Please help with these! I don't know how they work.

Please Help With These! I Don't Know How They Work.
Please Help With These! I Don't Know How They Work.
Please Help With These! I Don't Know How They Work.
Please Help With These! I Don't Know How They Work.

Answers

Answer 1

Answer:

1. all real numbers

2. y ≥ -8

3. It is all of the possible values of a function

4. Domain:{-4,-2,0,2,4} and Range:{-2,0,1,2,3}

Step-by-step explanation:

Let f:A→B be a function. In general sets A and B can be any arbitary non-empty sets.

Values in set A are the input values to the function and values in set B are the output values

Hence Set A is called the domain of the function f.

Set B is called co-domain or range of function f.

Now coming back to problem,

In first picture,

Given function is a straight line ⇒it can take any real number as its input

and for each value it gives a unique output value.

Hence output value is set of all real numbers, i.e. range of the function represented by the graph is set of all real numbers.

In the second picture,

The graph is x values are extending from -∞ to ∞ but the y values is the set of values of real numbers greater than -8 since we can see that the graph has global minimum of -8

Therefore range of the graph is y≥-8

in the third picture,

as we have already discussed the range of a function is the set of all possible output values of the function

In the fourth picture,

Let the function be 'f'.

from question we can tell that we can take only -4,-2,0,2,4 as the values for x and for corresponding x values we get 1,3,2,-2,0 as y values which are the output values.

hence we can tell that domain, which is set of input values, is {-4,-2,0,2,4}

and range, which is the of possible output values, is {-2,0,1,2,3}


Related Questions

First one digit is chosen uniformly at random from f1; 2; 3; 4; 5g and is removed from the set; then a second digit is chosen uniformly at random from the remaining digits. What is the probability that an odd digit is picked the second time?

Answers

Answer:

[tex]\frac{3}{5}[/tex]

Step-by-step explanation:

Probability of choosing an odd number in the second turn is the sum of probabilities of choosing an odd number in second turn given that an odd number or an even number is picked in first turn.

Probability of getting an odd number in the first turn out of 1,2,3,4,5 is [tex]\frac{3}{5}[/tex]

Probability of getting an even number in the first turn out of 1,2,3,4,5 is [tex]\frac{2}{5}[/tex]

Probability of getting an odd number in second turn given that an odd number was picked in the first turn (remaining : 2 odd numbers out of 4) is [tex]\frac{1}{2}[/tex]

Probability of getting an odd number in second turn given that an even number was picked in the first turn (remaining : 3 odd numbers out of 4) is [tex]\frac{3}{4}[/tex]

Total probability is [tex]\frac{3}{5} \times \frac{1}{2}  +  \frac{2}{5} \times \frac{3}{4}  =  \frac{3}{5}[/tex]

Final answer:

The probability of choosing an odd digit in the second draw, considering all scenarios of the first draw, is 0.625.

Explanation:

The student's question pertains to probability in a sequential selection scenario. It involves two sequential selections of digits from a certain set, specifically looking at the situation where an odd digit is selected in the second draw.

To address this, we first acknowledge that there are 5 digits to choose from initially: 1, 2, 3, 4, 5. However, once a digit is chosen and removed, 4 digits remain in the set for the second round of choosing. Among the remaining 4 digits, either two or three of them will be odd, depending on the parity (evenness or oddness) of the first digit chosen.

If an even digit is chosen first, three odd digits (1,3,5) will be left, thus the probability of choosing an odd digit the second time is 3 out of 4, or 0.75. If an odd digit is chosen first, two odd digits will be left, and the probability of choosing an odd digit in the second draw is then 2 out of 4, or 0.5. Finally, we consider the total probability over all possible first draws, yielding (1/2)*0.75 + (1/2)*0.5 = 0.625.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

There are 10 questions on a discrete mathematics final exam. How many ways are there to assign scores to the problems if the sum of the scores is 100 and each question is worth at least 5 points?

Answers

Answer:

There are 12,565,671,261 ways.

Step-by-step explanation:

Here we have to use the combination and repetition formula.

C(n + r-1, r) = [tex]\frac{(n + r-1)!}{r!(n-1)!}[/tex]

Given: n = 10 (The number of questions)

Each question is worth at least 5 points.

10 questions = 10 *5 = 50

The total = 100

r = 100 - 50

r = 50

Now we can apply the formula.

C(10 + 50 -1, 50) = [tex]\frac{(10 + 50 -1)!}{50!(10 -1)!}[/tex]

C(59, 50) = [tex]\frac{59!}{50!9!}[/tex]

Simplifying the above factorial using the calculator, we get

C(59, 50) = 12,565,671,261

There are 12,565,671,261 ways.

Final answer:

There are 14,441,654 ways to assign scores to the problems on the final exam.

Explanation:

To find the number of ways to assign scores to the problems, we can use the concept of stars and bars. Let's consider each question as a bar and the points as stars. Since each question is worth at least 5 points, we can subtract 5 from each question's score to make sure it is at least 0. Now, we have a total of 100-5*10 = 50 points to distribute among the questions. Using stars and bars, we can find the number of ways to distribute these points.



The total number of ways to distribute 50 points among 10 questions is given by the formula (n+r-1) choose (n-1), where n is the number of questions (10) and r is the total number of points (50). Plugging in these values, we get (10+50-1) choose (10-1) = 59 choose 9 = 14,441,654 ways to assign scores to the problems.

Learn more about number of ways to assign scores here:

https://brainly.com/question/34105632

#SPJ11

Can relative maximums and minimums be at the endpoints? I know global max/min can be at endpoints but I'm not sure about relative max/min.

Answers

Answer:

No

Step-by-step explanation:

Just because the derivative is 0 at a point doesn't necessarily mean it is a relative minimum or maximum.  You must be able to evaluate the derivative on both sides of the point to determine if it changes signs.  Since endpoints have only one side, they cannot be relative maximums or minimums.

The ratio of toddlers to infants at a day care center is 7 to 3. If twelve more infants join the day care to change the ratio to 7 to 5, how many toddlers are there at this day care center?

A. 24
B. 36
C. 42
D. 72
E. 120

Answers

B 36 if I’m wrong sorry I tried my best to figure it out!

The number of toddlers at this daycare center is C. 42.

What are ratio and proportion?

A ratio is a comparison between two similar quantities in simplest form.

Proportions are of two types one is the direct proportion in which if one quantity is increased by a constant k the other quantity will also be increased by the same constant k and vice versa.

In the case of inverse proportion if one quantity is increased by a constant k the quantity will decrease by the same constant k and vice versa.

Given, The ratio of toddlers to infants at a daycare center is 7 to 3.

let, There be 'T' number of toddlers and 'I' number of infants.

So, T : I = 7 : 3.

T/I = 7/3.

3T = 7I Or I = 3T/7...(i)

Now, Twelve more infants join the daycare to change the ratio to 7 to 5.

Therefore,

T/(I + 12) = 7/5.

5T = 7I + 84..(ii)

5T = 7(3T/7) + 84.

5T = 3T + 84.

2T = 84.

T = 42.

So, The number of toddlers in this day center is 42.

learn more about proportion here :

https://brainly.com/question/7096655

#SPJ5

On New​ Year's Eve, the probability of a person driving while intoxicated or having an accident is 0.37. If the probability of driving while intoxicated is 0.32 and the probability of having a driving accident is 0.12​, find the probability of a person having a driving accident while intoxicated

Answers

Answer:

The probability of a person having a driving accident while intoxicated is 0.07

Step-by-step explanation:

Hi, well, let´s put this on a formula, I think it is the best way to explain it.

[tex]P(A+I)=P(A)+P(I)-P(AorI)[/tex]

Where:

P(A+I) = Probability of having a driving accident while intoxicated.

P(A) = Probability of a person of having an accident.

P(I) = Probablity person being intoxicated.

P(A or I) = Probability of a person for being intoxicated or having an accident.

Therefore, things should look like this:

[tex]P(A+I)=0.12+0.32-0.37=0.07[/tex]

So, the  probability of a person having a driving accident while intoxicated is 0.07.

Best of luck.

Final answer:

The probability of a person having a driving accident while intoxicated is 0.375 or 37.5%.

Explanation:

To find the probability of a person having a driving accident while intoxicated, we can use the formula for conditional probability: P(A|B) = P(A and B) / P(B). In this case, A represents the event of having a driving accident and B represents the event of driving while intoxicated. The probability of driving while intoxicated is given as 0.32, and the probability of having a driving accident is given as 0.12. So, P(A and B) = 0.12 and P(B) = 0.32. Plugging these values into the formula, we get P(A|B) = 0.12 / 0.32 = 0.375. Therefore, the probability of a person having a driving accident while intoxicated is 0.375 or 37.5%.

Learn more about Conditional Probability here:

https://brainly.com/question/32171649

#SPJ11

Aparticular typist makes an average of four typing errors per page. If more than four errors appear on a given page, the typist must retype the whole page.What is the probability that a certain page does not have to be retyped?

Answers

Answer:

P(y≤4) = 0.629

Step-by-step explanation:

you can see in attachment.

An interviewer is given a list of potential people she can interview. She needs five interviews to complete her assignment. Suppose that each person agrees independently to be interviewed with probability 2/3. What is the probability she can complete her assignment if the list has______.
(a) 5 names?
(b) What if it has 8 names?
(c) If the list has 8 names what is the probability that the reviewer will contact exactly 7 people in completing her assignment?
(d) With 8 names, what is the probability that she will complete the assignment without contacting every name on the list?

Answers

Answer: a) [tex]\dfrac{32}{243}[/tex] b) [tex]\dfrac{256}{6561}[/tex] c) [tex]\dfrac{128}{6561}[/tex] d) [tex]\dfrac{6305}{6561}[/tex]

Step-by-step explanation:

Since we have given that

Probability that each person agrees independently to be interviewed = [tex]\dfrac{2}{3}[/tex]

(a) 5 names?

If it has 5 names, then the probability would be

[tex](\dfrac{2}{3})^5\\\\=\dfrac{32}{243}[/tex]

(b) What if it has 8 names?

If it has 8 names, then the probability would be

[tex](\dfrac{2}{3})^8=\dfrac{256}{6561}[/tex]

(c) If the list has 8 names what is the probability that the reviewer will contact exactly 7 people in completing her assignment?

[tex]^8C_7(\dfrac{2}{3})^7(\dfrac{1}{3})\\\\=\dfrac{128}{6561}[/tex]

(d) With 8 names, what is the probability that she will complete the assignment without contacting every name on the list?

[tex]1-P(X=8)\\\\=1-^8C_8(\dfrac{2}{3})^8\\\\=1-\dfrac{256}{6561}\\\\=\dfrac{6561-256}{6561}\\\\=\dfrac{6305}{6561}[/tex]

Hence, a) [tex]\dfrac{32}{243}[/tex] b) [tex]\dfrac{256}{6561}[/tex] c) [tex]\dfrac{128}{6561}[/tex] d) [tex]\dfrac{6305}{6561}[/tex]

To practice for a competition, Luis swam 0.73 kilometer in the pool each day for 4 weeks. How many meters did Luis swim in those 4 weeks? 1 km = 1,000 m

Answers

Luis swam 20440m in those 4 weeks.

Step-by-step explanation:

Distance swam per day = 0.73 km

Time period = 4 weeks

1 week = 7 days

4 weeks = 7*4 = 28 days

Total distance swam = Distance per day * Total days

[tex]Total\ distance\ swam=0.73*28\\Total\ distance\ swam=20.44\ km[/tex]

1 km = 1000m

20.44 km = 20.44*1000

Total distance in meters = 20440 m

Luis swam 20440m in those 4 weeks.

Keywords: multiplication, conversion

Learn more about multiplication at:

brainly.com/question/2485860brainly.com/question/2488474

#LearnwithBrainly

Quart cartons of milk should contain at least 32 ounces. A sample of 22 cartons was taken and amount of milk in ounces was recorded. We would like to determine if there is sufficient evidence exist to conclude the mean amount of milk in cartons is less than 32 ounces? a) Two sample t testb) One sample t testc) Two sample p testd) Matched pairs

Answers

Answer:

32 oz

Step-by-step explanation:

Find the number of elements in A1 ∪ A2 ∪ A3 if there are 100 elements in A1, 1000 in A2, and 10,000 in A3 if
a) A1 ⊆ A2 and A2 ⊆ A3.
b) the sets are pairwise disjoint.
c) there are two elements common to each pair of sets and one element in all three sets.

Answers

(a) 1000

(b) 11100

(c) 11095.

Step-by-step explanation:  

(a) If A1 is a subset of A2 and A2 is a subset of A3, then all the elements of A1 are in A2 and all the elements of A2 are in A3.

Then, n(A1 n A2) = 100, n(A2 n A3) = 1000 , n(A1 n A3) = 100 and n(A1 n A2 n A3) = 100.

So,  we get

[tex]n(A1\cup A2\cup A3)\\\\=n(A1)+n(A2)+n(A3)-n(A1\cap A2)-n(A2\cap A3)-n(A1\cap A3)+n(A1\cap A2\cap A3)\\\\=100+1000+1000-100-1000-100+100\\\\=1000.[/tex]

(b) If the sets are pairwise disjoint, then

n(A1 n A2) = n(A2 n A3) = n(A1 n A3) = n(A1 n A2 n A3) = 0.

So, we get

[tex]n(A1\cup A2\cup A3)\\\\=n(A1)+n(A2)+n(A3)\\\\=100+1000+10000\\\\=11100.[/tex]

(c) If  there are two elements common to each pair of sets and one element in all three sets, then

n(A1 n A2) = 2,  n(A2 n A3) = 2, n(A1 n A3) = 2 and n(A1 n A2 n A3) = 1.

So, we get

[tex]n(A1\cup A2\cup A3)\\\\=n(A1)+n(A2)+n(A3)-n(A1\cap A2)-n(A2\cap A3)-n(A1\cap A3)-n(A1\cap A2\cap A3)\\\\=100+1000+1000-2-2-2+1\\\\=11100-5\\\\=11095.[/tex]

Final answer:

The number of elements in the union of sets A1, A2, and A3 varies depending on their relationships. For subsets (a), the count is 10,000; for disjoint sets (b), it is 11,100; and when each pair has common elements plus one common to all (c), the count is 11,095.

Explanation:

Finding the Number of Elements in the Union of Sets

To find the number of elements in the union of sets A1, A2, and A3, we need to consider the given conditions.

a) A1 ⊆ A2 and A2 ⊆ A3

Since A1 is a subset of A2, and A2 is a subset of A3, all elements of A1 and A2 are included in A3. Therefore, the

number of elements in A1 ∪ A2 ∪ A3 equals the number of elements in A3, which is 10,000.

b) The Sets Are Pairwise Disjoint

If the sets are pairwise disjoint, this means they share no elements in common. We simply add the number of elements in each set to find the union's total count. This gives us 100 + 1000 + 10,000 = 11,100 elements in the union.

c) Two Elements Common to Each Pair and One in All Three

With two elements common to each pair of sets and one element in all three, we need to subtract the common elements to avoid double-counting. So, A1 ∪ A2 ∪ A3 will have 100 + 1000 + 10,000 - 2 - 2 - 2 + 1 (since 1 element is counted three times, we add it back once) which equals 11,095 elements.

A line is parameterized by x=2+6???? and y=4+3????. (a) Which of the following points are on the section of the line obtained by restricting ???? to nonnegative numbers (for each, enter Y if the point is on the section, and N if not)? (−28,−11) : (8,7) : (26,16) : Then, give one more point that is on the section of the line obtained by this restriction: (b) What are the endpoints of the line segment obtained by restricting ???? to −2≤????≤1? left endpoint : right endpoint : (c) How should ???? be restricted to give the part of the line above the x-axis (give your answer as an interval for ????, for example, (3,8) or [-2,Inf))? ???? must be in :

Answers

Answer:

No, yes, yes

(-28,-11) and (8.7)

[tex][tex][\frac{-4}{3} ,\infty)[/tex]}[/tex]

Step-by-step explanation:

Given that a line in two dimension is parametrized by

[tex]x=2+6t \\y = 4+3t[/tex]

a) If t is non negative, then (-28,-11) cannot lie on that part

(-28,-11) No because t =-5

(8,7) yes because t =1

(26,16) yes because t = 4

b) when t lies between -2 and 1

we have left end point as

[tex]x=2+6(-2) = -10\\y = 4+3(-2) = -2\\[/tex]

(-10,-2) is left end point

Right end point is when t =1 i.e.

(8,7)

c) when the points should be above x axis, y should be non negative

i.e. [tex]y=4+3t\geq 0\\t\geq [/tex]

So t should lie in the interval

[tex][\frac{-4}{3} ,\infty)[/tex]}

A rectangular field will have one side made of a brick wall and the other three sides made of wooden fence. Brick wall costs 10 dollars per meter and wooden fence costs 20 dollars for 4 meters. the area of the field is to be 2400m^2. What length should the brick wall be to give the lowest total cost of wall plus fence?

Answers

Answer:

1,152

Step-by-step explanation:

The rectangular field have four sides, where the opposite sides of the field are equal

The length of the brick wall that gives the lowest total cost of the fence is 40 meters

Let the length of the rectangular field be x, and the width be y.

Where: y represents the side to be made of brick wall,

So, the perimeter of the field is calculated using:

[tex]\mathbf{P =2x + 2y}[/tex]

And the area is

[tex]\mathbf{A =xy}[/tex]

The area is given as 2400.

So, we have:

[tex]\mathbf{xy = 2400}[/tex]

Make x the subject in

[tex]\mathbf{x = \frac{2400}y}[/tex]

Rewrite the perimeter as:

[tex]\mathbf{P =2x + y + y}[/tex]

The brick wall is $10 per meter, while the wooden wall is $20 per 4 meters

So, the cost function becomes

[tex]\mathbf{C =\frac {20}4 \times (2x + y) + 10 \times y}[/tex]

[tex]\mathbf{C =5 \times (2x + y) + 10 \times y}[/tex]

Open brackets

[tex]\mathbf{C =10x + 5y + 10y}[/tex]

[tex]\mathbf{C =10x +15y}[/tex]

Substitute [tex]\mathbf{x = \frac{2400}y}[/tex] in the cost function

[tex]\mathbf{C =10 \times \frac{2400}{y} +15y}[/tex]

[tex]\mathbf{C = \frac{24000}{y} +15y}[/tex]

Differentiate

[tex]\mathbf{C' = -\frac{24000}{y^2} +15}[/tex]

Set to 0, to minimize

[tex]\mathbf{-\frac{24000}{y^2} +15 = 0}[/tex]

Rewrite as

[tex]\mathbf{\frac{24000}{y^2} =15}[/tex]

Divide through by 15

[tex]\mathbf{\frac{1600}{y^2} =1}[/tex]

Multiply both sides by y^2

[tex]\mathbf{y^2 =1600}[/tex]

Take square roots of both sides

[tex]\mathbf{y^2 =40}[/tex]

Hence, the length of the brick wall should be 40 meters

Read more about rectangular fields at:

https://brainly.com/question/13370264

Raj has 40% of his weekly paycheck automatically dispositive into his savings account this week $160 is dispositive into the account Raj wants to know the total amount of his paycheck this week

Answers

Answer:

  Raj can look on his pay stub to find the total is $400

Step-by-step explanation:

The relation between the deposit and the total pay is ...

  deposit = 0.40 × total pay

  total pay = deposit / 0.40 = 160/0.40 = 400

Raj was paid $400 this week.

| The ultracentrifuge is an important tool for separating and analyzing proteins. Because of the enormous centripetal accelerations, the centrifuge must be carefully balanced, with each sample matched by a sample of identical mass on the opposite side. Any difference in the masses of opposing samples creates a net force on the shaft of the rotor, potentially leading to a catastrophic failure of the apparatus. Suppose a scientist makes a slight error in sample preparation and one sample has a mass 10 mg larger than the opposing sample. If the samples are 12 cm from the axis of the rotor and the ultracentrifuge spins at 70,000 rpm, what is the magnitude of the net force on the rotor due to the unbalanced samples

Answers

The net force on the rotor due to the unbalanced samples : 64.4 N

Further explanation  

Centripetal force is a force acting on objects that move in a circle in the direction toward the center of the circle  

[tex]\large{\boxed{\bold{F= \frac{mv^2}{R}}}[/tex]

F = centripetal force , N

m = mass , Kg

v = linear velocity , m/s

r = radius , m

The speed that is in the direction of the circle is called linear velocity  

Can be formulated:  

[tex]\displaysyle v=2\pi.r.f[/tex]

r = circle radius  

f = rotation per second (RPS)  

The sample has a mass of 10 mg larger than the opposing sample. If the samples are 12 cm from the axis of the rotor and the ultracentrifuge spins at 70,000 rpm  

Known  

RPM = 70,000, convert to RPS = 70,000: 60 = 1166.6  

r = 12 cm = 0.12 m  

m = 10 mg = 10⁻⁵ kg  

then  

Linear velocity :

v = 2π.r.f

[tex]\displaystyle v=2\times 3.14\times 0.12\times 1166.6\\\\v=879.15\:m/s[/tex]

Centripetal force :

[tex]\displaystyle F=\frac{10^{-5}\times (879.15)^2}{0.12}\\\\F=\boxed{\bold{64.4\:N}}[/tex]

Learn more

the average velocity

brainly.com/question/5248528

resultant velocity

brainly.com/question/4945130

velocity position

brainly.com/question/2005478

Keywords: ultracentrifuge, samples, Centripetal force, linear velocity

The magnitude of the net force on the rotor due to the unbalanced samples is 64.4 Newton.

How to calculate the net force magnitude?

From the information given, the velocity will be calculated as:

= 2πrf.

where, r = radius = 0.12

f = rotation per second = 70000/60 = 1166.6

Velocity will be:

= 2 × 3.14 × 0.12 × 1166.6

= 879.15 m/s

Therefore, the centripetal force will be:

= [10^-5 × (879.15)²] ) 0.12

= 64.4N

In conclusion, the magnitude of the net force is 64.4 Newton.

Learn more about net force on:

https://brainly.com/question/11556949

A two dimensional shape is formed by the intersection of the cone and a plane perpendicular to its base and passing through its vertex. What is the two dimensional shape?

Answers

Answer:

D

Step-by-step explanation:

it is a triangle.

Answer:

D. Triangle

Step-by-step explanation:

D. Triangle

Form a polynomial function(x) with zeros: -2, multiplicity 1; 1, multiplicity 2; 5, multiplicity 3; and degree 6. Use 1 as the leading coefficient and leave the function in factored form.

Answers

Answer:

Remember, a number a is a zero of the polynomial p(x) if p(a)=0. And a has multiplicity n if the factor (x-a) appear n times in the factorization of p(x).

1. Since -2 is a zero with multiplicity 1, then (x+2) is a factor of the polynomial.

2. Since 1 is a zero with multiplicity 2, then (x-1) is a factor of the polynomial and appear 2 times.

3. Since 5 is a zero with multiplicity 3, then (x-5) is a factor of the polynomial and appear 3 times.

Then, the polynomial function with the zeros described above is

[tex]p(x)=(x+2)(x-1)^2(x-5)^3= x^6-15x^5+72x^4-78x^3-255x^2+525x-250[/tex]

Final answer:

The polynomial function with the given zeros -2, 1, and 5, with their respective multiplicities 1, 2, and 3, and leading coefficient 1 is [tex]f(x) = (x + 2)(x - 1)^2(x - 5)^3.[/tex]

Explanation:

To form a polynomial function f(x) with the given zeros and multiplicities, we use the fact that a zero x = a with multiplicity m corresponds to a factor (x - a)^m in the polynomial. Since the leading coefficient should be 1, we simply multiply these factors together. Based on this, the polynomial with zeros -2 (multiplicity 1), 1 (multiplicity 2), and 5 (multiplicity 3) is:

[tex]f(x) = (x + 2)(x - 1)^2(x - 5)^3[/tex]

This polynomial is of degree 6, as the sum of the multiplicities of the zeros (1+2+3) equals the degree.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fencing along the river. What are the dimensions of the field that has the largest area?

Answers

Answer:

600ft x 1200ft

Step-by-step explanation:

Use derivative optimization to find the maximum area.

I'll call the two same sides "a", and the one different side "b"

The maximum perimeter (including 3 sides) is 2400 ft. so,

2400 = 2a + b

The area is length × width. so,

A = ab

Using substitution to combine the equations,

A = a × (2400 - 2a)

A = -2a² + 2400a

Find the maximum of A by finding the zeros of its derivative.

dA = -4a +2400

0 = -4a + 2400

The maximum occurs at a = 600

Substitute in the perimeter equation to find b.

2400 = 2(600) + b

b = 1200

600 x 1200

Two new drugs are to be tested using a group of 60 laboratory mice, each tagged with a number for identification purposes. Drug A is to be given to 22 mice, drug B is to be given to another 22 mice, and the remaining 16 mice are to be used as controls. How many ways can the assignment of treatments to mice be made? (A single assignment involves specifying the treatment for each mouse—whether drug A, drug B, or no drug.) (Enter the exact number or an equivalent algebraic expression.)

Answers

Answer:

[tex]\frac{60!}{22!22!16!}[/tex]

Step-by-step explanation:

As given, drug A is to be given to 22 mice, drug B is to be given to another 22 mice, and the remaining 16 mice are to be used as controls.

Required number of ways = Number of ways to select mice that gets drug A x the number of ways for mice that gets drug B x the number of ways the mice gets no drugs.

= [tex]\frac{60!}{22!38!} \times \frac{38!}{22!16!} \times1[/tex]

Solving this we get;

= [tex]\frac{60!}{22!22!16!}[/tex]

= 314,790,828,599,338,321,972,833,000

A rectangular field is 0.4 kilometers long and 0.35 kilometers wide. What is the area of the field in square meters? Do not round your answer. Be sure to include the correct unit in your answer.

Answers

Final answer:

To find the area of the rectangular field in square meters, we first convert the length and width from kilometers to meters. Then, we multiply the length by the width to find the area. This results in an area of 140,000 m².

Explanation:

To solve this problem, we must first understand what the question is asking. The question is asking for the area of a rectangular field, and the dimensions are given in kilometers. The area is found by multiplying the length times the width of a shape (in this case, a rectangle).

Then, we need to convert the kilometers to meters because the question asks for the answer in square meters. We know there are 1,000 meters in 1 kilometer. Therefore, the length of the field is 0.4 km * 1,000 = 400 meters, and the width of the field is 0.35 km * 1,000 = 350 meters.

The area is found by multiplying the length by the width, which is 400m * 350m = 140,000 m².

Learn more about Area Calculation here:

https://brainly.com/question/34380164

#SPJ12

99 POINTS WILL GIVE BRAINLIEST!! No fake answers!
A computer programmer has a 35% chance of finding a bug in any given program. What is the probability that she finds a bug within the first three programs she examines?
A) 0.15
B) 0.27
C) 0.59
d) 0.73

A fair coin is flipped multiples times until it lands on heads. If the probability of landing on heads is 50%, what is the probability of first landing on heads on the fourth attempts?
A) 0.625
B) 0.0625
C) 0.500
D) 0.382

Answers

1.

Chance of finding a bug = 0.35

Chance of not finding a bug = 1 - 0.35 = 0.65

Probability of finding a bug in the first 3 programs =

Probability of not finding a bug in 2 out of the 3 and finding a bug in 1.:

0.65^2 * 0.35 = 0.147 = 0.15

Answer is A.

2.

Probability of heads = 0.50

Probability of tails = 0.50

Probability of heads on the fourth attempt = tails x tails x tails x heads = 0.5 x 0.5 x 0.5 x 0.5 = 0.0625

The answer is B.

A scientist estimates that the mean nitrogen dioxide level in a city is greater than 30 parts per billion. To test this estimate, you determine the nitrogen dioxide levels for 31 randomly selected days. The results (in parts per billion) are listed below.

Answers

Answer:

Step-by-step explanation:

incomplete. no results listed below

In the 6/55 lottery game, a player picks six numbers from 1 to 55. How many different choices does the player have if repetition is not allowed? Note that the order of the numbers is not important.

Answers

Answer: 28989675

Step-by-step explanation:

The number of ways to choose r things out of n things ( if order doesn't matter) is given by :_

[tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

Given : In the 6/55 lottery game, a player picks six numbers from 1 to 55.

Then , the number of ways to choose 6 numbers out of 55 is  if repetition is not allowed :

[tex]^{55}C_6=\dfrac{55!}{6!(55-6)!}\\\\=\dfrac{55\times54\times53\times52\times51\times49!}{6\times5\times4\times3\times2\times1\times49!}\\\\=\dfrac{55\times54\times53\times52\times51}{6\times5\times4\times3\times2\times1}\\\\=28989675[/tex]

Hence, the player have 28989675 choices.

Final answer:

When repetition is not allowed, a player in the 6/55 lottery game can make 32,468,436 different choices.

Explanation:

When repetition is not allowed, the number of different choices a player has in the 6/55 lottery game can be determined using the concept of combinations. A combination is a selection where the order of the elements does not matter.

To calculate the number of combinations, we can use the formula:

C(n, r) = n! / (r! * (n-r)!)

In this case, n = 55 (total number of choices) and r = 6 (number of choices to be made). Substituting these values into the formula:

C(55, 6) = 55! / (6! * (55-6)!)

Simplifying further:

C(55, 6) = 55 * 54 * 53 * 52 * 51 * 50 / (6 * 5 * 4 * 3 * 2 * 1)

This simplifies to:

C(55, 6) = 32,468,436

Therefore, a player has 32,468,436 different choices in the 6/55 lottery game when repetition is not allowed.

Learn more about Mathematics here:

https://brainly.com/question/41753146

#SPJ3

Let x represent one number and let y represent the other number. The sum of two numbers is negative 6. If one number is subtracted from the​ other, their difference is 8. Use the given conditions to write a system of equations. Solve the system and find the numbers.

Answers

Answer:

x=7 and y=-1

Step-by-step explanation:

X+Y=6 OR X=6-Y  ...(1)

X-Y=8    ...(2)

substitue X=6-Y in (2)

(6-Y)-Y=8

6-2Y=8

-2Y=8-6

-2Y=2

Y=2/-2\Y=-1 ANS.

for x, substitute Y=-1 in (1) above

X-(-1)=8

X=8-1

X=7 ANS.

Complete the proof.

Prove: △FIJ ≅ △HGJ
A) AAS
B) ASA
C) SAS
D) SSS

Answers

Answer:

The answer is SSS.

Step-by-step explanation:

It is proved that △FIJ ≅ △HGJ By Side side Side Congruence Property.

Thus the correct option is D.

What is the congruent triangle?

Two triangles are said to be congruent if the length of the sides is equal, a measure of the angles are equal and they can be superimposed.

Given:

In △FIJ and △HGJ

Segment FI  ≅ segment GH

Segment FJ = segment HJ (by definition of midpoint)

Segment GJ= segment IJ (by definition of midpoint)

∴ By Side side Side Congruence Property

△FIJ ≅ △HGJ by SSS

Learn more about congruent triangles;

https://brainly.com/question/12413243

#SPJ3

5*5 what si the answer

Answers

Answer:

25

Step-by-step explanation:

The answer is 25 I hope this helps

Maria and Kim left town at 9:00 am and traveled the same route in separate cars. Kim drove 3 h at a steady speed, then slowed down 15km/h for 3 more hours. Maria averaged 5 km/h more than Kim's original speed for the entire trip and arrived at their destination at 2 pm. What was Kim's original speed?

Answers

Final answer:

Kim's original speed was 70 km/h. This was determined by equating the distances driven by both Kim and Maria in terms of Kim's original speed, and the fact they traveled for the same amount of time.

Explanation:

Let's denote Kim's original speed as [tex]\(V_{o}\)[/tex] in km/h. Kim drove for 3 hours at this speed and then slowed down by 15 km/h, driving at [tex]\(V_{o} - 15\)[/tex] km/h for the next 3 hours. Maria, on the other hand, averaged a speed of [tex]\(V_{o} + 5\)[/tex] km/h for the entire 6-hour trip (from 9:00 am to 2:00 pm).

To find the distance, which is the same for both Maria and Kim, we can set up the following equations based on the fact that distance is the product of speed and time: Kim's distance traveled is [tex]3 \(V_{o}\) + 3\((V_{o} - 15)\)[/tex] and Maria's distance traveled is [tex]5\((V_{o} + 5)\)[/tex]. These two expressions should be equal, as they traveled the same route:

[tex]3 \(V_{o}\) + 3\((V_{o} - 15)\) = 5\((V_{o} + 5)\)[/tex]

Simplifying the equation:

[tex]3 \(V_{o}\) + 3 \(V_{o}\) - 45 = 5 \(V_{o}\) + 25[/tex]

[tex]6 \(V_{o}\) - 45 = 5 \(V_{o}\) + 25[/tex]

[tex]Subtracting 6 \(V_{o}\) from both sides:[/tex]

[tex]\(V_{o}\) = 25+45[/tex]

Adding 45 to both sides:

[tex]\(V_{o}\) = 70[/tex]

Kim’s original speed, therefore, is 70 km/h.

There are 9 showings of a film about endangered species at the science museum. A total of 459 people saw the film. The same number of people were at each showing. About how many people were at each showing?A. 40 and 50B. 50 and 60 C. 60 and 70 D. 70 and 80

Answers

Answer: B. 50 and 60

Step-by-step explanation:

Given : There are 9 showings of a film about endangered species at the science museum.

The total number of people saw the film = 459

Also, The same number of people were at each showing.

Then, the number of people were at each showing = Total people divided by Total showings

= 459 ÷ 9 = 51

Also, 50< 51 < 60  [the quotient is between 50 and 60.]

i.e.  About 50 and 60 people were at each showing .

Hence, the correct answer is B. 50 and 60.

Can someone solve with a system of equations and show work?

Answers

Answer:

  1

Step-by-step explanation:

Label the points as in the attachment. Then we have ...

P = (a+b)/2Q = (b+c)/2R = (c+d)/2S = (d+e)/2T = (e+a)/2

We can form the sum P + R + T and we get ...

  P +R +T = (a+b)/2 +(c+d)/2 +(e+a)/2 = a +(b +c +d +e)/2

We can form the sum Q + S and we get ...

  Q + S = (b+c)/2 +(d+e)/2 = (b +c +d +e)/2

Subtracting the latter sum from the former one gives ...

  P +R +T -(Q +S) = a +(b +c +d +e)/2 -(b +c +d +e)/2 = a

__

So, the value picked by the person with the average "6" was ...

 (7 +1 +5) -(9 +3) = 13 -12 = 1

The person with average "6" picked 1.

_____

The system of equations written in matrix form is shown in the second attachment. The inverse of the coefficient matrix is shown in the third attachment. That is where the sum shown above came from.

__

The rest of the picked numbers are ...

  P = 2, b = 13, Q = 14, c = 5, R = 6, d = -3, S = -2, e = 9, T = 10

Use a triple integral to Önd the volume of the solid enclosed by the cylinder x 2 + z 2 = 4 and the planes y = 1 and y + z = 4.

Answers

Answer:

The volume should not be bigger than the volume if the cross section was a square and thus the volume enclosed would be V=12π.

Step-by-step explanation:

using cylindrical coordinates

x= rsin θ

z= rcos θ

y=y

therefore

y+z=4 → y= 4-z = 4-r cos θ

also from x²+z²=4 →  -2≤x≤2 , -2≤z≤2

therefore since y= 4-z  → 6≤y≤2 → it does not overlap with the plane y=1

V=∫∫∫dV = ∫∫∫dxdydz = ∫∫∫rdθdrdy = ∫∫rdθdr   [(y=4-r cos θ,y=1) ∫ dy] =

∫∫[(4-rcosθ) - 1]rdθdr =  ∫∫(3-rcosθ) rdθdr = ∫dθ [r=2,r=0] ∫(3r-r²cosθ) dr

∫ (3/2* 2²- 2³/3 cosθ) dθ =[θ=2π, θ=0] ∫ (6-8/3 cosθ) dθ = 2π*6 - 8/3 sin0 = 12π

thus

V= 12π

to verify it, the volume should not be bigger than the volume if the cross section was a square and thus the volume enclosed would be:

V = [(2-(-2)]² * (6-2) /2 + [(2-(-2)]²  * (2-1) = 4³/2 + 4²*2 = 64 > 12π

The probability of drawing two aces from a standard deck is 0.0059. We know this probability, but we don't know if the first card was replaced. If the two draws are defined as event A and event B, are the events dependent or independent?

A. They are dependent because, based on the probability, the first ace was replaced before drawing the second ace.
B. They are dependent because, based on the probability, the first ace was not replaced before drawing the second ace.
C. They are independent because, based on the probability, the first ace was replaced before drawing the second ace.
D. They are independent because, based on the probability, the first ace was not replaced before drawing the second ace.

Answers

Answer:

Option C is right

C. They are independent because, based on the probability, the first ace was replaced before drawing the second ace.

Step-by-step explanation:

Given that the  probability of drawing two aces from a standard deck is 0.0059

If first card is drawn and replaced then this probability would change.  By making draws with replacement we make each event independent of the other

Drawing ace in I draw has probability equal to 4/52, when we replace the I card again drawing age has probability equal to same 4/52

So if the two draws are defined as event A and event B,  the events are  independent

C. They are independent because, based on the probability, the first ace was replaced before drawing the second ace.

Other Questions
(due now need help)As he walked, he saw pictures of famous athletes who had made their mark on history. Geoff spotted many notable athletes. He also read about other ones that werent familiar to him. In the seventh paragraph the word notable means A)famous. B)intelligent. C)thorough. D)thoughtful. The internet and social media have increased the level of interactions between politicians and citizens. True or False in a laboratory the countof bacteria in a certain experiment was increasing at the rate of 5% per hour find the bacteria at the end of 3 hour if the count was initially 250000? La exposicin (tener) ms xito si hubiera estado en el centro de la ciudad. Question 2 with 1 blank Nos (gustar) hablar con los artistas. Question 3 with 1 blank Nosotros (hacer) una entrevista a los pintores si hubiramos tenido la oportunidad. Question 4 with 1 blank Los escultores (vender) ms esculturas en otra galera. Question 5 with 1 blank Una coleccin de arte contemporneo (ser) ms inquietante. Question 6 with 1 blank Incluir murales en la exposicin (atraer) a ms pblico. Jason rents rooms in his hotel for an average of $100 per night. The variable cost per rented room is $20. His fixed costs are $100,000 and his target profit is $20,000. For Jason, to earn his target profit, he will need to rent out ________ rooms.A) 100B) 20,000C) 1,000D) 1,500E) It cannot be determined from the information provided. simplify -3w-5(4x-4w)-4x Two ladybugs sit on a rotating disk that is slowing down at a constant rate. The ladybugs are at rest with respect to the surface of the disk and do not slip. Ladybug 1 is halfway between ladybug 2 and the axis of rotation. How does the rotational speed of ladybug 1 compare to ladybug 2? If ABC corporation paid a dividend of $6 per share last year. The stock currently sells for $80 per share. You estimate that the dividend will grow steadily at a rate of 6% per year into the indefinite future. What is the cost of equity? a. 7.5% b. 7.95% c. 11.50% d. 13.50% e. 13.95% Describe two of the three column styles found in ancient Greek architecture. 2.What were Ushabti? What purpose did they have? 3.Describe the typical way of depicting humans in Egyptian art. Why were humans depicted in this way? 4.What is the proportional system in Egyptian art? What effect did this have on Egyptian art? 5.Identify and describe two different styles of Greek pottery. HELP ASAP!!!!!! A college student wants to become certified to teach. To do this, the student will need to meet requirements set by which of the following? State government State and national government National government Local county government What is the sum of the solutions of x2 + 9x + 20 = 0?What is the product (or multiplication) of the solutions of 6x2 + 7x = 3? find the area and perimeter of the rectangle with vertices (4, -7), (-3, -7), (-3, 3), and (4, 3). -3x+3y=9 2x7y=14 Which practice did the federal government use to deal with the Great Depression?A deficit financingB regulating tradeC taxing exportsD regulating commerce Triangular numbers can be represented with equilateral triangles formed by dots. The first five triangular numbers are 1, 3, 6, 10, and 15.?Is there a direct variation between a triangular number and its position in the sequence? Explain your reasoning. During orientation, an RN learns that LPN/LVNs in the facility receive additional training to perform some tasks such as hanging continuously infusing intravenous fluids that have no additives. It is important for the RN to understand that: Which of the following best represents the average rate at which a person canquickly walk? 01) 3 steps per hourO2) 3 steps per second03) 30 steps per minuteO4) 30 steps per second A softball team is ordering pizza to eat after their tournament. They plan to order cheese pizzas that cost $6each and four-topping pizzas that cost $10 each. They order c cheese pizzas and f four-topping pizzas.Which expression represents the total cost of all the pizzas they order? Jed was hospitalized for a hip surgery. He is eight years old, and is now exhibiting confusion about the time of day or day of week. He is unable to focus on anything. These symptoms started while he was in the hospital. What is a likely diagnosis? A small-town radio disc jockey frequently announces how much money is currently in a jackpot. Every day several randomly selected residents are called and asked to identify the amount, and thereby win it. Those who keep track of the jackpot amount are most likely to be reinforced on a ________ schedule.