Rubbing alcohol evaporates from your hand quickly, leaving a cooling sensation. Because evaporation is an example of a physical property, how do the molecules of gas compare to the molecules as a liquid? 1. The gas particles have a stronger attraction between them and move slower than the liquid. 2. The gas and liquid particles have the same structure and identity but different motion and kinetic energy. 3. The bonds inside the molecule are broken, and atoms move closer together as evaporation occurs. 4. The bonds are broken, and atoms spread apart as it changes from liquid to gas.

Answers

Answer 1

Final answer:

Rubbing alcohol molecules as a gas have the same structure as in the liquid but with more kinetic energy and less intermolecular attraction, which upon evaporation causes a cooling effect through evaporative cooling.

Explanation:

When rubbing alcohol evaporates from your hand, it leaves a cooling sensation because the molecules in the liquid state require a certain threshold of kinetic energy to overcome intermolecular forces and escape into a gas state. The correct statement regarding how the molecules of gas compare to the molecules as a liquid is:

The gas and liquid particles have the same structure and identity but different motion and kinetic energy.

In the gaseous state, particles move faster and are further apart compared to when they are in the liquid state, where particles are closer together and have stronger intermolecular attractions. This process of evaporation involves evaporative cooling, where the molecules with higher kinetic energy escape, leaving behind those with lower kinetic energy, which results in a decrease in temperature.


Related Questions

What is the percent by mass of potassium in K3Fe(CN)6?

Answers

The percent by mass of potassium in K3Fe(CN)6 is 35.62%.

Answer:

The percentage of potassium in the given complex is 35.54 %.

Explanation:

Mass of potassium in [tex]K_3Fe(CN)_6[/tex] = 3 × 39.10 g mol=117.3 g/mol

Molar mass of [tex]K_3Fe(CN)_6[/tex] =329.15 g/mol

Percentage of potassium (K) in the the complex:

[tex]\% K=\frac{\text{mass of potassium}}{\text{molar mass of complex}}\times 100[/tex]

[tex]\%K=\frac{117.3 g/mol}{329.15 g/mol}\times 100=35.54\%[/tex]

The percentage of potassium in the given complex is 35.54 %.

what is the temperature of 12.2 moles gas in a 18.35 l tank at 16.4 atm? express in K and C.

Answers

This problem can be solved by using ideal gas equation PV=nRT. The unit used in the pressure is kPa so you will need to convert it. The temperature also use Kelvin, you will need to convert it if you want it in C.

The calculation would be:
PV= nRT 
16.4 atm * (101.35kPa/atm) *  18.35 L = 12.2 mol *T * (8.314 L*kPa/mol*K)
T=30500  /101.4308
T= 300.70 °K = 27.55 °C

The temperature of 12.2 moles gas in a 18.35 l tank at 16.4 atm is 3,071.7 K or 2,798.5 degree celsius.

How do we calculate temperature?

Temperature of the gas will be calculated by using the ideal gas equation as:

PV = nRT, where

P = pressure of gas = 16.4 atm

V = volume of gas = 18.35 L

n = moles of gas = 12.2 mol

R = universal gas constant = 0.0821 L.atm / K.mol

T = temperature of the gas = ?

On putting all these values on the above equation, we get

T = (167.4)(18.35) / (12.2)(0.0821) = 3,071.7 K = 2,798.5 degree celsius.

Hence required temperature is 3,071.7 K or 2,798.5 degree celsius.

To know more about ideal gas equation, visit the below link:

https://brainly.com/question/1056445

Add formal charges to each resonance form of hcno below.based on the formal charges you added above, which structure is favored?

Answers

Q1)
formal charges for atoms are assigned, this charge can be calculated using the following formula;
f.c = number of valence electrons - non bonding electrons around the atom - number of bonds

3 structures have been given, lets calculate for each structure 
A. 
charges for the atoms 
 H = 1-0-1=0
C = 4 -4-2 = -2
N = 5 - 0-4 = 1
O = 6 - 2 - 3 = 1

B.
H = 1-0-1 = 0
C = 4 - 0 - 4 =0
N = 5 - 0 - 4 = 1
O = 6 - 6 - 1 = -1

C.
H = 1-0-1 = 0
C = 4 - 2 - 3 = -1
N = 5 - 0 - 4 = 1
O = 6 - 4 - 2 = 0

Q2)
next we need to see which structure is most favoured.
the structure with least number of atoms that have a charge.
structure B and C have 2 atoms with charges whereas A has three atoms with charges, including an atom with -2 charge which is not common. so structure A can be disregarded.
another rule is that the more electronegative atom should have the more negative charge than less electronegative atoms. In structure C, Carbon the less electronegative atom compared to N and O, has -1 value and its more negative than the charges on N and O.
structure B on the other hand, O the more electronegative atom has -1 charge and C has 0 charge. Therefore the more favoured structure is B.

Answer:

The second structure is the most stable of all three.

Explanation:

The Formal Charge in the different resonance structures of HCNO is,

[tex]\rm FC=V-N+B[/tex]

Where,

FC- Formal charge

V- Valence Electron

N- Non-bonding Electron

B- Number of bonds

So,  Formal charge In the atoms of first resonance structure is

H = 1-0+1=0

C = 4 -4+2 = -2

N = 5 - 0+4 = 1

O = 6 - 2 + 3 = 1

Formal charge In the atoms of Second resonance structure is

H = 1-0+1 = 0

C = 4 - 0 + 4 =0

N = 5 - 0 + 4 = 1

O = 6 - 6+1 = -1

Formal charge In the atoms of Third resonance structure is

H = 1-0 + 1 = 0

C = 4 - 2 +3 = -1

N = 5 - 0 + 4 = 1

O = 6 - 4 +2 = 0  

To Figure out the most stable resonance structure we have to keep two things in mind:

1) The stable molecular structure tend to have the least number of charged atom.

2) In a stable molecular structure the negative charge is present in the more electronegative atom.

Here decreasing order of electronegativity is,

 N > O > C > H

From the Explanation above, the second structure (B) follows both points

Therefore, The second structure is the most stable of all three.

For more details, you can refer to the link:

https://brainly.com/question/23287285?referrer=searchResults

Look up the boiling points of anisole and d-limonene. which one do you expect to elute first in gas chromotograpjhy

Answers

The primary factor that determines the elution order of compounds during gas chromatography, is the boiling point of the compounds. The lower the boiling point of a substance, the shorter retention time the substance will have. The retention time is the time it takes for the substance to be injected into the GC and reach the detector.

A lower boiling compound will elute faster (shorter retention time) than a higher boiling compound. The reason for this is the mobile phase of GC is a gas while the stationary phase is a liquid. Therefore, the more time a compound spends in the mobile phase, the faster it will elute. 

The boiling point of anisole and d-limonene are 153.8 °C and 176 °C, respectively. Therefore, anisole will have a shorter retention time since it has the lower boiling point.

Final answer:

In gas chromatography, compounds elute based on their boiling points, with those having lower boiling points eluting first. Since anisole has a lower boiling point than d-limonene, anisole is expected to elute first.

Explanation:

The question asks which compound, anisole or d-limonene, would elute first in gas chromatography (GC) based on their boiling points. In gas chromatography, compounds generally elute in order of increasing boiling points because compounds with lower boiling points have lower retention times on the GC column. Also, the elution order correlates with the strength of intermolecular forces (IMFs) affecting the compounds; compounds with stronger IMFs tend to have higher boiling points and adhere more to the stationary phase, thus eluting later. Although the specific boiling points of anisole and d-limonene are not provided in this answer, it is known that anisole has a boiling point of about 154°C, and d-limonene has a boiling point around 176°C. Therefore, one would expect anisole to elute first in gas chromatography due to its lower boiling point compared to d-limonene.

What is the expected oxidation state for the most common ion of element 2

Answers

Answer: 1+

Justification:

The ionization energy is the amount of energy needed to loose electrons and becomes ions.

The first ionization energy is the energy needed to liberate one one electron and form the ion with oxidation state 1+.

The second ionization energy is the energy to release a second electron and form the ion with oxidation state 2+.

The third ionization energy is the energy to leave a third electron free and form the ion with oxidation state 3+.

The relatively low first ionization energy of element 2, shows it  it will lose an electron easily to form the ion with oxidations state 1+.

The second and third ionization energies are very high meaning that the ions with oxidation staes 2+ and 3+ will not be formed.

Therefore, the answer is that the expected oxidation state for the most common ion of element 2 is 1+.

Determine the empirical formula of a compound that contains 49.4% k, 20.3% s and 30.3% o.

Answers

k2SO3 will be the answer.

Good luck :)

How many moles of caco3 are there in an antacid tablet containing 0.515 g caco3?

Answers

Answer:

[tex]0.00515molCaCO3[/tex]

Explanation:

Hello,

By following the down below simple mass-mole relationship, the requested moles are computed, considering that the calcium carbonate has a molecular mass of 100g/mol:

[tex]M_{CaCO3}=40+12+16*3=100g/mol\\\\n_{CaCO3}=0.515gCaCO3*\frac{1molCaCO3}{100gCaCO3}=0.00515molCaCO3[/tex]

Best regards.

Final answer:

To calculate the number of moles of CaCO₃ in a 0.515 g antacid tablet, divide the mass of the CaCO₃ by its molar mass, yielding approximately 0.005144 moles of CaCO₃.

Explanation:

To find the number of moles of CaCO₃ in an antacid tablet containing 0.515 g of CaCO₃, we need to use the molar mass of CaCO₃. The molar mass of CaCO₃ (calcium carbonate) is approximately 100.09 g/mol. To calculate the moles, we divide the mass of the sample by its molar mass.

The calculation is as follows:

Mass of CaCO₃ = 0.515 gMolar mass of CaCO₃ = 100.09 g/molNumber of moles = Mass / Molar massNumber of moles = 0.515 g / 100.09 g/mol = 0.005144 moles

Therefore, there are approximately 0.005144 moles of CaCO₃ in the antacid tablet.

Which acid is the best choice to create a buffer with ph= 7.66?

Answers

The best choice is hypochlorous acid (HClO) because it has the nearest value of pK to the desired pH.

pKa of hypochlorous acid is 7.54 

If we know pKa and pH values,  we can calculate the required ratio of conjugate base (ClO⁻) to acid (HClO) from the following equation:

pH=pKa + log(conc. of base)/( conc. of acid)

7.66=7.54 + log(conc. of base)/( conc. of acid)

7.66 - 7.54 = log(conc. of base)/( conc. of acid)

0.12 = log(conc. of base)/( conc. of acid)

(conc. of base)/(conc. of acid) = 10⁻⁰¹² = 0.76








Carbonic acid is a polyprotic acid. write balanced chemical equations for the sequence of reactions that carbonic acid can undergo when it's dissolved in water.

Answers

carbonic acid (H₂CO₃) dissociation in water takes place in 2 steps. its a polypro tic acid as it has 2 H⁺ ions it can donate.
the dissociation reactions in water are as follows;
H₂CO₃  + H₂O ---> HCO₃⁻ + H₃O⁺
in the first dissociation it releases a proton that combines with water to form a hydronium ion.
HCO₃⁻ + H₂O  ----> CO₃²⁻ + H₃O⁺
second dissociation results in the carbonate ion and hydronium ion formation.
As the ratio of acid dissociation constant ka1/ka2 > 10⁴ , dissociation takes place in 2 steps. 

The sequence of dissociation reactions of carbonic acid is a follows:

 [tex]\text{Step\;1:\;}\text{H}_2\text{CO}_3(aq)+\text{H}_2\text{O}(aq)\overset{\text{K}_{al}}\leftrightharpoons\text{HCO}_3^-(aq)+\text{H}_3\text{O}^+(aq)\\\text{Step\;2:\;}\text{H}_2\text{CO}_3^-(aq)+\text{H}_2\text{O}(aq)\overset{\text{K}_{al}}\leftrightharpoons\text{CO}_3^2\;(aq)+\text{H}_3\text{O}^+(aq)[/tex]

Further Explanation:

An acid is a substance that is able to donate a proton or hydrogen ion [tex]\left( {{{\text{H}}^ + }} \right)[/tex] in aqueous solutions. Hydrochloric acid (HCl), sulphuric acid [tex]\left( {{{\text{H}}_2}{\text{S}}{{\text{O}}_4}} \right)[/tex] and nitric acid [tex]\left( {{\text{HN}}{{\text{O}}_3}} \right)[/tex] are some examples of acids. On the basis of the number of protons an acid can donate, acids can be monoprotic or polyprotic.

Acids that can donate just one proton in aqueous solutions are called monoprotic acids. For example, HCl, [tex]{\text{HN}}{{\text{O}}_{\text{3}}}[/tex] and [tex]{\text{C}}{{\text{H}}_3}{\text{COOH}}[/tex] are monoprotic acids as these can donate only one proton in solutions.

Polyprotic acids can donate more than one proton in aqueous solutions. These can further be divided as diprotic, triprotic and so on. Diprotic acids are the ones that can donate two protons in solutions. For example, [tex]{{\text{H}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex] and [tex]{{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}[/tex] are diprotic acids. Triprotic acids are capable to donate three protons in solutions. For example, [tex]{{\text{H}}_{\text{3}}}{\text{As}}{{\text{O}}_{\text{4}}}[/tex] and [tex]{{\text{H}}_3}{\text{P}}{{\text{O}}_4}[/tex] are triprotic acids.

Carbonic acid has the chemical formula of [tex]{{\text{H}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex]. So it dissociates into an aqueous solution, releasing protons or hydrogen ions in it. Since carbonic acid is a diprotic acid, its dissociation takes place in two steps.

Step 1: The first dissociation of [tex]{{\text{H}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex] occurs as follows:

 [tex]\text{H}_2\text{CO}_3(aq)+\text{H}_2\text{O}(aq)\overset{\text{K}_{al}}\leftrightharpoons\text{HCO}_3^-(aq)+\text{H}_3\text{O}^+(aq)[/tex]

Here, [tex]K_a_1[/tex] is the first dissociation constant of [tex]{{\text{H}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex].

Step 2: In the second dissociation, [tex]{\text{HCO}}_3^ -[/tex] dissociates as follows:

 [tex]\text{H}_2\text{CO}_3^-(aq)+\text{H}_2\text{O}(aq)\overset{\text{K}_{al}}\leftrightharpoons\text{CO}_3^2\;(aq)+\text{H}_3\text{O}^+(aq)[/tex]

Here, [tex]{K_{{\text{a2}}}}[/tex] is the first dissociation constant of [tex]{{\text{H}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex].

Learn more:

The reason for the acidity of water https://brainly.com/question/1550328 Reason for the acidic and basic nature of amino acid. https://brainly.com/question/5050077

Answer details:

Grade: High School

Chapter: Acid, base and salts.

Subject: Chemistry

Keywords: acids, monoprotic, polyprotic, HCl, H2CO3, H2SO4, HNO3, CH3COOH, dissociation, Ka1, Ka2.

) Calculate the molarity of a solution prepared by dissolving 117 g of sodium chloride (NaCl) in enough water to make 2.7 liters of solution.

Answers

The Molarity of the solution is given by:
[tex]Molarity = \frac{moles-of-solute}{liters-of-solution} [/tex] --- (A)

But NaCl, which is a solute, is given in grams.
Therefore, first, we need to convert grams into moles.

Molecular weight of NaCl = 58.44 grams/mole.

So,
117 grams * (moles/ 58.44 grams) = 2.00 moles of NaCl

Now that we have moles of NaCl, plug in the values in (A):
(A) => Molarity = (2 / 2.7 ) = 0.741 moles/litre

The correct answer is: 0.741 moles/litre = Molarity

A leaf falls into a shallow lake and is rapidly buried in the sediment the sediment change choose to rock over millions of years which type of fossil would most likely be form

Answers

Carbon film is your answer

Titanium is a metal used to make golf clubs. a rectangular bar of this metal measuring 1.77 cm x 2.08 cm x 2.64 cm was found to have a mass of 48.9 g. what is the density of titanium in g/cm3? answer

Answers

The volume of the bar is
V = l * w * h
l = 2.64 cm
w = 2.08 cm
h = 1.77 cm
V = 2.64*2.08 * 1.77
V = 9.719 cm^3

Formula
density = mass / volume

Find the density
mass = 48.9 g
d = m / V
d = 48.9 / 9.719
d = 5.03 <<<=== answer.

A 25.0 ml sample of an unknown monoprotic acid was titrated with 0.12 m naoh. the student added 31.6 ml of naoh and went past the equivalence point. which procedure could be performed next to more accurately determine the concentration of the unknown acid?

Answers

The procedure, which can be used to determine more accurately the concentration of the unknown acid is TO BACK-TITRATE WITH ADDITIONAL HYDROCHLORIC ACID TO NEUTRALIZE THE ADDITIONAL SODIUM HYDROXIDE THAT WAS ADDED.
Monoprotic acids are acids that can donate only one proton per each molecule and they have only one equivalence point. Examples of monoprotic acids are HCI, HNO3 and CH3COOH.
The back titration method is typically used when one needs to determine the concentration of an analyte provided there is a known molar concentration of excess reactants. 
From the information given in the question above, we are told that excess NaOH was added. To correct this mistake, the right thing to do is to use additional HCl to carry out back titration, taking note of the quantity of acid that will be needed to neutralize the excess NaOH.

How do sodium and potassium ions transfer in and out of an axon?

A.Through “gates” that open up
B.Through an absorption process
C.Through neural communication
D.Through an electrical process

Answers

Answer:

Option A= through gates that,s open up

Explanation:

The sodium and potassium ions transfer in and out the axon through electrical process. This process is called depolarization and re-polarization.

Depolarization:

Depolarization is occur when stimulus is given to the resting neuron. In this process gates of sodium ions on the membrane become open and sodium ions that are present out side. inter into the cell. because of this process the charge of the nerve changes (-70 mv to -55 mV).

Re-polarization:

when the re-polarization occur, potassium gates are open and the potassium ions goes outside the membrane. During this process electrical potential becomes negative inside the cell until the potential of -70 mV is re-attain i.e, resting potential.

In short we can say that depolarization allow sodium ions to inter into the nerve membrane and re-polarization allow potassium ions to moves out side the membrane.

Answer:

A.) Through gates that open up

Explanation:

Odyssey ware

Identify the oxidizing agent in the reaction: sn(s) + 2h+(aq) → sn2+(aq) + h2(g)

Answers

In the reaction Sn(s) + 2H+(aq) → Sn2+ (aq) + H2(g)
from this reaction, we get that Sn loses from 0 to 2 electrons so it's oxidized So it is the reducing agent.
and H  gains from 0 to 1 electrons so, it's reduced so ∴ it is the oxidizing agent

Explanation:

An oxidizing agent is defined as a substance which readily accepts an electron and itself gets reduced in order to oxidize another substance in a chemical reaction.

For example, [tex]2H^{+} + 2e^{-} \rightarrow H_{2}[/tex]

Here, hydrogen is getting reduced as its oxidation state is changing from +1 to 0 and hence it acts like an oxidizing agent.  

In an oxidizing agent, a decrease in oxidation state occurs.

Whereas in [tex]Sn \rightarrow Sn^{2+} + 2e^{-}[/tex], tin is getting oxidized by gaining electrons. Therefore, it is acting as a reducing agent. An increase in oxidation state occurs for a reducing agent.

Thus, we can conclude that in the given reaction hydrogen is the oxidizing agent.

A solution with a ph of 4 has _________ the concentration of h+ present compared to a solution with a ph of 5.

Answers

A solution with a pH of 4 has ten times the concentration of H⁺ present compared to a solution with a pH of 5.
pH is a numeric scale for the acidity or basicity of an aqueous solution. It is  the negative of the base 10 logarithm of the molar concentration of hydrogen ions.
[H⁺] = 10∧-pH.
pH = 4 → [H⁺]₁ = 10⁻⁴ M = 0,0001 M.
pH = 5 → [H⁺]₂ = 10⁻⁵ M = 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 0,0001 M / 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 10.

How many moles are in 226 g of Fe(NO2)2 ?

Answers

By getting the molar mass of Fe (NO2)2 = 55.85 + ((14+16*2))*2 = 147.85 g/mol

and we have the mass weight of Fe(NO2)2 = 226 g
SO we can get the no.of moles of Fe(NO2)2 from this formula:

∴ n= mass weight / molar mass
   = 226 / 147.85 = 1.53 mol

The chemical formula for table sugar is C12H11O22. What can you tell from this formula?

There are 22 protons in an oxygen atom.

There are 12 electrons in a carbon atom.

The ratio of oxygen atoms to hydrogen atoms in a molecule of sugar is 2 to 1.

The ratio of carbon atoms to hydrogen atoms in a molecule of sugar is 2 to 1.

Answers

I say the answer is The ratio of oxygen atoms to hydrogen atoms in a molecule of sugar is 2 to 1 

Answer: The correct answer is the ratio of oxygen atoms to hydrogen atoms in a molecule of sugar is 2 to 1.

Explanation:

The given chemical formula for table sugar is [tex]C_{12}H_{11}O_{22}[/tex].

The above compound contains 12 atoms of carbon atom, 11 atoms of hydrogen and 22 atoms of oxygen.

The ratio of oxygen atoms to hydrogen atoms is [tex]22:11::2:1[/tex] and the ratio of carbon atoms to hydrogen atoms in a molecule of sugar is [tex]12:11[/tex]

An oxygen atom contains 8 protons and a carbon atoms has 6 electrons.

Hence, the correct statement is the ratio of oxygen atoms to hydrogen atoms in a molecule of sugar is 2 to 1.

What is the empirical formula of a molecule containing 18.7% lithium, 16.3% carbon, and 65% oxygen?

Answers

Li2CO3 ; variance= 1.26x10^-3

What are ionic compounds typically composed of ?
A. A metal anion and a nonmetal cation
B. Two metal anions
C. A metal cation and non metal anion
D.Two nonmetal cations

Answers

Ionic compounds typically compose of a metal and a non metal. So you can easily cancel out B and D. You are now left with two more choices. 

When it comes to Ionic compounds just remember that
the LESS valence electrons an element has, the higher the tendency to LOSE them;

the MORE valence electrons an element has, the higher the tendency to RECEIVE them.

Metals have less valence electrons, so they tend to lose electrons, when there is a loss of electron, the atom becomes a CATION. Non-Metals on the other hand, have more valence electrons, so they tend to receive electrons, when there is a gain of electrons, the atom becomes an ANION.

So your answer is C. 
Final answer:

Ionic compounds are generally formed from a metal cation (positively charged ion) and a nonmetal anion (negatively charged ion), so the correct answer to your question is option C.

Explanation:

Ionic compounds are typically composed of a metal cation and nonmetal anion. This means the correct answer to your question is option C. A cation is a positively charged ion, and in this context, it is typically formed by an element from the left side of the periodic table, or a metal. An anion, on the other hand, is a negatively charged ion, usually formed by an element from the right side of the periodic table, or a nonmetal. When these ions combine, they create an ionic compound, such as NaCl (sodium chloride), where sodium is the metal cation and chloride is the nonmetal anion.

Learn more about Ionic compounds here:

https://brainly.com/question/33500527

Xas shown in table 15.2, kp for the equilibrium n21g2 + 3 h21g2 δ 2 nh31g2 is 4.51 * 10-5 at 450 °c. for each of the mixtures listed here, indicate whether the mixture is at equilibrium at 450 °c. if it is not at equilibrium, indicate the direction (toward product or toward reactants) in which the mixture must shift to achieve equilibrium. (a) 98 atm nh3, 45 atm n2, 55 atm h2 (b) 57 atm nh3, 143 atm n2, no h2 (c) 13 atm nh3, 27 atm n2, 82 atm h

Answers

According to the balanced equation of this reaction:
N2(g) + 3H2(g) ↔ 2NH3(g)
and when we have Kp = 4.51 x 10^-5 so, in the Kp equation we will substitute by the value of the P for each gas to compare the value with Kp = 4.51x10^-5

a) when we have 98 atm NH3, 45 atm N2, 55 atm H2 by substitution in Kp equation:
Kp= [p(NH3)]^2 / [p(N2)]*[p(H2)]^3 = [98]^2 / [45]*[55]^3
                                                        = 1.28x10^-3 
So here the value is higher than the value of the given Kp.
so the reaction will go leftwards toward the reactants ( to reduce the value of Kp) to reach the equilibrium. 
b) When 57 atm NH3, 143 atm N2, No H2 so like a) by substitution:
Kp = [57]^2 / [143] = 22.7
So the reaction will go leftwards toward the reactants to reduce the value of Kp to reach equilibrium.
c) when 13 atm NH3, 27 atm N2, 82 H2
Kp = [13]^2 / [27]*[82]^3 = 1.135 x 10^-5 So this value is lower than the Kp which is given.
 so, the reaction will go towards the right toward the products to increase the value of Kp to reach the equilibrium.  

A chemist mixes oxygen gas and hydrogen gas to form water, which is composed of one oxygen and two hydrogen atoms per molecule. What has occurred? A physical change B chemical change C combustion D precipitation

Answers

B chemical change i think

Answer: The formation of water is a chemical change.

Explanation:

Physical change is defined as the change in which change in shape and size takes place. The chemical composition of a substance remains the same. No new substance is formed during this.

For Example: Melting of ice

Chemical change is defined as the change in which change in chemical composition takes place. A new substance is formed in this.

For Example: Formation of water molecule.

The chemical equation for the formation of water molecule follows:

[tex]2H_2+O_2\righatarrow 2H_2O[/tex]

Hence, the formation of water is a chemical change.

If 4.8 moles of X and 3.4 moles of Y react according to the reaction below, how many moles of the excess reactant will be left over at the end of the reaction?

3X + 2Y “yields”/ X3Y2

1.7 mol Y left over
1.6 mol X left over
0.2 mol Y left over
0.1 mol X left over

Answers

Answer : The correct option is, 0.2 mole Y left over .

Explanation : Given,

Moles of X = 4.8 mole

Moles of Y = 3.4 mole

The balanced chemical reaction is,

[tex]3X+2Y\rightarrow X_3Y_2[/tex]

From the balanced reaction, we conclude that

As, 3 moles of X react with 2 moles of Y

So, 4.8 moles of X react with [tex]\frac{2}{3}\times 4.8=3.2[/tex] moles of Y

From this we conclude that, the reactant Y is an excess reagent and X is a limiting reagent.

The moles of excess reagent left over at the end of the reaction = Given moles of X - Required moles of X

The moles of excess reagent left over at the end of the reaction = 3.4 - 3.2 = 0.2 mole

Therefore, the moles of excess reagent left over at the end of the reaction is, 0.2 mole Y left over.

Answer:

The correct answer is : '0.2 mol Y left over'.

Explanation:

[tex]3X + 2Y \rightarrow  X_3Y_2[/tex]

Moles of X = 4.8 moles

Moles of Y = 3.4  moles

According to reaction, 3 moles of X react with 2 moles of Y .

Then 4.8 moles of X react with :

[tex]\frac{2}{3}\times 4.8=3.2 [/tex]moles of Y

Moles of Y reacted = 3.2 moles

Moles of Y left unreacted = 3.4 moles - 3.2 moles = 0.2 moles

As we can see that X is in limiting amount and y is present in an excessive amount.And the left over amount of Y is 0.2 moles.

A substance was analyzed in a laboratory. It was composed of three elements in a fixed ratio. The substance is an ?

Answers

Explanation:

A compound is defined as the substance which contains different type of elements that chemically combine together in a fixed ratio by mass.

For example, [tex]CaCl_{2}[/tex] is a compound as it contains calcium and chlorine which are different elements. And, both Ca and Cl are combining in 1:2 ratio.

And, for every molecule of calcium chloride these elements will always be present in 1:2 ratio.

Thus, we can conclude that when a substance was analyzed in a laboratory. It was composed of three elements in a fixed ratio. The substance is a compound.

The base-dissociation constant of ethylamine (c2h5nh2) is 6.4 ??? 10???4 at 25.0 ??
c. the [h ] in a 1.2 ??? 10-2 m solution of ethylamine is ________ m.

Answers

Answer is: concentration of hydrogen ions are 4·10⁻¹¹ M.
Chemical reaction: C₂H₅NH₂ + H₂O ⇄ C₂H₅NH₃⁺ + OH⁻.
Kb(C₂H₅NH₂) = 6,4·10⁻⁴.
c(C₂H₅NH₂) = 1,2·10⁻² M = 0,012 M.
[C₂H₅NH₃⁺] = [OH⁻] = x.
[C₂H₅NH₂] = 0,012 M - x.
Kb = [C₂H₅NH₃⁺] · [OH⁻] / [C₂H₅NH₂].
6,4·10⁻⁴ = x² / (0,012 M - x).
Solve quadratic equation: x = [OH⁻] = 0,0025 M.
[OH⁻] · [H⁺] = 10⁻¹⁴.
[H⁺] = 10⁻¹⁴ ÷ 0,0025 M = 4·10⁻¹¹ M.

[H⁺]=3.608.10⁻¹²

Further explanation

Weak acid ionization reaction occurs partially (not ionizing perfectly as in strong acids)

The ionization reaction of a weak acid is an equilibrium reaction

HA (aq) ---> H⁺ (aq) + A⁻ (aq)

The equilibrium constant for acid ionization is called the acid ionization constant, which is symbolized by Ka

The values ​​for the weak acid reactions above:

[tex]\rm Ka=\dfrac{[H][A^-]}{[HA]}[/tex]

The greater the Ka, the stronger the acid, which means the reaction to the right is also greater

Where Kb is the base ionization constant

LOH (aq) ---> L⁺ (aq) + OH⁻ (aq)

[tex]\rm Kb=\dfrac{[L][OH^-]}{[LOH]}[/tex]

Kb of Ethylamine (C₂H₅NH₂) : 6.4.10⁻⁴

The ethylamine ionization reactions occur in water as follows:

C₂H₅NH₂ + H₂O ⇒ C₂H₅NH₃⁺ + OH⁻

with a Kb value:

[tex]\rm Kb=\dfrac{[C_2H_5NH_3^+][OH^-]}{[C_2H_5NH_2]}[/tex]

for example x = number of moles / concentration that reacts

Initial concentration of  Ethylamine (C₂H₅NH₂) : 1.2.10⁻²

Concentration at equilibrium = 1.2.10⁻²  -x

Initial concentration of C₂H₅NH₃ = 0

Concentration at equilibrium = x

Initial concentration OH⁻ = 0

Concentration at equilibrium = x

so the value of Kb =

[tex]\rm Kb=\dfrac{[x][x]}{[1.2.10^{-2}-x]}\\\\assumption\:x=so\:small\:then\\\\6.4.10^{-4}=\dfrac{x^2}{1.2.10^{-2}}\\\\x^2=7.68.10^{-6}\\\\x=2.771.10^{-3}[/tex]

x = [OH⁻] = 2.771.10⁻³

Ka x Kb = [H⁺] [OH-]

a water equilibrium constant value (Kw) of 1.10⁻¹⁴ at 25 °C

Ka x Kb = [H +] [OH-] = 1.10⁻¹⁴

1.10⁻¹⁴ = [H⁺] . 2.771.10⁻³

[H⁺]=3.608.10⁻¹²

Learn more

an equilibrium constant https://brainly.com/question/9173805

https://brainly.com/question/1109930

Calculate the value of the equilibrium constant, Kc

https://brainly.com/question/3612827

Concentration of hi at equilibrium

https://brainly.com/question/8962129

For each bond, show the direction of polarity by selecting the correct partial charges. si-p si-s s-p the most polar bond is

Answers

To determine the direction of polarity of each bond, we must know the electronegativities of each atom involved in the bonds.

Si = 1.90
P = 2.19
S = 2.58

As we move right across a row in the periodic table, the atoms become more electronegative. The direction of polarity in a bond will have the partial positive charge on the less electronegative atom and the partial negative charge on the more electronegative atom. Therefore, the direction of polarity of each bond is as follows:

(δ⁺)Si - P(δ⁻)
(δ⁺)Si - S(δ⁻)
(δ⁻)S - P(δ⁺)

Since silicon is the least electronegative, it will have the partial positive charge in each bond. And since sulfur is the most electronegative, it will have a partial negative charge when bonded to either silicon or phosphorus.

The biggest elctronegative difference is between silicon and sulfur. So  Si-S will be most polar bond.

The polarity between the two atoms is determined by their relative difference in electronegativity.

The Electronegativity of ,

Silicon= 1.9

Phosphorus= 2.19

Sulfur= 2.58

The direction of polarity,

[tex]\rm \bold{ \delta^+Si\rightarrow \delta^-P}\\\rm \bold{ \delta^+Si\rightarrow \delta^-S}\\\rm \bold{ \delta^+P\rightarrow \delta^-S}[/tex]

Since, the biggest elctronegative difference is between silicon and sulfur (Si-S).

Hence we can say that Si-S will be most polar bond.

To know more about  electronegativity, refer to the link:

https://brainly.com/question/23197475?referrer=searchResults

Q 9.3: how many triplets would you expect to observe in the 1h nmr spectra for o-chlorotoluene

Answers

Hello!

You would expect to observe 2 triplets in the ¹H NMR spectra for o-chlorotoluene. 

Multiplicity observed in ¹H NMR spectra when the atom couples with a neighbor ¹H atom. The multiplicity is equal to N+1 where N is the number of neighbor atoms. 

To observe a triplet, you'll need a molecule with 2 neighbor atoms. In o-chlorotoluene (shown in the figure), only protons C and D have 2 neighbor atoms (B and D; A and C, respectively), so you'll expect to see a 2 triplets. 

Have a nice day!

Answer:

No triplet.

Explanation:

A triplet is observed in proton nmr when the neighboring, chemically non equivalent, carbon atoms bear two hydrogen atoms.

Let us examine the structure of o-chlorotoluene [shown in figure].

As shown in the figure there is no carbon bearing two equivalent hydrogen.

There are five non equivalent kind of hydrogen on the molecule

Three hydrogen are equivalent (Ha)

So we will observe only

a) Singlet

b) Doublet

c) Double doublet (split doublet)

Which acid is the best choice to create a buffer with ph= 3.19?

Answers

The best choice is hypochlorous acid nitrous acid (HNO2) because it has the nearest value of pK to the desired pH.
pKa of nitrous acid is 3.34 
If we know pKa and pH values,  we can calculate the required ratio of conjugate base (NO2⁻) to acid (HNO2) from the following equation:
pH=pKa + log(conc. of base)/( conc. of acid)
3.19=3.34 + log c(NO2⁻)/c(HNO2)
3.19 - 3.34 = log c(NO2⁻)/c(HNO2)
-0.15 = log c(NO2⁻)/c(HNO2)
c(NO2⁻)/c(HNO2) = 10⁰¹⁵ = 1.41

-As the temperature increased, what happened to the N2O4 concentration?

Answers

2 NO₂ ↔ N₂O₄ + 61 kJ
The reaction is endothermic so by increasing the temperature the reaction moves to the left (decrease the concentration of N₂O₄)

PLEASE HELP! Which clade is composed of eukaryotes which are multicellular and heterotrophs? A) Eubacteria B) Fungi C) Plant D) Animals

Answers

I think your answer would be D

Answer: D) Animals

Explanation:

Eukaryotic organisms are those organisms which exhibit complex cellular composition. They exhibit membrane bound organelles and nucleus is also enclosed inside a membrane which encloses the genetic material of the organisms. Examples include plants, animals and fungi.

Multicellular organisms are those which exhibit multiple layers of the cells to perform a specialized function.

Hetrotrophic organisms are those which are dependent upon other organisms for their food and nourishment.

Among the given options, Animals is the correct option. This is due to the fact that all animals are eukaryotic organisms as they have a membrane bound nucleus and other cellular organelles. All animals are multicellular because of the fact that multicellular system is necessary for performing specialized functions required for survival. They are incapable of synthesizing their own food either by chemosythesis or photosynthesis. They are dependent upon other organisms like plants and other animals for their food.

Other Questions
. Why do carpenters use a screw instead of nails to join two pieces of wood? What type of transformation is demonstrated in the following figure?Image by Phoebe BakerA.dilationB.reflectionC.rotationD.translation A population of Purple Gorillas feeds entirely on plants. But some of these Gorillas are good at digesting Plant A, while others are good at digesting Plant B. Still other Purple Gorillas are good at digesting Plant C. What might be an advantage of a single population of animals, such as the Purple Gorilla, having a very large amount of variability surrounding certain traits? A. There is no evolutionary advantage to this situation. B. It increases the chance that some members of the population will survive under changing environmental conditions. C. It makes it more difficult for poachers to hunt them. D. It makes it less likely that the population will split into different species, when selective pressures are increased. if you exhale 7.2510 to the 24th power molecules of CO2. How many moles of CO3 do you exhale? . The best way to ensure food safety is to order the food from an approved source. which of these is not an approved source for food? a. a cannery whose permit comes from the department of agriculture. b. supermarket produce. c. meat with a usda stamp. d. game meat you killed and prepared yourself. This group of Democrats in Congress blocked much of Kennedy's proposed legislation by siding with the Republicans. Who was the opposing group?A: Liberal Northern DemocratsB: Conservative Southern DemocratsC: Conservative Northern DemocratsD: Liberal Southern Democrats "clumping" or "clouding" in the mixture of the blood and the blood serum is caused by Why are many plants and animals in Australia unique to the region? Which geographic tool uses computer technology to collect, manipulate, analyze, and display data about the earths surface?GISgeographic conceptsGPSsatellite How did the Homestead Act help settle the West? A small plane is 20 miles due north of the airport. a jet at the same altitude as the plane is 64.5 miles west of the airport. to the nearest tenth, what is the distance between the small plane and the jet? enter your answer as a decimal in the box. The first team of workers received 50 kg of cement less than the second team. for every hour of work the first team was using 150 kg of cement, while the second team was using 200 kg. in three hours the first team had 1.5 times as much remaining cement as the second team. how much cement was delivered to each team of workers? PLEASE HELP ME! IM GETTING TIMED!!A cake in the shape of a circus tent is used as a centerpiece at a celebration. The cake consists of a cylinder and a cone. The cylinder has a diameter of 12 inches and a height of 14 inches. The cone has a height of 6 inches. What is the volume of the cake? Round your answer to the nearest tenth of a cubic inch. Use 3.14 to approximate pi. Show your work.MAKE SURE TO SHOW YOUR WORK? The programmer's job can be broken down into five development steps true or false What is the value of x in the figure shown? A quadrilateral is shown with the measurements of four angles shown. The first angle measures 65 degree sign. The second angle measures 123 degree sign. The third angle measures 87 degree sign. The fourth angle measures x degree sign. A.x = 85 B.x = 95 C.x = 150 D.x = 208 N2 (g) + 3H2 (g) -->2 NH3 (g)The equation above is the equation for the Haber process.In a certain reaction, you start with 3.0 moles of nitrogen and 4.0 moles of hydrogen,. How many moles of ammonia will be produced in the reaction? the mix of spanish and guarani is called what? 10 more points need it fast what was the main reason that the constitution did not Proclaim that all men were born free and equal in their rights When using a compound light microscope with a 10x eyepiece and objectives of 5x, 10x, and 50x, what is the highest possible magnification for that microscope? A.50xB.60xC.100xD.500x