sides of the smooth radial slot. The force N is positive if side A contacts the slider, negative if side B contacts the slider.

Answers

Answer:

T = 2.5 lb

N= -0.33 lb

Explanation:

given

r = 9 in

[tex]\dot{r} =-3.6 in/s and\ \ddot{r} = 0[/tex]

[tex]\dot{\theta} = 6.3\ rad/s and\ \ddot{\theta} = 2.1\ rad/s^2[/tex]

[tex]-T = m a_r = m(\ddot{r} -r{\dot{\theta}^2)[/tex]

[tex]N= m a_{\theta} = m(r\ddot{\theta}+2\dot{r}\dot{\theta}})[/tex]

[tex]T= mr{\dot{\theta}^2 = \frac{3}{386.4}(9)(6)^2 =2.5lb[/tex]

[tex]N= m(r\ddot{\theta}+2\dot{r}\dot{\theta}})=\frac{3}{386.4}[9(-2)+2(-2)(6)]=-0.326 lb[/tex]

The motion of a particle is defined by the relation x = t3 – 12t2 +36t +32, where x and t are expressed in feet and seconds, respectively. Determine the time, position, and acceleration of the particle when v = 0 ft/s.

Answers

1) Time: 2 s, 6 s

The position of the particle is given by:

[tex]x=t^3 -12t^2 +36t+32[/tex]

where t is the time in seconds and x is the position in feet.

The velocity of the particle can be found by differentiating the position:

[tex]v(t)=x'(t)=3t^2 -24t+36[/tex]

and it is expressed in ft/s.

In order to find the time at which the velocity is v=0 ft/s, we substitute v=0 into the previous equation:

[tex]0=3t^2-24t+36\\0=t^2 -8t+12\\0=(t-2)(t-6)[/tex]

So the two solutions are

t = 2 s

t = 6 s

2) Position: x = 64 ft and x = 32 ft

The position at which the velocity of the particle is v = 0 can be found by susbtituting t = 2 and t = 6 into the equation for the position.

For t = 2 s, we have

[tex]x=(2)^3-12(2)^2 +36(2)+32=64[/tex]

For t = 6 s, we have

[tex]x=(6)^3-12(6)^2 +36(6)+32=32[/tex]

So the two positions are

x = 64 ft

x = 32 ft

3) Acceleration: [tex]-12 ft/s^2[/tex] and [tex]+12 ft/s^2[/tex]

The acceleration of the particle can be found by differentiating the velocity. We find:

[tex]a(t)=v'(t)=6t-24[/tex]

And substituting t = 2 and t = 6, we find the acceleration when the velocity of the particle is zero:

[tex]a(2)=6(2)-24=-12[/tex]

[tex]a(6)=6(6)-24=12[/tex]

So the two accelerations are

[tex]a=-12 ft/s^2[/tex]

[tex]a=12 ft/s^2[/tex]

Final answer:

The time, position, and acceleration of the particle when v = 0 ft/s are t = 2 s and t = 6 s, x = 24 ft and x = 184 ft, and a = -12 ft/s² and a = 12 ft/s².

Explanation:

To find the time, position, and acceleration of the particle when the velocity is 0 ft/s, we need to determine the values of t, x, and a when v = 0.

Given the relation x = t³ - 12t² + 36t + 32, we need to solve for t when v = 0. We can use the equation v = dx/dt to find the velocity function and set it equal to 0.

By differentiating x with respect to t, we get v = 3t² - 24t + 36. Setting v = 0, we can solve the quadratic equation 3t² - 24t + 36 = 0 to find the values of t. The solutions are t = 2 and t = 6.

Therefore, when v = 0, the time is t = 2 s and t = 6 s. We can substitute these values into the position function to find the corresponding positions. When t = 2 s, x = (2)³ - 12(2)² + 36(2) + 32 = 24 ft. When t = 6 s, x = (6)³ - 12(6)² + 36(6) + 32 = 184 ft.

To find the acceleration, we can differentiate the velocity function with respect to t. By differentiating v = 3t² - 24t + 36, we get a = 6t - 24. Substituting t = 2 s and t = 6 s into this equation, we get a = 6(2) - 24 = -12 ft/s² and a = 6(6) - 24 = 12 ft/s².

Learn more about Determination of time, position, and acceleration when velocity is zero here:

https://brainly.com/question/35290501

#SPJ3

A 12-V battery maintains an electric potential difference between two parallel metal plates separated by 10 cm. What is the electric field between the plates? a. 1.2 V/m b. 12 V/m c. 120 V/m d. zero

Answers

Answer:

The electric field between the plates is 120 V/m.

(c) is correct option.

Explanation:

Given that,

Potential difference = 12 volt

Distance = 10 cm = 0.1 m

We need to calculate the electric field between the plates

Using formula of electric field

[tex]E = \dfrac{V}{d}[/tex]

Where, V = potential difference

d = distance between the plates

Put the formula

[tex]E =\dfrac{12}{0.1}[/tex]

[tex]E=120\ V/m[/tex]

Hence, The electric field between the plates is 120 V/m.

Other Questions
Post-Civil War, the U.S. focused on expansion in:-Europe-Africa-South America-the Pacific What is the converse of the following: "If n is prime then n is odd or n is 2." A. If n is prime then n is odd or n is 2 B. If n is odd or n is 2 then n is composite. C. If n is even but not 2 then n is composite. D. If n is odd or n is 2 thenn is prime. E. If n is composite then n is even but not 2. F. If n is prime then n is even but not Use the Pythagorean theorem to find x and round to the nearest tenth. A. 3.61B. 3.6C. 9.22D. 9.2 which of the following functions is graphed below solve the equation[tex]16 {}^{2x - 3} = 8 {}^{4x} [/tex] A drawer contains eight different pairs of socks. If six socks are taken at random and without replacement, compute the probability that there is at least one matching pair among these six socks. The state of Maryland purchased a large tract of open space from a housing developer. What housing developer what is the purpose for this purchase ? A 3.8 L volume of neon gas (Ne) is at a pressure of 6.8 atm and a temperature of 470 K. The atomic mass of neon is 20.2 g/mol, and the ideal gas constant is R=8.314 J/mol*K. The mass of neon is closest to what? What is the value of A? Given: x + 5 > 10.Choose the graph of the solution set. Tsunamis are fast-moving waves often generated by underwater earthquakes. In the deep ocean their amplitude is barely noticable, but upon reaching shore, they can rise up to the astonishing height of a six-story building. One tsunami, generated off the Aleutian islands in Alaska, had a wavelength of 646 km and traveled a distance of 3410 km in 4.84 h. (a) What was the speed (in m/s) of the wave? For reference, the speed of a 747 jetliner is about 250 m/s. Find the wave's (b) frequency and (c) period. The civil rights act expanded The Sixth Amendment ensures a citizens right to The standard cell potential Ec for the reduction of silver ions with elemental copper is 0.46V at 25 degrees celsius. calculate G for this reaction.*** Please explain the reactions since Im very confused as to wich side I should put the electrons.Ex: Cu-> Cu2+ + 2e graph the linear equation -4y=-5x-18 3! + 0! / 2! * 1! =a). 3/2b). 3c). 7/2 Consider the following multiple regression modelUpper Y Subscript i equals beta 0 plus beta 1 Upper X Subscript 1 i Baseline plus beta 2 Upper X Subscript 2 i Baseline plus u Subscript iiYi=0+1X1i+2X2i+uiSuppose you want to test the null hypothesis that beta 1 equals 01=0 and beta 2 equals 02=0. Is the result of the joint test implied by the result of the two separate tests? Suppose you invest $300 at annual interest rate of 4.5% compounded continuously.How much will you have in the account after 7.5 years? what strategies have potential to prevent the spread of disease? select 3 correct answers. 1. Early intervention2. education through social media3. the development of new vaccines 4. closing water purification plants which pendulum will.mobe faster