Answer:
In high jump as well as long jump, instateneous velocity is more important than average velocity.
In relay races and 400m races, average is more important than instateneous velocity.
Explanation:
Instantaneous velocity is the velocity of anything in motion at a specific point in time. This is determined quite similarly to average velocity, however, we look at the period of time so that it approaches zero. If there is a standard velocity over a period of time, its average and instantaneous velocities may be the same. Instantaneous velocity is calculated as the limit as t approaches zero of the change in d over the change in t.
The range or length of long jump depends on the instantenous velocity of the jump and the height of high jump depends on the instantenous velocity of the height.
A person with greater average velocity wins a race. The average velocity of anything or object is referred to as its total displacement divided by the total time taken. That is to say, it is the rate at which an object changes its position from one place to another. Average velocity is also a Vector quantity. Meters per second is the SI unit. Although, any distance unit per any time unit can be used when necessary, such as miles per hour (mph) or kilometer per hour (kmph)
Instantaneous velocity is more important in specific instances like a tennis stroke or a football collision, while average velocity is more important for calculating average rates of change in situations like road trips or rehab.
Explanation:Instantaneous velocity is more important than average velocity in situations where we need to know the velocity at a specific instant in time. Examples of this include a tennis player's stroke in which they aim to hit the ball on the sweet spot of the racket for maximum velocity and minimal vibration, and in a collision in football where a player with the same velocity but greater mass has a greater impact due to their greater momentum.
On the other hand, average velocity is more important in situations where we need to calculate the average rate of change of position over a given time interval. Examples include calculating the average velocity of a car during a road trip to determine the time taken to reach a destination, and in rehab where the average velocity of a patient's movement is measured to track progress over time.
Learn more about Velocity here:https://brainly.com/question/39711173
#SPJ12
What happens to the resistance of a filament if it is replaced by a shorter
wire?
Answer:the resistance decrease
Explanation:
Calculate the displacement and velocity at times of (a) 0.500 s, (b) 1.00 s, (c) 1.50 s, (d) 2.00 s, and (e) 2.50 s for a rock thrown straight down with an initial velocity of 14.0 m/s from the Verrazano Narrows Bridge in New York City. The roadway of this bridge is 70.0 m above the water.
Answer:
a) 8.25 m and 19 m/s
b) 19 m and 24 m/s
c) 32.25 m and 29 m/s
d) 48 m and 34 m/s
e) 66.25 m and 39 m/s
Explanation:
Let gravitational constant g = 10m/s2
Formula for displacement: [tex]s = v_0t + gt^2/2 = 14t + 10t^2/2 = 14t + 5t^2[/tex]
Formula for velocity: v = v_0 + gt = 14 + 10t
a) at t = 0.5s
[tex]s = 14*0.5 + 5*0.5^2 = 7 + 1.25 = 8.25 m[/tex]
v = 14 + 10*0.5 = 14 + 5 = 19 m/s[/tex]
b) at t = 1s
[tex]s = 14*1 + 5*1^2 = 19 m[/tex]
v = 14 + 10*1 = 24 m/s
c) at t = 1.5 s
[tex]s = 14*1.5 + 5*1.5^2 = 21 + 11.25 = 32.25 m[/tex]
v = 14 + 10*1.5 = 29 m/s
d) at t = 2s
[tex]s = 14*2 + 5*2^2 = 28 + 20 = 48 m[/tex]
v = 14 + 10*2 = 34 m/s
e) at t = 2.5s
[tex]s = 14*2.5 + 5*2.5^2 = 35 + 31.25 = 66.25 m[/tex]
v = 14 + 10*2.5 = 39 m/s
A student hooks up a voltmeter and an ammeter in a circuit to find the resistance of a light bulb. The ammeter read 3 amps and the voltmeter reads 6 volts. What is the resistance of the light bulb?
Answer:
[tex]2\Omega[/tex]
Explanation:
(Assuming the cell in the circuit has 0 internal resistance)
Ohm's Law is given as:
[tex]V=IR[/tex]
Voltage is Current multiplied by Resistance.
We can rearrange this formula to give us:
[tex]R=\frac{V}{I}[/tex]
Now we can plug in our values
[tex]R=\frac{6}{3}=2\Omega[/tex]
I= 3A
V= 6V
R=?
V=IR
R=V/I
R=6/3
Therefore R = 2ohms
Hope this will help u mate :)
Now let’s apply the work–energy theorem to a more complex, multistep problem. In a pile driver, a steel hammerhead with mass 200 kg is lifted 3.00 m above the top of a vertical I-beam that is to be driven into the ground (Figure 1) . The hammer is then dropped, driving the I-beam 7.40 cm farther into the ground. The vertical rails that guide the hammerhead exert a constant 60.0 N friction force on it. Use the work–energy theorem to find
(a) the speed of the hammerhead just as it hits the I-beam and
(b) the average force the hammerhead exerts on the I-beam.
The question applies work-energy theorem to find the speed of the hammerhead and the average force. For the speed, we calculate the work done by gravitational and frictional forces. For the average force, we use the work done on the I-beam and the fall distance.
Explanation:To solve this question, we can apply the work-energy theorem, which states that the work done on an object is equal to the change in its kinetic energy.
Let's start with part (a), the speed of the hammerhead just as it hits the I-beam:
To calculate the speed, we need to find the work done on the hammerhead. The work done involves the gravitational force and the frictional force. The work done by the gravitational force is mgh, where m is the mass (200 kg), g is gravity (9.8 m/s^2), and h is the fall height (3.00 m). The work done by the frictional force is -fd, where f is frictional force (60.0 N) and d is the fall distance (3.00 m). By solving these and equating them to change in kinetic energy (1/2 mv^2), we can find the speed v.
For part (b), the average force the hammerhead exerts on the I-beam:
The average force can be dropped by using the work done on the I-beam and the fall distance. Work done on the I-beam can be calculated by the difference in kinetic energy before and after hitting the I-beam. This work done is equal to force times distance (fd). By solving this, we get the average force on the I-beam.
Learn more about Work-Energy Theorem here:https://brainly.com/question/32184004
#SPJ3
A 12.0 V voltage is applied to a wire with a resistance of 3.50 ohms. what is the magnetic field 0.150 m from the wire?
____x10^____T
Answer:
4.57x10^-6
Explanation:
So first you'll need to find the current, which is
I = voltage / resistance
which equals 3.43
Then just plug your numbers into the magnetic field equation to get your final answer
4.57x10^-6
Also it was right on Acellus lol
Hope this helps :)
The magnetic field 0.150 m from the wire is 2.86 x 10⁻⁵ T.
The magnetic field created by a current-carrying wire is inversely proportional to the distance from the wire. The closer you get to the wire, the stronger the magnetic field. The distance from the wire is 0.150 m. The voltage applied to the wire is 12.0 V and the resistance of the wire is 3.50 ohms.
We can use the following equation to calculate the magnetic field:
B = μ0 * I / 2πr
B = magnetic field (T)
μ0 = permeability of free space (4π x 10^-7 T m/A)
I = current (A)
r = distance from wire (m)
Plugging in the values, we get:
B = (4π x 10⁻⁷ T m/A) * (12.0 V / 3.50 ohms) / 2π * 0.150 m
B = 2.86 x 10⁻⁵ T.
As a result, the magnetic field 0.150 m away from the wire is 2.86 x 10⁻⁵ T.
To know more about the Magnetic field, here
https://brainly.com/question/15089922
#SPJ2
It requires energy to bring two identical positive charges together. As these charges are brought closer together, the electrical potential energy will
Answer:
it increases
Explanation:
It requires energy to bring two identical, similar positive charges together. As the charges come closer, the electrical potential energy will increase.
What is potential energy?Potential energy is a form of stored energy that is dependent on the relationship among different components. When a spring is compressed or stretched, its potential energy increases. If a steel ball is raised above the floor as opposed to falling to the ground, it has more potential energy. It is capable of carrying out additional work when raised.
Potential energy is a feature of systems rather than of particular bodies or particles; for instance, the system created up of Earth and the elevated ball has more energy stored as they become further apart.
Potential energy develops in systems components whose configurations, or spatial arrangement, determine the amount of the forces they apply to one another.
To know more about Potential energy:
https://brainly.com/question/24284560
#SPJ5
The motor in a toy car is powered by four batteries in series, which produce a total emf of 6.3 V. The motor draws 3.1 A and develops a 2.1 V back emf at normal speed. Each battery has a 0.18 Ω internal resistance.what is the resistance of the motor?
Answer:
0.635 Ω
Explanation:
Using
E-E' = IR.................... Equation 1
Where E = total Emf of the of the batteries, E' = back emf of the motor, I = current of the motor, R = combined resistance of the battery and the motor.
Make R the subject of the equation
R = E-E'/I.............. Equation 2
Given: E = 6.3 V, E' = 2.1 V, I = 3.1 A.
Substitute into equation 2
R = (6.3-2.1)/3.1
R = 4.2/3.1
R = 1.355 Ω
Since the motor and the batteries are connected in series,
R = R'+r'....................... Equation 3
Where R' = Resistance of the motor, r' = resistance of the batteries.
make R' the subject of the equation
R' = R-r'...................... Equation 4
Given: R = 1.355 Ω, r' = 0.18×4 (four batteries) = 0.72 Ω
Substitute into equation 4
R' = 1.355-0.72
R' = 0.635 Ω
Hence the resistance of the motor = 0.635 Ω
To find the motor's resistance, subtract the back emf from the total emf to get the effective voltage, then divide by the current and subtract the total internal resistance of the batteries. The resistance of the motor is found to be 1.35 Ω.
The question involves a toy car motor that is powered by four batteries producing a total electromotive force (emf) of 6.3 V, with each battery having an internal resistance of 0.18 Ω. Upon running, the motor develops a 2.1 V back emf and draws a current of 3.1 A. To find the resistance of the motor, one can use the net emf equation and Ohm's law.
The total emf minus the back emf is the effective voltage across the motor. Thus, the effective voltage (Veff) is 6.3 V - 2.1 V = 4.2 V. The total internal resistance (Rint) in series is 4 batteries × 0.18 Ω = 0.72 Ω. Applying Ohm's law, V = IR where I is the current and R is the resistance, we solve for the resistance (Rmotor) of the motor:
Veff = I(Rmotor + Rint)
Rmotor = Veff/I - Rint
Rmotor = 4.2 V / 3.1 A - 0.72 Ω
Rmotor = 1.35 Ω
Therefore, the resistance of the motor is 1.35 Ω.
A football player with the force of 500 N leaps 2 m into the air. How much work is done?
Explanation:
Given
Force (F) = 500 N
Distance (d) = 2m
Now
Work done = F * d
= 500 * 2
= 1000 joule
Therefore 1000 joule of work is done.
Hope this helps.
The work done by a football player leaping 2 m into the air with a force of 500 N is calculated using the equation W = F * d, resulting in 1000 joules of work.
When calculating work done on an object, it's essential to understand that work (W) is defined as the product of the force (F) applied to an object and the distance (d) that the object moves in the direction of the force. The equation for work is:
W = F * d,
where work (W) is measured in joules (J), force (F) in newtons (N), and distance (d) in meters (m).
For a football player leaping vertically into the air with a force of 500 N over a distance of 2 m:
W = (500 N) * (2 m),
W = 1000 J.
The work done by the football player in leaping 2 meters into the air is therefore 1000 joules.
A coil 4.20 cm radius, containing 500 turns, is placed in a uniform magnetic field that varies with time according to B=( 1.20×10−2 T/s )t+( 2.60×10−5 T/s4 )t4. The coil is connected to a 640-Ω resistor, and its plane is perpendicular to the magnetic field. You can ignore the resistance of the coil.
a)Find the magnitude of the induced emf in the coil as a function of time.
Explanation:
Given that,
Radius of the coil, r = 4.2 cm
Number of turns in the coil, N = 500
The magnetic field as a function of time is given by :
[tex]B=1.2\times 10^{-2}t+2.6\times 10^{-5}t^4[/tex]
Resistance of the coil, R = 640 ohms
We need to find the magnitude of induced emf in the coil as a function of time. It is given by :
[tex]\epsilon=\dfrac{-d\phi}{dt}\\\\\epsilon=\dfrac{-d(NBA)}{dt}\\\\\epsilon=N\pi r^2\dfrac{-dB}{dt}\\\\\epsilon=N\pi r^2\times \dfrac{-d(1.2\times 10^{-2}t+2.6\times 10^{-5}t^4)}{dt}\\\\\epsilon=N\pi r^2\times (1.2\times 10^{-2}+10.4\times 10^{-5}t^3)\\\\\epsilon=500\pi \times (4.2\times 10^{-2})^2\times (1.2\times 10^{-2}+10.4\times 10^{-5}t^3)\\\\\epsilon=2.77(1.2\times 10^{-2}+10.4\times 10^{-5}t^3)\ V[/tex]
Hence, this is the required solution.
Answer:
Explanation:
Radius of the coil, r = 4.2 cm
number of turns, N = 500
resistance in the circuit, R = 640 ohm
The magnetic field is given by
[tex]B=1.2\times 10^{-2}t+2.6\times 10^{-5}t^{4}[/tex]
(a) According to the Faraday's law of electromagnetic induction, the magnitude of induced emf is given by
[tex]e = \frac{d\phi}{dt}[/tex]
magnetic flux, Ф = N x B x A x Cos 0
Ф = N A B
Differentiate both sides
[tex]\frac{d\phi}{dt}=NA\frac{dB}{dt}[/tex]
[tex]\frac{d\phi}{dt}=500\times 3.14 \times 0.042\times 0.042\times \left ( 1.2\times 10^{-2}+4 \times 2.6\times 10^{-5}t^{3}\right )[/tex]
So, the magnitude of induced emf is given by
[tex]e =3.324\times 10^{-2}+28.8 \times 10^{-5}t^{3} V[/tex]
This is the magnitude of induced emf as the function of time.
Complete the following sentence: The operation of a hydraulic jack is an application of a) Archimedesâ principle. b) Bernoulli's principle. c) Pascal's principle. d) the continuity equation. e) irrotational flow.
Answer:
a) archimedes principle
The operation of a hydraulic jack is an application of Pascal's principle. Hence, option (c) is correct.
What is Pascal's principle?Pascal's principle in fluid mechanics asserts that a pressure change in one component of a fluid at rest in a closed container is transferred without loss to every portion of the fluid and to the container walls.
The force multiplied by the surface area on which it acts produces pressure. Pascal's principle states that a pressure rise on one piston in a hydraulic system causes an equivalent increase in pressure on another piston in the system.
Even though the pressure on the second piston is the same as that on the first piston, the force acting on it is 10 times more if its area is 10 times greater than the first piston's.
The hydraulic press, which is based on Pascal's concept and is employed in systems like hydraulic jacks , is a good example of this effect.
Learn more about Pascal's principle here:
https://brainly.com/question/29630624
#SPJ6
A fisherman notices that one wave passes the bow of his anchored boat every 3 seconds. He measured the wavelength to be 8.5 meters. How fast are the waves traveling?
Answer:
2.3 m/s
Explanation:
A fisherman notices that one wave passes the bow of his anchored boat every 3 seconds. The speed of the wave traveling is 2.83 m/s. The correct option is 1.
What is velocity?Velocity is a vector expression of an object's or particle's displacement with respect to time. The meter per second (m/s) is the standard unit of velocity magnitude (also known as speed). The meter per second (m/s) is a unit of velocity magnitude (also known as speed).
Speed is the rate at which an object moves along a path in time, whereas velocity is the rate and direction of movement. In other words, velocity is a vector, whereas speed is a scalar value.
Frequency = 1/time
Time = 3 seconds
λ = 8.5 meters.
Putting the value in the formula:
v = f x λ
v = 1/3 x 8.5 = 2.83 m/s
Therefore, the speed of the wave traveling is 2.83 m/s. The correct option is 1.
To learn more about velocity, refer to the link:
https://brainly.com/question/18084516
#SPJ2
The question is incomplete. Your most probably complete question is given below:
1.)2.83m/s
2.)0.283m/s
3.)28.3m/s
As a wave moves through a medium at a speed v, the particles of the medium move in simple harmonic motion about their undisturbed positions. The maximum speed of the simple harmonic motion is vmax. When the amplitude of the wave doubles, __________________
Answer:
1) The velocity remain the same
2) the frequency remains the same
3) the energy increases by four times.
is it possible that the enzymes in our bodies use quantum tunneling?
Answer:
Yes it is possible
Explanation:
These are the workhorses of the living world, speeding up chemical reactions so that processes that would otherwise take thousands of years happen inside living cells in seconds. How they achieve this speed-up – often more than a trillion-fold – has long been an enigma. But now, research by Judith Klinman at the University of California, Berkeley and Nigel Scrutton at the University of Manchester (among others) has shown that enzymes can employ a weird quantum trick called tunnelling. Simply put, the enzyme encourages a process whereby electrons and protons vanish from one position in a biochemical and instantly rematerialise in another, without visiting any of the in-between places – a kind of teleportation.
Final answer:
Quantum tunneling is indeed a process that can be used by enzymes in our bodies to facilitate biochemical reactions by allowing particles to penetrate potential energy barriers, significantly affecting reaction rates.
Explanation:
Yes, it is possible that the enzymes in our bodies use quantum tunneling. Quantum tunneling is a phenomenon whereby particles penetrate a potential energy barrier despite having total energy less than the height of the barrier, which defies the principles of classical mechanics. This process was first analyzed by Friedrich Hund in 1927 and later used by George Gamow to explain alpha decay of atomic nuclei as a quantum-tunneling phenomenon.
In biological systems, quantum tunneling allows for the transfer of protons or electrons during enzyme-catalyzed reactions, significantly affecting the reaction rate by providing an alternate, low-energy pathway for the reaction to occur. Thus, enzymes can use quantum tunneling to speed up biochemical reactions that would otherwise occur much more slowly. This principle is vital in fields like biochemistry and molecular biology, providing a deeper understanding of enzyme kinetics and mechanism.
An observant fan at a baseball game notices that the radio commentators have lowered a microphone from their booth to just a few centimeters above the ground. (The microphone is used to pick up sounds from the field.) The fan also notices that the microphone is slowly swinging back and forth like a simple pendulum. Using her digital watch, she finds that 1010 complete oscillations take 20.2s20.2s. How high above the field is the radio booth?
Answer:
The radio booth is 0.993 meters above the field.
Explanation:
The pendulum covers 10 complete oscillations to take 20 s. We need to find the height above the radio booth. The time period of the pendulum is given by :
[tex]T=2\pi \sqrt{\dfrac{L}{g}} \\\\L=(\dfrac{T}{2\pi })^2g\\\\L=(\dfrac{(20/10)}{2\pi })^2\times 9.8\\\\L=0.993\ m[/tex]
So, the radio booth is 0.993 meters above the field.
The height of the radio booth is calculated to be approximately 9.9 cm by using the given oscillation period of 0.02 s and applying the pendulum formula.
A pendulum's period (T) is given by the formula:
T = 2π√(L/g)
Where:
T is the period of oscillationL is the length of the pendulum (distance from the pivot to the center of mass)g is the acceleration due to gravity (~9.8 m/s²)Given that 1010 complete oscillations take 20.2 seconds, we can find the period:
T = 20.2 s / 1010 = 0.02 sNow, using the period formula, we rearrange to solve for L:
T = 2π√(L/g)Square both sides to get:
(T / 2π)² = L / gThen solve for L:
L = g * (T / 2π)²Plugging in the values:
L = 9.8 m/s² * (0.02 s / 2π)²L ≈ 9.8 m/s² * (0.00318 s)²L ≈ 9.8 m/s² * 0.0000101 s²L ≈ 0.00009898 mSo, the height from which the microphone is hanging is approximately 9.9 cm.
A puddle of water has a thin film of gasoline floating on it. A beam of light is shining perpendicular on the film. If the wavelength of light incident on the film is 560 nm and the indices of refraction of gasoline and water are 1.40 and 1.33, respectively, what must be the minimum thickness of the film to see a bright reflection? 100 nm 200 nm 300 nm 400 nm 500 nm
Answer:
option A
Explanation:
Given,
wavelength of light,[tex] \lambda = 560\ nm[/tex]
refractive index of gasoline, n₁ = 1.40
Refractive index of water, n₂ = 1.33
thickness of the film, t = ?
Condition of constructive interference is given by
[tex]2 n t = (m+\dfrac{1}{2})\lambda[/tex]
For minimum thickness of the film m = 0
From the question we can clearly observe that phase change from gasoline to air
so, n = 1.4
[tex]2 \times 1.4 \times t = \dfrac{560}{2}[/tex]
[tex] t = 100\ nm[/tex]
Hence, the correct answer is option A
Two technicians are discussing exhaust check valves used in SAI systems. Technician A says that they are used to prevent
the output from the SAI pump from entering the intake manifold. Technician B says the check valves are used to keep the
exhaust from entering the AIR pump. Which technician is correct?
a. Technician A only
b. Technician B only
c. Both Technicians A and B
d. Neither Technician A nor B
Answer: Technical B is right.
Explanation:
The first systems injected air very close to the engine, either in the cylinder head's exhaust ports or in the exhaust manifold
However, the extra heat of recombustion, particularly with an excessively rich exhaust caused by misfiring or a maladjusted carburetor, tended to damage exhaust valves and could even be seen to cause the exhaust manifold to incandesce.
Other things being equal, which would be easier? a. To drive at high speed around an unbanked horizontal curve on the moon. b. To drive at high speed around an unbanked horizontal curve on the earth. c. Neither would be easier because there's no difference.
Answer:
To drive at high speed around an unbanked horizontal curve on the earth.
Explanation:
Garvitational pull on on eart is 6 times more than on the moon. On. Earth, the vehicle will have more grip on the surface due to its weight. This grip will reduce its tendency to skid off the horizontal curve when compared to driving in the same unbanked horizontal curve on the moon.
Final answer:
Driving at high speed around an unbanked horizontal curve would be easier on Earth compared to the moon, because Earth's greater gravity provides a higher force of static friction, reducing the risk of slipping at high speeds.
Explanation:
When deciding whether it would be easier to drive at high speed around an unbanked horizontal curve on the moon or the earth, with other things being equal, we need to consider the force of static friction and the acceleration required to maintain uniform circular motion. The acceleration in question is given by the equation |a| = |v|²/r, where |a| is the magnitude of acceleration, |v| is the speed of the car, and r is the radius of the circular path.
On the moon, due to its lower gravity, the force of static friction is less than it is on earth. Despite that, it would be more challenging to drive at high speed on the moon because a lower force of static friction means a lower threshold for slipping. On earth, the higher gravity increases the maximum force of static friction, allowing for a presumably safer high-speed turn, assuming no additional adverse conditions like rain or mud. Therefore, b. To drive at high speed around an unbanked horizontal curve on the earth would be easier for the given scenario.
Suppose the universe contained only low-mass stars. Would elements heavier than carbon exist?
Answer:
No, since they don't have the necessary mass and a high temperature in their core.
Explanation:
There are two forces that play an important role in the stars: the force of gravity in the inward direction due to stars' own mass and the radiation pressure in the upward direction as a consequence of the nuclear reaction in their core.
The superficial layers of the stars compress the core as an effect of their own gravity. Therefore, atoms will be closer to each other in the core, allowing them to combine, increasing the density and temperature.
A nuclear reaction occurs when light elements combine into heavier elements (that is known as nucleosynthesis). To get fusion reactions that generate heavier elements than carbon high temperature is necessary, which can be gotten by a more massive star for what was already explained in the first paragraph.
Match the following:Part A1. developed geocentric theory 2. developed heliocentric theory 3. founded nursing profession 4. invented barometer 5. considered "Father of Modern Science" 6. developed law of universal gravitation 7. examined the inner workings of the human body 8. developed metric temperature scale Part Ba. Galileo b. Copernicus c. Celsius d. Newton e. Nightingale f. Aristotle g. Torricelli h. Vesalius
Answer:
1 -f,2 -b,3-e,4 -g,5-a,6 - d, 7 - h, 8 - c
Explanation:
1. developed geocentric theory - Aristotle
2. developed heliocentric theory - Copernicus in 1543
3. founded nursing profession - Florence Nightingale
4. invented barometer - Evangelista Torricelli in 1643
5. "Father of Modern Science" - Galileo Galilei
6.law of universal gravitation -Sir Isaac Newton
7. examined the inner workings of the human body - Vesalius
8. developed metric temperature scale - Andres Celsius in 1742
The tropic of cancer is to the tropic of capricorn as the arctic circle is to the
Answer:
Antarctic Circle
Explanation:
The Tropic of Cancer, which is also referred to as the Northern Tropic, is the most northerly circle of latitude on Earth at which the Sun can be directly overhead. This occurs on the June solstice, when the Northern Hemisphere is tilted toward the Sun to its maximum extent.
Tropic of Capricorn Is it Southern Hemisphere counterpart, marking the most southerly position at which the Sun can be directly overhead.
A 2 kg, frictionless block is attached to a horizontal, ideal spring with spring constant 300 N/m. At t = 0 the spring is neither stretched nor compressed and the block is moving in the negative direction at 12 m/s. (a) Find the amplitude of this oscillation.
Answer:
Explanation:
Given that,
Mass of block
M = 2kg
Spring constant k = 300N/m
Velocity v = 12m/s
At t = 0, the spring is neither stretched nor compressed. Then, it amplitude is zero at t=0
xo = 0
It velocity is 12m/s at t=0
Then, it initial velocity is
Vo = 12m/s
Then, amplitude is given as
A = √[xo + (Vo²/ω²)]
Where
xo is the initial amplitude =0
Vo is the initial velocity =12m/s
ω is the angular frequency and it can be determine using
ω = √(k/m)
Where
k is spring constant = 300N/m
m is the mass of object = 2kg
Then,
ω = √300/2 = √150
ω = 12.25 rad/s²
Then,
A = √[xo + (Vo²/ω²)]
A = √[0 + (12²/12.5²)]
A = √[0 + 0.96]
A = √0.96
A = 0.98m
A mass of 230 g, hanging on a spring, vertically oscillates with a period of 1 sec (the spring itself has no mass). After adding a mass, m, to the 230 g, we find that the period of oscillation of this mass-spring system becomes 2 sec. The value of m is equal to________.
Answer:
The added mass m= 0.7kg
Explanation:
This problem bothers on the simple harmonic motion of a spiral spring
We know that the period of a simple harmonic motion of a spring is given as
T=2π√m/k
We need to solve first for the spring constant k
Given data
Mass m =230g - - - - - kg
=230/1000= 0.230kg
Period T = 1sec
Substituting we have
1= 2*3.142√0.230/k
1=6.284√0.230/k
1/6.284=√0.230/k
Square both sides
(0.159)²=0.230/k
0.025=0.230/k
k=0.230/0.025
k= 9.2N/m
Now we find that the period of oscillation is 2 after adding mass m to 230g.. Let's solve for the new mass
Using the formula for the period T=2π√m/k
2=2*3.142√m/9.2
2=6.284√m/9.2
2/6.284=√m/9.2
Square both sides
(0.318)²=m/9.2
0.10=m/9.2
m= 0.930kg
Therefore the added mass is
0.930kg-0.230kg
The added mass m= 0.7kg
Calculate the linear acceleration of a car, the 0.260-m radius tires of which have an angular acceleration of 14.0 rad/s2. Assume no slippage and give your answer in m/s2. 3.64 Correct: Your answer is correct. m/s2 (b) How many revolutions do the tires make in 2.50 s if they start from rest
Final answer:
A car with tires of radius 0.280 m decelerating at 7.00 m/s² has an angular acceleration of 25 rad/s². To find the number of revolutions before stopping, kinematic equations for rotational motion are used with an initial angular velocity of 95.0 rad/s.
Explanation:
A car decelerating at 7.00 m/s² with tires of radius 0.280 m requires an understanding of the relationship between linear acceleration and angular acceleration. The formula linking these two is α = a/r, where α is the angular acceleration, a is the linear acceleration, and r is the radius of the tire. Using these values, the angular acceleration is calculated to be 25 rad/s².
For part (b), to find out how many revolutions the tires make before coming to rest, we need to use kinematic equations for rotational motion. Initially, we have an angular velocity (ω) of 95.0 rad/s and we want to find the total angle (θ) covered by the tires. Using the equation θ = (ω0²)/(2*α), we calculate the angle in radians and then convert this to revolutions by dividing by 2π. After finding the revolutions, the car's tires will have stopped rotating completely.
________ is the si unit of angular momentum
Answer:
kg m2/s
Explanation:
I think it is :)
The SI unit of angular momentum is kg·m²/s, reflecting an object's rotational motion dynamics. Fundamental to rotational dynamics, angular momentum is calculated based on an object's moment of inertia and angular velocity, adhering to the dimensions ML²T-¹.
Explanation:The SI unit of angular momentum is the kilogram meter squared per second (kg·m²/s). Angular momentum, denoted by the symbols “l” for an individual particle and “L” for a system of particles or a rigid body, represents the rotational equivalent of linear momentum. It is fundamentally connected to the concepts of moment of inertia and angular velocity, where the angular momentum (“l” or “L”) can be calculated by the product of these two quantities. This unit emphasizes the momentum of an object in rotational motion about an axis and is derived from taking the product of the object's moment of inertia and its angular velocity.
The calculation of angular momentum involves factors such as the mass (m) of the particle, its velocity (v) perpendicular to the line joining it to the axis of rotation, and its distance (r) from the axis. This relationship is encapsulated in the formula L=mvr, highlighting the linear momentum's component (mv) and its lever arm distance (r) from the rotation axis. The SI units and dimensions (ML²T-¹) of angular momentum validate its role in describing the rotational dynamics of objects.
The center of gravity is defined as: a. The part of the skeleton composed of the bones of the vertebral column, ribs, and skull b. A plane the passes through the midpoint of the body c. State of an object as a result of forces pushing on it d. Imaginary point through which the resultant force of gravity acts on an object
Answer:
the corect answer it b and c
Explanation:
b. the density of lines shows the strength of the force.
c. the arrows on the lines of force show which way a posative object will move.
youre welcome
A sinusoidal wave is traveling on a string with speed 40 cm/s. The displacement of the particles of the string at x = 10 cm varies with time according to
y=(5.0cm)sin[1.0−(4.0s−1)t]
. The linear density of the string is 4.0 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form y(x, t) = y_m sin(kx ± ωt), what are (c) y_m, (d) k, (e) ω, and (f ) the correct choice of sign in front of ω? (g) What is the tension in the string?
Answer:
a) [tex]f=0.64 Hz[/tex]
b) [tex]\lambda=62.5 cm[/tex]
c) [tex]y_{m}=5 cm[/tex]
d) [tex]k=0.1 cm^{-1}[/tex]
e) [tex]\omega=4 s^{-1}[/tex]
g) [tex]T=0.064 N[/tex]
Explanation:
We know that the wave equation is of the form:
[tex]y(x,t) = y_{m}sin(kx \pm \omega t)[/tex]
Comparing with the equation of the sinusoidal wave [tex](y=(5.0cm)sin[1.0−(4.0s^{-1})t])[/tex] we will have:
[tex]\omega = 4 s^{-1}[/tex]
a) ω is the angular frequency and it can writes in terms of frequency as:
[tex]\omega = 2\pi f[/tex] , where f is the frequency.
[tex]f=\frac{\omega}{2\pi}[/tex]
[tex]f=0.64 Hz[/tex]
b) Let's recall that the speed of the wave is the product between the wave length and the frequency, so we have:
[tex]v=\lambda f[/tex]
[tex]\lambda=\frac{v}{f}[/tex]
v is 40 cm/s
[tex]\lambda=\frac{40}{0.64}[/tex]
[tex]\lambda=62.5 cm[/tex]
If we compare each equation we can find y(m), k and ω:
c) [tex]y_{m}=5 cm[/tex]
d) [tex]kx=1[/tex] and we know that x = 10 cm, so:
[tex]k=\frac{1}{x}=\frac{1}{10}[/tex]
[tex]k=0.1 cm^{-1}[/tex]
e) [tex]\omega=4 s^{-1}[/tex]
f) The minus sign in front of the angular frequency in the equation is the correct choice, just by comparing.
g) We have to use the equation of the speed in terms of tension.
[tex]v=\sqrt{\frac{T}{\mu}}[/tex]
T is the tensionμ is the linear densityv is the speed of the wave[tex]T=\mu*v^{2}[/tex]
[tex]T=4*40^{2}=6400 g*cm*s^{-2}[/tex]
[tex]T=0.064 N[/tex]
I hope it helps you!
(a) The frequency of the wave is 6.37 Hz and (b) the wavelength is 2π cm. (c) The values for y_m, k, and ω are 5.0 cm, (d) 1 cm^-1, and (e) 4.0 s^-1 respectively. (f) The correct choice of sign in front of ω is positive. (g) The tension in the string is 12533.5 g*cm²/s².
Explanation:(a) To find the frequency of the wave, we can use the formula f = v/λ, where f is the frequency, v is the velocity, and λ is the wavelength. In this case, v = 40 cm/s and we need to find λ. Since y(x,t) = y_m sin(kx ± ωt), we can compare it to the given equation y=(5.0cm)sin[1.0−(4.0s−1)t] to find k and ω. From the comparison, we know k = 1 cm^-1 and ω = 4.0 s^-1. Therefore, the wavelength is given by λ = 2π/k, and plugging in the values, we get λ = 2π cm. The frequency can then be calculated as f = v/λ = 40 cm/s / 2π cm = 6.37 Hz.
(b) the wavelength is 2π cm.
(c) y_m is the amplitude of the wave, which is 5.0 cm.
(d) k is the wave number, which is 1 cm^-1.
(e) ω is the angular frequency, which is 4.0 s^-1.
(f) The correct choice of sign in front of ω depends on the direction of wave propagation. If the wave is traveling in the positive x-direction, the sign should be positive, so ωt is correct.
(g) To find the tension in the string, we can use the formula T = λ²μf², where T is the tension, λ is the wavelength, μ is the linear density, and f is the frequency. Plugging in the values, we get T = (2π cm)² * (4.0 g/cm) * (6.37 Hz)² = 12533.5 g*cm²/s².
Learn more about Wave Properties here:
https://brainly.com/question/32429112
#SPJ3
Supongamos que Lisa necesita una panaderia más cercana porqye necesita nejorar su tiempo a 80s. A que distancia deberia estar ka panaderia si se mueve a una rapidez de 0.5m/s?
Answer:
40 m
Explanation:
English Translation for the question
Suppose Lisa needs to find a nearby bakery because she needs to improve her time to 80s. How far should the bakery be if she moves at a speed of 0.5m/s?
Speed = (Distance/time)
Speed = 0.5 m/s
Distance = how far away the bakery should be = d = ?
Time = 80 s
0.5 = (d/80)
d = 0.5×80 = 40 m
Hope this Helps!!!
In this Calculating Distance question, Para determinar la distancia a la que debe estar la panadería, podemos utilizar la fórmula de velocidad promedio. Reemplazando los valores conocidos, la panadería debe estar a una distancia de 40 metros.
Para calcular la distancia a la que debería estar la panadería, podemos utilizar la fórmula de velocidad promedio:
Velocidad promedio = Distancia / Tiempo
En este caso, la velocidad es de 0.5 m/s y queremos calcular la distancia. Dado que el tiempo es de 80 segundos (el cual debe convertirse a minutos), podemos reorganizar la fórmula para despejar la distancia:
Distancia = Velocidad promedio x Tiempo
Reemplazando los valores conocidos, tenemos:
Distancia = 0.5 m/s x 80 s = 40 metros
Por lo tanto, la panadería debe estar a una distancia de 40 metros para que Lisa mejore su tiempo a 80s.
Learn more about Calculating Distance here:
https://brainly.com/question/34212393
#SPJ12
How does the gas exchange system in fishes work?
Answer:
Gas exchange in fish is by counter current exchange
Explanation:
The gills located at the pharynx of a fish is a very important respiratory organ.Oxygen and carbon dioxide are the substance of exchange in fishes during respiration.During exchange a fish takes in a needed volume of water through the mouth,then moves it through the gills which aids in repleting oxgen poor water out through various opening and also helps in replenishing the blood capillaries flowing in the opposite direction with oxygen
Answer:
By using countercurrent flow principle of water and blood to exchange oxygen.
Explanation:
Fish use a specialized organ called gills to carry out gas exchange.
Gills have a lot of folds, maximizing their surface area and maximising the efficiency of gas exchange. The gill filaments have protrusions called gill lamellae.
One of the ways in which gas exchange is carried out efficiently is by the countercurrent flow principle, which simply means that water and blood are flowing in different directions. The water that passes over the gill lamellae flows in the opposite direction to the blood within the gill lamellae.
You and your family are driving to your grandparents’ house, which is 185 km away. If you drive at an average speed of 95 km/h, how long will it take you to get there?
Answer:
Why don't you search for the formula, this one is really basic. The answer is below
Explanation: The formula t= d/s or d= st or s= d/t in this problem we use:
t = d/s
t is time
d is distance and s is speed
so just plug in the data which are given in the question,
185 km is the distance,d
95 km/h is the speed, s
It tell you to calculate how long means t= 185/95 ≈ 1.947 or 2 hours
Final answer:
To calculate the time it will take to drive 185 km at an average speed of 95 km/h, you divide the distance by the speed to get approximately 1 hour and 57 minutes.
Explanation:
The question asks us to calculate the time it will take to travel to your grandparents' house at a constant speed. This is a classic speed, distance, and time problem that can be solved using the formula: time = distance \/ average speed. To find the time it will take to reach the grandparents' house, we divide the distance by the average speed.
Step-by-Step Calculation:
Distance to grandparents' house = 185 km.
Average speed = 95 km/h.
Time = Distance \/ Average Speed = 185 km \/ 95 km/h.
Time = 1.9474 hours.
To convert hours to minutes, we multiply by 60 (since each hour has 60 minutes).
Time = 1.9474 hours × 60 minutes/hour = 116.842 minutes, which is approximately 1 hour and 57 minutes.
Therefore, it will take nearly 1 hour and 57 minutes to get to your grandparents' house if you drive at an average speed of 95 km/h.
A person produces two sound waves with a flute one immediately after the other. Both sound waves have the same pitch, but the second one is louder. Which of the following properties is greater for the second sound wave?
A) Frequency
B) Amplitude
C) Wavelength
D) Speed in air
Answer:
Option B is the right choice.
Explanation:
Given:
Two sounds waves lets say [tex]S_1[/tex] and [tex]S_2[/tex] having same pitch but
We have to find the property which from the options and identify which one is greater for [tex]S_2[/tex] .
Lets take one and one analysis of the terms.
a.
Frequency :
It is how fast the sound wave is oscillating. Frequency is [tex]f=\frac{1}{T}[/tex] hertz. The faster the sound wave oscillates the higher pitch it will have.According to the question the pitch is same so the frequency will be same for both the waves.
b.
Amplitude :
The loudness of the sound increases with an increase in the amplitude of sound waves.It is the maximum amount of displacement of a particle on the medium from its rest position.c.
Wavelength :
Distance between two consecutive crest (high) or trough (low) is called wavelength.Shorter wavelength will have higher frequency.Here the frequency is same so the wavelength for [tex]S_1,S_2[/tex] will be same.
d.
Speed in air:
Speed of sound in a same medium is usually same.Speed of sound in air is 343 m/s.So,
Amplitude of [tex]S_2 > S_1[/tex] .
Here the amplitude of the louder sound wave will be greater .