Part C Suppose 1 kg each of water (4.19 J/(g ⋅ ∘C)), brick (0.90 J/(g ⋅ ∘C)), iron (0.46 J/(g ⋅ ∘C)), and olive oil (1.79 J/(g ⋅ ∘C)) were held at the same initial temperature and heated for an equivalent amount of time. Indicate their relative final temperatures from lowest (left) to highest (right). Assume no heat is lost to the surroundings. You can use the Intro tab of the PhET to help visualize the temperature changes. (Assume that the mas of the water, iron, and olive oil is 1 kg each and that the mass of the brick is 0.5 kg.) Rank from lowest resulting temperature to highest resulting temperature. To rank items as equivalent, overlap them. View Available Hint(s) ResetHelp IronWaterOlive oilBrick

Answers

Answer 1

Answer:

Water < Olive oil < Brick < Iron

Explanation:

The change in temperature may be calculated from the formula:

Q = m × C × ΔT ⇒ ΔT = Q / (m × C)

Where:

Q = amount of heat energy supplied (or released in case of cooling)

m = mass

C = specific heat (a different constant, property, for every matter)

ΔT = increase of temperatute (decrease when it is cooling)

Then, you can make these assumptions or inferences from the conditions stated in the problem:

Q is the same for all the matters because it is supplied by a external source, taking into account that all the substances are held the same time.

Initial temperature is the same for all the substances (given)

The mass is the same (1 kg each sample)

Then, you can state that, for those samples, ΔT = k / C, i.e. the increase in temperature is inversely related to the specific heat.

That means that the higher the specific heat the lower ΔT, and the lower the specific heat the higher ΔT.

The ranking in decrasing order of specific heat is:

Water (4.19) > Olive oil (1.79) > Brick (0.9) > Iron (0.46)

Ranking in increasing order of ΔT:

Water < Olive oil < Brick < Iron

And since all of them started at the same temperature, that is the ranking in resulting temperature from lowest to highest:

Water < Olive oil < Brick < Iron ← answer

That means that the sample of water, the matter with the highest specific heat capacity (4.19 J/g°C), will reach the lowest temperature, and the sample of iron, the matter with the lowest heat capacity (0.46 J/g°C) will reach the highest temperature.


Related Questions

A duck flying horizontally due north at 12.3 m/s passes over East Lansing, where the vertical component of the Earth's magnetic field is 4.78×10-5 T (pointing down, towards the Earth). The duck has a positive charge of 7.64×10-8 C. What is the magnitude of the magnetic force acting on the duck?

Answers

Answer:

4.49 x 10^-11 newton

Explanation:

v = 12.3 m/s along north = 12.3 j m/s

B = 4.78 x 10^-5 T downwards = 4.78 x 10^-5 k T

q = 7.64 x 10^-8 C

force on a charged particle when it is moving in a uniform magnetic field is given by

F = q (v x B )

F = 7.64 x 10^-8 {(12.3 i) x (4.78 x 10^-5 k)}

F = 4.49 x 10^-11 (- k) newton

magnitude of force = 4.49 x 10^-11 newton

jason hits a baseball off a tee toward right field. the ball has a horizontal velocity of 10 m/s and lands 5 meters from the tee. what is the height of the tee? show your work, including formula(s) and units.

Answers

Answer:

The height is 1,225 meters

Explanation:

DistanceX= speedX × time ⇒ time= (5 meters) ÷ (10 meters/second) = 0,5 seconds

DistanceY= high= (1/2) × g × (time^2) = (1/2) × 9,8 (meters/(second^2)) × 0,25 (second^2) = 1,225 meters

The allowed energies of a quantum system are 0.0 eV, 5.0 eV , and 8.5 eV .

What wavelengths appear in the system's emission spectrum?

Express your answers in nanometers in ascending order separated by commas.

Answers

The wavelengths in the system's emission spectrum, in ascending order, are [tex]\(146 \, \text{nm}\) and \(249 \, \text{nm}\).[/tex]

To find the wavelengths associated with the allowed energies of the quantum system, we can use the formula for the energy of a photon:

[tex]\[ E = \frac{hc}{\lambda} \][/tex]

where:

-[tex]\( E \)[/tex] is the energy of the photon,

- [tex]\( h \)[/tex] is Planck's constant[tex](\( 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \)),[/tex]

- [tex]\( c \)[/tex] is the speed of light [tex](\( 3.00 \times 10^8 \, \text{m/s} \)),[/tex]

- [tex]\( \lambda \)[/tex] is the wavelength of the photon.

Given the energies [tex]\(0.0 \, \text{eV}\), \(5.0 \, \text{eV}\), and \(8.5 \, \text{eV}\)[/tex], we need to convert these energies to joules, since the units in the formula for energy are in joules.

1.[tex]\(0.0 \, \text{eV}\) corresponds to \(0.0 \, \text{J}\),[/tex]

2. [tex]\(5.0 \, \text{eV}\) corresponds to \(5.0 \times 1.602 \times 10^{-19} \, \text{J}\),[/tex]

3. [tex]\(8.5 \, \text{eV}\) corresponds to \(8.5 \times 1.602 \times 10^{-19} \, \text{J}\).[/tex]

Now, we can use these energies to calculate the wavelengths of the photons:

1. For [tex]\(0.0 \, \text{J}\):[/tex]

[tex]\[ \lambda = \frac{hc}{E} = \frac{(6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.00 \times 10^8 \, \text{m/s})}{0.0 \, \text{J}}} \][/tex]

2. For [tex]\(5.0 \times 1.602 \times 10^{-19} \, \text{J}\)[/tex]:

[tex]\[ \lambda = \frac{(6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.00 \times 10^8 \, \text{m/s})}{5.0 \times 1.602 \times 10^{-19} \, \text{J}} \]\[ \lambda \approx \frac{1.995 \times 10^{-25}}{5.0 \times 1.602} \, \text{m} \]\[ \lambda \approx 2.49 \times 10^{-8} \, \text{m} \][/tex]

3. For [tex]\(8.5 \times 1.602 \times 10^{-19} \, \text{J}\):[/tex]

[tex]\[ \lambda = \frac{(6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3.00 \times 10^8 \, \text{m/s})}{8.5 \times 1.602 \times 10^{-19} \, \text{J}} \]\[ \lambda \approx \frac{1.995 \times 10^{-25}}{8.5 \times 1.602} \, \text{m} \]\[ \lambda \approx 1.46 \times 10^{-8} \, \text{m} \][/tex]

Now, let's convert these wavelengths to nanometers:

[tex]\( 2.49 \times 10^{-8} \, \text{m} = 249 \, \text{nm} \),[/tex]

[tex]. \( 1.46 \times 10^{-8} \, \text{m} = 146 \, \text{nm} \)[/tex]

So, the wavelengths in the system's emission spectrum, in ascending order, are [tex]\(146 \, \text{nm}\) and \(249 \, \text{nm}\).[/tex]

Two equally charged spheres of mass 1.00 g are placed 2.00 cm apart. When released, the initial acceleration of each sphere is 256 m/s2 . What is the magnitude of the charge on each sphere? You may assume that the only force acting on each sphere is the electric force due to the other sphere.

Answers

Answer:

[tex]q = 0.107 \mu C[/tex]

Explanation:

As we know that net force is given by

[tex]F = ma[/tex]

here we have

m = 1.00 g = 0.001 kg

also we know that acceleration is given as

[tex]a = 256 m/s^2[/tex]

now force is given as

[tex]F = 0.001(256) = 0.256 N[/tex]

now by the formula of force we know that

[tex]F = \frac{kq_1q_2}{r^2}[/tex]

[tex]0.256 = \frac{(9\times 10^9)q^2}{(0.02)^2}[/tex]

now for solving charge we have

[tex]q = 0.107 \mu C[/tex]

A bullet is accelerated down the barrel of a gun by hot gases produced in the combustion of gun powder. What is the average force exerted on a 0.0300-kg bullet to accelerate it to a speed of 600 m/s in a time of 2.00 ms (milliseconds)?

Answers

Answer:

The average force exerted on the bullet are of F=9000 Newtons.

Explanation:

t= 2*10⁻³ s

m= 0.03 kg

V= 600 m/s

F*t= m*V

F= (m*V)/t

F= 9000 N

The average force exerted on the bullet to accelerate it to a speed of 600 m/s in a time of 2.00 ms is 9000 Newtons (N). when a bullet is accelerated down the barrel of a gun by hot gases produced in the combustion of gunpowder.

Given:

Mass of the bullet (m) = 0.0300 kg

The final velocity of the bullet (v) = 600 m/s

Time taken to reach the final velocity (t) = 2.00 ms = 2.00 × 10⁻³ s

acceleration (a) = (change in velocity) / (time taken)

a = (v - u) / t

a = (600 - 0 ) / (2.00 × 10⁻³)

Now, we can calculate the average force using Newton's second law:

force (F) = mass (m) × acceleration (a)

F = 0.0300 × [(600 ) / (2.00 × 10⁻³)]

F = 0.0300× (3.00 × 10⁵)

F = 9000 N

Therefore, the average force exerted on the bullet to accelerate it to a speed of 600 m/s in a time of 2.00 ms is 9000 Newtons (N).

To know more about the force exerted:

https://brainly.com/question/32203291

#SPJ6

Imagine that two charged balls placed some distance apart strongly attract each other. Now imagine placing a pane of glass halfway between the two balls. Will insertion of this glass increase or decrease the magnitude of force that each ball feels, or will it have strictly no effect? Use diagrams to explain your reasoning carefully.

Answers

Answer:

decrease

Explanation:

If the two charged ball attracts each other, it means the charge on both the balls are opposite in nature.

As, we insert a glass slab, it means a dielectric is inserted in between the charges. The force between them is reduced.

Calculate the electric force an electron exerts upon a proton inside a He atom if they are d=2.7⋅10^-10m apart.
Hint: Fe=k⋅qp⋅qp/d^2 where k=9⋅10^9.

A) 6.8E-8N;
B) -212.7E-9N;
C) -6.31E-9N;
D) -57.6E-10N;

Answers

Explanation:

Charge of electron in He, [tex]q_e=1.6\times 10^{-19}\ kg[/tex]

Charge of proton in He, [tex]q_p=1.6\times 10^{-19}\ kg[/tex]

Distance between them, [tex]d=2.7\times 10^{-10}\ m[/tex]

We need to find the electric force between them. It is given by :

[tex]F=k\dfrac{q_eq_p}{d^2}[/tex]

[tex]F=-9\times 10^9\times \dfrac{(1.6\times 10^{-19}\ C)^2}{(2.7\times 10^{-10}\ m)^2}[/tex]

[tex]F=-3.16\times 10^{-9}\ N[/tex]

Since, there are two protons so, the force become double i.e.

[tex]F=2\times 3.16\times 10^{-9}\ N[/tex]

[tex]F=6.32\times 10^{-9}\ N[/tex]

So, the correct option is (c). Hence, this is the required solution.

51. Suppose you measure the terminal voltage of a 3.200-V lithium cell having an internal resistance of 5.00Ω by placing a 1.00-kΩ voltmeter across its terminals. (a) What current flows? (b) Find the terminal voltage. (c) To see how close the measured terminal voltage is to the emf, calculate their ratio.

Answers

Explanation:

Given that,

Terminal voltage = 3.200 V

Internal resistance [tex]r= 5.00\ \Omega[/tex]

(a). We need to calculate the current

Using rule of loop

[tex]E-IR-Ir=0[/tex]

[tex]I=\dfrac{E}{R+r}[/tex]

Where, E = emf

R = resistance

r = internal resistance

Put the value into the formula

[tex]I=\dfrac{3.200}{1.00\times10^{3}+5.00}[/tex]

[tex]I=3.184\times10^{-3}\ A[/tex]

(b). We need to calculate the terminal voltage

Using formula of terminal voltage

[tex]V=E-Ir[/tex]

Where, V = terminal voltage

I = current

r = internal resistance

Put the value into the formula

[tex]V=3.200-3.184\times10^{-3}\times5.00[/tex]

[tex]V=3.18\ V[/tex]

(c). We need to calculate the ratio of the terminal voltage of voltmeter equal to emf

[tex]\dfrac{Terminal\ voltage}{emf}=\dfrac{3.18}{3.200 }[/tex]

[tex]\dfrac{Terminal\ voltage}{emf}= \dfrac{159}{160}[/tex]

Hence, This is the required solution.

Final answer:

The current flowing in the circuit is 3.195 milliamps. The terminal voltage is calculated to be 2.984V. The ratio of the terminal voltage to the emf is 0.9325 which shows that the terminal voltage is 93.25% of the emf due to the voltage drop resulted from the internal resistance of the battery.

Explanation:

The question is about the terminal voltage and internal resistance of a battery. To answer this, first we need to understand that terminal voltage is the potential difference (voltage) between two terminals of a battery, and it's slightly less than the emf due to internal resistance of the battery.

(a) The current (I) in the circuit is found using Ohm’s law: I = emf / (R_load + r) = 3.200V / (1.00kΩ + 5.00Ω) = 3.195 milliamps.

(b) The terminal voltage (V) is calculated by: V = emf - Ir = 3.200V - (3.195mA * 5.00Ω) = 2.984V.

(c) The ratio of the measured terminal voltage to the emf is V / emf = 2.984V / 3.200V = 0.9325. This shows that the terminal voltage is 93.25% of the emf, which accounts for the voltage drop due to the internal resistance of the battery.

Learn more about Terminal Voltage here:

https://brainly.com/question/14218449

#SPJ3

Astronauts on a distant planet set up a simple pendulum of length 1.20 m. The pendulum executes simple harmonic motion and makes 100 complete oscillations in 450 s. What is the magnitude of the acceleration due to gravity on this planet?

Answers

Answer:

Magnitude of the acceleration due to gravity on the planet = 2.34 m/s²

Explanation:

Time period of simple pendulum is given by

         [tex]T=2\pi\sqrt{\frac{l}{g}}[/tex], l is the length of pendulum, g is acceleration due to gravity value.

We can solve acceleration due to gravity as

            [tex]g=\frac{4\pi^2l}{T^2}[/tex]

Here

  Length of pendulum = 1.20 m

  Pendulum executes simple harmonic motion and makes 100 complete oscillations in 450 s.

  Period, [tex]T=\frac{450}{100}=4.5s[/tex]

Substituting

         [tex]g=\frac{4\pi^2\times 1.2}{4.5^2}=2.34m/s^2[/tex]

Magnitude of the acceleration due to gravity on the planet = 2.34 m/s²

A pendulum clock with a brass suspension system is calibrated so that its period is 1 s at 20 degree C. If the temperature increases to 43 degree C, by how much does the period change? Answer in units of s.

Answers

Answer:

0.207 ms

Explanation:

First of all we need to find the length of the pendulum at 20 degrees. We know that the period is 1 s, and the formula for the period is

[tex]T=2\pi \sqrt{\frac{L}{g}}[/tex]

where L is the length of the pendulum and g is the gravitational acceleration. Solving the equation for L and using T = 1 s and g = 9.8 m/s^2, we find

[tex]L=g(\frac{T}{2\pi})^2=(9.8) (\frac{1}{2\pi})^2=0.248237 m[/tex]

Now we can find the new length of the pendulum at 43 degrees; the coefficient of thermal expansion of brass is

[tex]\alpha =18\cdot 10^{-6} 1/^{\circ}C[/tex]

And the new length of the pendulum is given by

[tex]L' = L (1+\alpha \Delta T)[/tex]

where in this case

[tex]\Delta T = 43-20 = 23^{\circ}[/tex] is the change in temperature

Substituting,

[tex]L'=(0.248237)(1+(18\cdot 10^{-6})(23))=0.248340 m[/tex]

So we can now calculate the new period of the pendulum:

[tex]T'=2\pi \sqrt{\frac{L'}{g}}=2\pi \sqrt{\frac{0.248340}{9.8}}=1.000208 s[/tex]

So the change in the period is

[tex]T'-T=1.000208 - 1.000000 = 0.000207 s = 0.207 ms[/tex]

Final answer:

The period of a pendulum clock with a brass suspension system will change by approximately 0.000414 seconds when the temperature increases from 20°C to 43°C.

Explanation:

A pendulum clock with a brass suspension system is calibrated to have a period of 1 second at 20 degrees Celsius. When the temperature increases to 43 degrees Celsius, the period of the pendulum will change. To calculate the change in period, you can use the formula T2 = T1 * (1 + α * (T2 - T1)), where T2 is the final temperature, T1 is the initial temperature, and α is the coefficient of linear expansion for the brass material. In this case, α is 18 × 10^-6 °C^-1.

Using the formula, we can plug in the values: T1 = 20°C, T2 = 43°C, and α = 18 × 10^-6 °C^-1. Subtracting T1 from T2 gives us 23, and multiplying this by α gives us 0.000414. Finally, multiplying this by the initial period of 1 second gives us a change in period of approximately 0.000414 seconds.

When you raise the temperature of air, the molecules move farther apart from each other. This lowers the density of the warm air. What will happen to this warm air? (In an ideal gas, increasing the temperature of the gas also increases its volume.)

Answers

The warm air will expand. If it is in a container, the pressure the air exerts on the containers walls will increase.

To experiment and prove this, put a plastic ziploc bag of air in the microwave sealed. The air will expanded and blow the zip open

A circular coil of wire of 200 turns and diameter 6 cm carries a current of 7 A. It is placed in a magnetic field of 0.90 T with the plane of the coil making an angle of 30° with the magnetic field. What is the torque on the coil?

Answers

Answer:

3.08 Nm

Explanation:

N = 200, diameter = 6 cm, radius = 3 cm, I = 7 A, B = 0.90 T, Angle = 30 degree

The angle made with the normal of the coil, theta = 90 - 30 = 60 degree

Torque = N I A B Sin Theta

Torque = 200 x 7 x 3.14 x 0.03 x 0.03 x 0.90 x Sin 60

Torque = 3.08 Nm

This exercise involves the formula for the area of a circular sector. The area of a sector of a circle with a central angle of 2π/11 rad is 25 m2. Find the radius of the circle. (Round your answer to one decimal place.)

Answers

Final answer:

The radius of the circle is approximately 1.392 m (rounded to one decimal place).

Explanation:

To find the radius of the circle, we need to use the formula for the area of a sector. The area of a sector is given by the formula A = (θ/2π) × πr², where θ is the central angle in radians and r is the radius. In this case, we are given that the central angle is 2π/11 radians and the area is 25 m². We can set up the equation as 25 = (2π/11) × πr² and solve for r.

Solution:

25 = (2π/11) × πr²

25 = (2π²/11) × r²

r² = 11/2π

r ≈ √(11/2π)

r ≈ 1.392 m (rounded to one decimal place)

The newest CREE led has a life expectancy of mu = 50000 hours and its life probability density function is given by: f(t) = [e^(-t/mu)]/[mu] if t greater or = 0 and f(t) = 0 if t < 0. Calculate the chance that a led will last at least tau = 100000.

Answers

Answer:

change that a lead is 0.13533

Explanation:

µ  = 50000

f(t) = [e^(-t/µ )]/[µ      if  t ≥ 0

f(t) = 0  if  t < 0

τ = 100000

to find out

the chance that a led will last

solution

we know function is f(t) = [e^(-τ/µ)]/[µ]    

τ = 100000

so we can say that probability (τ  ≥ 100000 ) that is

= 1 - Probability ( τ ≤ 100000 )

that is function of F so

= 1 - f ( 100000 )

that will be

= 1 - ( 1 - [e^(-τ/µ)]/[µ]   )

put all value here τ = 100000 and µ = 50000

= 1 - ( 1 - [e^(-100000/50000)]  )

= 1 - 1 - [e^(-100000/50000)]

= 0.13533

so that change that a lead is 0.13533

A 14-Ω coffee maker and a 14-Ω frying pan are connected in series across a 120-V source of voltage. A 20-Ω bread maker is also connected across the 120-V source and is in parallel with the series combination. Find the total current supplied by the source of voltage.

Answers

Answer:

The total current supplied by the source of voltage = 10.29 A

Explanation:

We have a 14-Ω coffee maker and a 14-Ω frying pan are connected in series.

Effective resistance = 14 + 14 = 28Ω

Now we have 28Ω and 20Ω in parallel

Effective resistance

             [tex]R=\frac{28\times 20}{28+20}=11.67\Omega[/tex]

So we have resistor with 11.67Ω in a 120 V source of voltage.

We have equation V = IR

Substituting

               120 = I x 11.67

                 I = 10.29 A

The total current supplied by the source of voltage = 10.29 A

The liquid nitrogen temperature is 63 K. Convert to ºC.

Answers

Answer:

[tex]T_c=-210.15^{\circ}C[/tex]

Explanation:

In this question we need to convert the temperature in kelvin to degree Celsius. The conversion from kelvin scale to Celsius scale is as follows :

[tex]T_k=T_c+273.15[/tex]

Here,

[tex]T_k=63\ K[/tex]

[tex]T_k-273.15=T_c[/tex]

[tex]63-273.15=T_c[/tex]

[tex]T_c=-210.15^{\circ}C[/tex]

Here, negative sign shows that the heat is released. So, the temperature at 63 K is equivalent to 210.15 °C. Hence, this is the required solution.

A 18-g paper clip is attached to the rim of a phonograph record with a diameter of 48 cm, spinning at 3.2 rad/s. What is the magnitude of its angular momentum (in kg m2/s)? Round your answer to the nearest ten-thousandth.

Answers

Final answer:

The magnitude of the angular momentum of the paperclip attached to the spinning vinyl record is approximately 0.0033 kg m²/s. This is calculated using the formulas for moment of inertia and angular momentum.

Explanation:

To calculate the angular momentum of the paperclip, we first need to know the moment of inertia (I) of the paperclip. The moment of inertia can be calculated using the formula I = mR² where 'm' is the mass of the paperclip (converted into kg - 0.018 kg) and 'R' is the radius of the record player (converted into m - 0.24 m).

So, I = 0.018 kg * (0.24 m)² = 0.0010368 kg m².

Next, we use the formula for angular momentum (L), which is L = Iω, where ω is the angular velocity. Given ω = 3.2 rad/s, we plug these values into our formula:

L = 0.0010368 kg m² * 3.2 rad/s = t0.00331776 kg m²/s.

Thus, rounding to the nearest ten-thousandth, the magnitude of the angular momentum of the paperclip is 0.0033 kg m²/s.

Learn more about Angular Momentum here:

https://brainly.com/question/37906446

#SPJ12

The magnitude of the angular momentum of the paper clip is approximately [tex]\( 0.0033 \text{ kg m}^2/\text{s} \)[/tex].

The magnitude of the angular momentum of the paper clip is given by the formula [tex]\( L = I\omega \)[/tex], where I is the moment of inertia of the paper clip and [tex]\( \omega \)[/tex] is the angular velocity of the record.

Given:

- Mass of the paper clip, [tex]\( m = 18 \) g \( = 0.018 \)[/tex] kg (after converting grams to kilograms)

- Diameter of the record, [tex]\( d = 48 \) cm \( = 0.48 \)[/tex] m (after converting centimeters to meters)

- Radius of the record, [tex]\( r = \frac{d}{2} = \frac{0.48}{2} = 0.24 \)[/tex]m

- Angular velocity, [tex]\( \omega = 3.2 \)[/tex] rad/s

Now, we calculate the moment of inertia I:

[tex]\[ I = mr^2 = 0.018 \times (0.24)^2 \] \[ I = 0.018 \times 0.0576 \] \[ I = 0.0010368 \text{ kg m}^2 \][/tex]

Next, we calculate the angular momentum L:

[tex]\[ L = I\omega \] \[ L = 0.0010368 \times 3.2 \] \[ L = 0.00331776 \text{ kg m}^2/\text{s} \][/tex]

Rounding to the nearest ten-thousandth, we get:

[tex]\[ L \approx 0.0033 \text{ kg m}^2/\text{s} \][/tex]

A 2.0-m long conducting wire is formed into a square and placed in the horizontal x-y plane. A uniform magnetic field is oriented 30.0° above the horizontal with a strength of 9.0 T. What is the magnetic flux through the square?

Answers

Answer:

1.13 Wb

Explanation:

First of all, we need to find the area enclosed by the coil.

The perimeter of the square is 2.0 m, so the length of each side is

[tex]L=\frac{2.0}{4}=0.5 m[/tex]

So the area enclosed by the coil is

[tex]A=L^2 = (0.5 m)^2=0.25 m^2[/tex]

Now we can calculate the magnetic flux through the square, which is given by

[tex]\Phi = B A cos \theta[/tex]

where

B = 9.0 T is the strength of the magnetic field

[tex]A=0.25 m^2[/tex] is the area of the coil

[tex]\theta[/tex] is the angle between the direction of the magnetic field and the normal to the coil; since the field is oriented 30.0° above the horizontal and the coil lies in the horizontal plane, the angle between the direction of the magnetic field and the normal to the coil is

[tex]\theta=90^{\circ}-30^{\circ}=60^{\circ}[/tex]

So the magnetic flux is

[tex]\Phi = (9.0)(0.25)(cos 60^{\circ})=1.13 Wb[/tex]

Final answer:

The magnetic flux through the square is 18.0 T·m²

Explanation:

To find the magnetic flux through the square, we need to calculate the area of the square and the component of the magnetic field perpendicular to the square's plane.

The area of the square is given by A = (side length) = (2.0 m)² = 4.0 m²

The component of the magnetic field perpendicular to the square's plane is B_perpendicular = B × sin(30°) = 9.0 T × sin(30°) = 4.5 T.

Therefore, the magnetic flux through the square is given by the product of the area and the component of the magnetic field perpendicular to the square's plane: flux = B_perpendicular × A = 4.5 T × 4.0 m²= 18.0 T·m²

Learn more about magnetic flux here:

https://brainly.com/question/36474474

#SPJ11

A uniform disk turns at 5.00 rev/s around a frictionless spindle. A non-rotating rod, of the same mass as the disk and length equal to the disk’s diameter, is dropped onto the freely spinning disk. They then turn together around the spindle with their centers superposed. What is the angular frequency in of the rev/scombination?

Answers

Answer:

Final angular speed equals 3 revolutions per second

Explanation:

We shall use conservation of angular momentum principle to solve this problem since the angular momentum of the system is conserved

[tex]L_{disk}=I_{disk}\omega \\\\L_{disk}=\frac{1}{2}mr^{2}\\\therefore L_{disk}=\frac{1}{2}mr^{2}\times10rad/sec[/tex]

After the disc and the dropped rod form a single assembly we have the final angular momentum of the system as follows

[tex]L_{final}=I_{disk+rod}\times \omega_{f} \\\\I_{disk+rod}=\frac{1}{2}mr_{disc}^{2}+\frac{1}{12}mL_{rod}^{2}\\I_{disk+rod}=\frac{1}{2}mr_{disc}^{2}+\frac{1}{12}m\times (2r_{disc})^{2}\\\\I_{disk+rod}=\frac{1}{2}mr_{disc}^{2}+\frac{1}{3}mr_{disc}^{2}\\\\L_{final}=\frac{5mr_{disc}^{2}}{6}\times \omega _{f}\\\\[/tex]

Equating initial and final angular momentum we have

[tex]\frac{5mr_{disc}^{2}}{6}\times \omega _{f}=\frac{1}{2}m_{disc}\times r_{disc}^{2}\times 10\pi rad/sec[/tex]

Solving for [tex]\omega_{f}[/tex] we get

[tex]\omega_{f}=6\pi rad/sec[/tex]

Thus no of revolutions in 1 second are 6π/2π

No of revolutions are 3 revolutions per second

Describe one elastic collisions and one inelastic collisions that you observed in your daily activities. In the inelastic collision explain where did the lost energy (with mathematical expressions) go, in the elastic collision explain what energy (include mathematical expressions) is conserved.

Answers

Answer:

A typical example of an elastic collision that can be observed is the collision of billiard balls, while an inelastic collision is presented in cars collisions.

Explanation:

In an inelastic collision, the energy system is lost in making the permanent deformation over car's structures due to the impact. As can be stated below, the final and initial kinetic energy are expressed:

[tex] Ei =0.5*m1.v1_{i}^2+m2.v2_{i}^2[/text]  

[tex] Ef =0.5*m1.v1_{f}^2+m2.v2_{f}^2[/text]  

Where the subscripts 1 and 2 relate to each car. In the final energy equation Ef, the car's final velocity will be lower than the respective initial velocities.

[tex] v1_{f}<v1_{i}[/text]  

[tex] v2_{f}<v2_{i}[/text]  

Take into account that car's masses still being the same after the collision, therefore the energy losses are always because of cars velocities changes:

[tex] Ef<Ei[/text]

In the elastic collision, there will be little or negligible deformations and that won't make energy losses. But this statement doesn't affirm that billiard balls velocities will be the same. In fact, could happen that one ball increases its velocities if the other ball decreases its velocity, but taking into account that the energy will always conserve.

[tex] v2_{f}>v2_{i}[/text] if [tex] v1_{f}<v1_{i}[/text]

or  

[tex] v1_{f}>v1_{i}[/text] if [tex] v2_{f}<v2_{i}[/text]

Under the assumption that balls masses still being the same:

[tex] Ef=Ei[/text]

A small bag of sand is released from an ascending hot-air balloon whose upward constant velocity is vo = 1.55 m/s. Knowing that at the time of the release the balloon was 85.8 m above the ground, determine the time, T, it takes the bag to reach the ground from the moment of its release.

Answers

Answer:

t = 4.35 s

Explanation:

Since the balloon is moving upwards while the sand bag is dropped from it

so here the velocity of sand bag is same as the velocity of balloon

so here we can use kinematics to find the time it will take to reach the ground

[tex]\Delta y = v_y t + \frac{1}{2} gt^2[/tex]

here we know that since sand bag is dropped down so we have

[tex]\Delta y = -85.8 m[/tex]

initial upward speed is

[tex]v_y = 1.55 m/s[/tex]

also we know that gravity is downwards so we have

[tex]a = - 9.8 m/s^2[/tex]

so here we have

[tex]-85.8 = 1.55 t - \frac{1}{2}(9.8) t^2[/tex]

[tex]4.9 t^2 - 1.55 t - 85.8 = 0[/tex]

[tex]t = 4.35 s[/tex]

A 500-g metal wire has a length of 50 cm and is under tension of 80 N. (a) What is the speed of a transverse wave in the wire? (b) If the wire is cut in half, what will be the speed of the wave?

Answers

Explanation:

It is given that,

Mass of the metal wire, m = 500 g = 0.5 kg

Tension in the wire, T = 80 N

Length of wire, l = 50 cm = 0.5 m

(a) The speed of the transverse wave is given by :

[tex]v=\sqrt{\dfrac{T}{M}}[/tex]

M is the mass per unit length or M = m/l

[tex]v=\sqrt{\dfrac{T.l}{m}}[/tex]

[tex]v=\sqrt{\dfrac{80\ N\times 0.5\ m}{0.5\ kg}}[/tex]

v = 8.94 m/s

(b) If the wire is cut in half, so l = l/2

[tex]v=\sqrt{\dfrac{T.l}{2m}}[/tex]

[tex]v=\sqrt{\dfrac{80\ N\times 0.5\ m}{2\times 0.5\ kg}}[/tex]

v = 6.32 m/s

Hence, this is the required solution.

From a set of graphed data the slope of the best fit line is found to be 1.35 m/s and the slope of the worst fit line is 1.29m/s. Determine the uncertainty for the slope of the line.

Answers

Solution:

Let the slope of the best fit line be represented by '[tex]m_{best}[/tex]'

and the slope of the worst fit line be represented by '[tex]m_{worst}[/tex]'

Given that:

[tex]m_{best}[/tex] = 1.35 m/s

[tex]m_{worst}[/tex] = 1.29 m/s

Then the uncertainity in the slope of the line is given by the formula:

[tex]\Delta m = \frac{m_{best}-m_{worst}}{2}[/tex]               (1)

Substituting values in eqn (1), we get

[tex]\Delta m = \frac{1.35 - 1.29}{2}[/tex] = 0.03 m/s

g A projectile is launched with speed v0 from point A. Determine the launch angle ! which results in the maximum range R up the incline of angle " (where 0 ≤ " ≤ 90°). Evaluate your results for " = 0, 30°, and 45°

Answers

Final answer:

The launch angle that results in the maximum range of a projectile up an incline depends on the initial speed and the angle of the incline. For conditions neglecting air resistance, the maximum range is obtained at 45 degrees. If air resistance is considered, the maximum angle is around 38 degrees.

Explanation:

The range of a projectile launched up an incline depends on the launch angle. To determine the launch angle that results in the maximum range, we need to consider the initial speed and the angle of the incline. Figure 3.38(b) shows that for a fixed initial speed, the maximum range is obtained at 45 degrees. However, this is only true for conditions neglecting air resistance. If air resistance is considered, the maximum angle is around 38 degrees. It is also interesting to note that for every initial angle except 45 degrees, there are two angles that give the same range, and the sum of those angles is 90 degrees.

Which of the following (with specific heat capacity provided) would show the smallest temperature change upon gaining 200.0 J of heat? A) 50.0 g Al, CAl = 0.903 J/g°C B) 50.0 g Cu, CCu = 0.385 J/g°C C) 25.0 g granite, Cgranite = 0.79 J/g°C D) 25.0 g Au, CAu = 0.128 J/g°C E) 25.0 g Ag, CAg = 0.235 J/g°C

Answers

Answer:

A) 50.0 g Al

Explanation:

We can calculate the temperature change of each substance by using the equation:

[tex]\Delta T=\frac{Q}{mC_s}[/tex]

where

Q = 200.0 J is the heat provided to the substance

m is the mass of the substance

[tex]C_s[/tex] is the specific heat of the substance

Let's apply the formula for each substance:

A) m = 50.0 g, Cs = 0.903 J/g°C

[tex]\Delta T=\frac{200}{(50)(0.903)}=4.4^{\circ}C[/tex]

B) m = 50.0 g, Cs = 0.385 J/g°C

[tex]\Delta T=\frac{200}{(50)(0.385)}=10.4^{\circ}C[/tex]

C) m = 25.0 g, Cs = 0.79 J/g°C

[tex]\Delta T=\frac{200}{(25)(0.79)}=10.1^{\circ}C[/tex]

D) m = 25.0 g, Cs = 0.128 J/g°C

[tex]\Delta T=\frac{200}{(25)(0.128)}=62.5^{\circ}C[/tex]

E) m = 25.0 g, Cs = 0.235 J/g°C

[tex]\Delta T=\frac{200}{(25)(0.235)}=34.0^{\circ}C[/tex]

As we can see, substance A) (Aluminium) is the one that undergoes the smallest temperature change.

Final answer:

The substance that would show the smallest temperature change upon gaining 200.0 J of heat is Au (Gold), as calculated using the formula for calculating heat (Q = mcΔT) and rearranging for ΔT, then substituting the given values.

Explanation:

The substance that would show the smallest temperature change upon gaining 200.0 J of heat can be determined using the formula used to calculate heat (Q), which is Q = mcΔT, where m is the mass, c is the specific heat capacity, and ΔT is the temperature change. We want to find the smallest temperature change, so we rearrange the equation to solve for ΔT, which gives us ΔT = Q/(mc). By substituting the given values for each substance into this equation, we find that the smallest temperature change is for Au (Gold).

For Au: ΔT = 200.0J / (25.0g x 0.128 J/g°C) = 62.5°C. All other substances have a smaller temperature change when they absorb 200.0J of heat, due to their higher specific heat capacity.

Learn more about Specific Heat Capacity here:

https://brainly.com/question/28302909

#SPJ3

Calculate the buoyant force (in N) on a 1.0 m^3 chunk of brass submerged in a bath of mercury.

Answers

Answer:

133280 N

Explanation:

Volume, V = 1 m^3

density of mercury, d = 13.6 x 10^3 kg/m^3

Buoyant force, F = Volume immersed x density of mercury x g

F = 1 x 13.6 x 1000 x 9.8

F = 133280 N

If we measure the temperature of a blackbody to be about 300 K (a typical air temperature in Florida), at what wavelength would this blackbody's intensity have its maximum, and where in the electromagnetic spectrum is this wavelength?

Answers

Answer:

9.66 x 10^-6 m

Explanation:

Use the Wein's displacement law

[tex]\lambda _{m}\times T = b[/tex]

Where, b is the Wein's constant

b =  2.898 x 10^-3 meter-kelvin

So, λm x 300 =  2.898 x 10^-3

λm = 9.66 x 10^-6 m

A tank contains gas at 13.0°C pressurized to 10.0 atm. The temperature of the gas is increased to 95.0°C, and half the gas is removed from the tank. What is the pressure of the remaining gas in the tank?

Answers

Answer:

The pressure of the remaining gas in the tank is 6.4 atm.

Explanation:

Given that,

Temperature T = 13+273=286 K

Pressure = 10.0 atm

We need to calculate the pressure of the remaining gas

Using equation of ideal gas

[tex]PV=nRT[/tex]

For a gas

[tex]P_{1}V_{1}=nRT_{1}[/tex]

Where, P = pressure

V = volume

T = temperature

Put the value in the equation

[tex]10\times V=nR\times286[/tex]....(I)

When the temperature of the gas is increased

Then,

[tex]P_{2}V_{2}=\dfrac{n}{2}RT_{2}[/tex]....(II)

Divided equation (I) by equation (II)

[tex]\dfrac{P_{1}V}{P_{2}V}=\dfrac{nRT_{1}}{\dfrac{n}{2}RT_{2}}[/tex]

[tex]\dfrac{10\times V}{P_{2}V}=\dfrac{nR\times286}{\dfrac{n}{2}R368}[/tex]

[tex]P_{2}=\dfrac{10\times368}{2\times286}[/tex]

[tex]P_{2}= 6.433\ atm[/tex]

[tex]P_{2}=6.4\ atm[/tex]

Hence, The pressure of the remaining gas in the tank is 6.4 atm.

A circular loop of radius 0.7cm has 520 turns of wire and carries a current of 3.9A. The axis of the loop makes an angle of 57 degrees with a magnetic field of 0.982T. Find the magnitude of the torque on the loop.

Answers

Answer:

Torque, [tex]\tau=0.1669\ N-m[/tex]

Explanation:

It is given that,

Radius of the circular loop, r = 0.7 cm = 0.007 m

Number of turns, N = 520

Current in the loop, I = 3.9 A

The axis of the loop makes an angle of 57 degrees with a magnetic field.

Magnetic field, B = 0.982 T

We need to find the magnitude of torque on the loop. It is given by :

[tex]\tau=\mu\times B[/tex]

[tex]\tau=NIABsin(90-57)[/tex]

[tex]\tau=520\times 3.9\ A\times \pi (0.007\ m)^2\times 0.982\ T\ cos(57)[/tex]

[tex]\tau=0.1669\ N-m[/tex]

[tex]\tau=0.167\ N-m[/tex]

So, the magnitude of torque is 0.1669 N-m. Hence, this is the required solution.

A skier moving at 5.23 m/s encounters a long, rough, horizontal patch of snow having a coefficient of kinetic friction of 0.220 with her skis. How far does she travel on this patch before stopping?

Answers

im not that smart but maybe 2 x the mass of the wieght will give u the answer

Other Questions
If the subject you are reading is difficult, what should you do? (5 points) In the space below, write an 800-1,000 word fictional narrative with an engaging hook, well-developed characters, conflict, and resolution, effective dialogue, examples of suspense and symbolism, and proper use of creative punctuation, including quotation marks, commas, and dashes. The two angles below form a linear pair, and the expressions are measured in degrees. What is the measure of the smaller angle?6274118148 Explain what the activities of ion channels might be if the threshold for both RP and AP were the same sir edwin sandys wanted to:? WANT FREE 20 POINTS + BRAINLIEST? answer this geometry question correct and i got you Which statements are true based on the diagram? Select three options. A. Points N and K are on plane A and plane S. B. Points P and M are on plane B and plane S. C. Point P is the intersection of line n and line g. D. Points M, P, and Q are noncollinear. E. Line d intersects plane A at point N. All the following would be a reason for a business to expand EXCEPT romper (con) : una pareja termina la relacin Question 1 with 1 blank : dar un regalo Question 2 with 1 blank : una comida fra y dulce Question 3 with 1 blank : dos personas enamoradas Question 4 with 1 blank : una persona que va a una fiesta Question 5 with 1 blank : estar juntos para siempre Question 6 with 1 blank : divertirse Question 7 with 1 blank : cuando la persona no sabe lo que va a pasar Question 8 with 1 blank : la relacin entre dos personas que se llevan bien Completar Modelo Marta rompi con su novio. Question 9 with 1 blank Ayer Marta le un reloj a Pablo. Question 10 with 1 blank En el verano, a todos les gusta comer . Question 11 with 1 blank Despus de ser por un ao, Juana y Armando decidieron comprometerse. Question 12 with 1 blank A qu hora van a llegar los a la fiesta del sbado? Question 13 with 1 blank Pablo y Mara se comprometieron antes de . Question 14 with 1 blank Mi sobrina y yo tenemos una buena , somos muy buenas amigas. Question 15 with 1 blank Gabriela no sabe que le vamos a dar una fiesta para su cumpleaos. Question 16 with 1 blank Nosotros lo de vacaciones en Miami. Manuel has recently learned that his favorite grandfather is sick and is going to die within the next six months. Although he is only 7 years of age, Manuel has started displaying some curious symptoms. He has frequent headaches and stomach pains with no physical explanation, he has become unusually moody and irritable, and he has lost interest in his favorite toys, video games, and television programs. Given what is known about the expression of mental illness in the young, what is the likely cause of Manuel's symptoms? workplace communication can suffer when indivduals ABC is a right triangle in which B is a right angle, AB = 1, AC = 2, and BC = sqrt(3).cos C sin A = I think the answer is 3/4, because cos(c) = adj / hypot and sin(a) = opposite / hypotcos(c) = sqrt(3) / 2sin(a) = sqrt(3) / 2which is 3/4 when multiplied. In the STL container list, the functionpop_front does which of the following?a. inserts element at the beginning of the listb. inserts element at the end of the listc. returns the first elementd. removes the last element from the list What is the product?(x - 3)(2x2 5x + 1) In "The Story of an Hour," which cultural norm is the story mainly addressing? We can include following item(s) during configuration itemidentification:a) User Manuals andDocumentationsb) Source Codec) Software RequirementSpecificationsd) All of the above g A ray of light is incident on a flat reflecting surface and is reflected. If the incident ray makes an angle of 28.7 with the normal to the reflecting surface, what angle does the reflected ray make with the normal? WILL BE COOL I U HELP^^ 11 Points!!REGINA. Lola pointed out that we can save money by having the dance at school. We can use that saved money for other parts of the dancelike decorations, refreshments, and entertainment. Yes, Tommy, you wanted to add something?TOMMY. I understand what Lola is saying about saving money with the venue, but we might be able to spend more on the venue and save on the entertainment by hiring students to DJ. I was talking with Trung and Binhtheyre juniors, and they have professional DJ equipment. We can hire them for the night for $500. I did some research, and other DJs in the area typically charge $1,000 to $1,200.REGINA. OK. So Tommy is introducing the idea of saving money by using less expensive student entertainment. How do people feel about this? Could it work?How does the moderator help the group stay on task in this part of the discussion?A) She refers to her agenda to keep the discussion on track.B) She asks questions to get clarification and to elicit additional opinions.C) She reviews and summarizes her notes on the main points of the discussion.D) She uses body language that shows her engagement and displays attentive listening. Which is the correct MLA format for a parenthetical citation for this medicaljournal?Henry, John. "Studies in the impact of cola on student achievement," Medicine1016 (2013): 89-105. Print.A. (Henry, John 89)B. (Medicine 101, Henry)C. (Henry 89)D. (Student Achievement 89) Mike and Veronica are expecting their first child and they are nervous about all of the possible health issues a baby can face. Explain how knowing their family medical history can be useful for Mike and Veronica and their doctors as they prepare for the birth of their child. the graph of g(x), shown below in pink, has the same shape as the graph of f(x)=x^2, shown in gray. which of the following is the equation for g(x)