Sara is watching a movie that is 1hr. And 38 mins. long she has already watched 48mins. If the 6:10pm what time will the movie be over?

Answers

Answer 1

Answer: 7:48pm

Step-by-step explanation:

Convert 1h to mins

[tex]1h(\frac{60min}{1h} )=60min[/tex]

add the 38 extra mins.

60+38=98mins

The movie started at 6:10pm, and she has already watched 48 mins of it.

Add 48 to the time and subtract from the length of the movie.

6:10pm + 48 mins=6:58pm (this is the current time)

98-48=50

Let's add 2 mins to make it 7:00pm.

6:58pm+2mins=7:00pm

50-2=48mins

So now it's 7:00pm and we still have 48 mins to watch. Add that to the time.

7:00pm+48mins=7:48pm


Related Questions

The endpoints of the longest chord on a circle are (4, 5.5) and (4, 10.5).
The center of the circle is at the point , and its radius is units. The equation of this circle in standard form is .

Answers

Answer:

Read the explanation for the answers

Step-by-step explanation:

To find the midpoint, you simply need to find the average of the two endpoints. The average of 10.5 and 5.5 is 8, and the average of 4 and 4 is 4. Therefore, the center of the circle is at (4,8). The radius is the distance from the center to either of these points, or 8-5.5=2.5 units. And finally, the formula for the circle in standard form is [tex](y-8)^2+(x-4)^2=6.25[/tex]. Hope this helps!

Which equation represents the magnitude of an
earthquake that is 100 times more intense than a
standard earthquake?

Answers

Answer:

m=log 100s/S

Step-by-step explanation:

howdy!

answer is in the attachment below :)

Which point has coordinates of (2, 0)?

Answers

Answer:

J

Step-by-step explanation:

Solve: (1/8)^-3a=512

Answers

Answer:

  a = 1

Step-by-step explanation:

The problem is written as a linear equation:

  ((1/8)^-3)a = 512

  512a = 512 . . . . simplify

  a = 1 . . . . . . . . . divide by the coefficient of a

___

We suspect you might intend the exponential equation:

  (1/8)^(-3a) = 512

  512^a = 512 . . . . . simplify

  a = 1 . . . . . . . . . . . compare bases and exponents

equivalently, take the log to the base 512:

  a·1 = 1

  a = 1

solve x+3<9
[tex]x + 3 < 9[/tex]

Answers

X + 3 < 9

Subtract 3 from both sides:

X < 6

The answer is x < 6

PLEASE HELP ASAP!! Major question points!! geometry

Answers

Answer:

A

Step-by-step explanation:

If you plug in the numbers to the formula, A is the correct answer.

A or D I hope this helps

A student has a monthly budget of $800. She can spend her budget on two items, X and Y. Each unit of X costs $20 and each unit of Y costs $10. If the student has a utility function of U = 348X + 100Y + 6X2 + 4Y2 + 2XY, what is the optimal amount of X and Y for her to consume to have the maximum utility? What is this total utility? What is the value of lambda and what does this mean?

Answers

Answer:

Check the explanation

Step-by-step explanation:

Total utility is the overall satisfaction that a particular consumer received from consuming a given overall quantity of a good or service, To calculate the value of total utility economists utilize the following basic total utility formula: TU = U1 + MU2 + MU3

Kindly check the attached image below to see the step by step explanation to the question above.

8/12 - 2/12 =



THIS IS WORTH 100pts the only question pleaseeeeee

Answers

Answer:

1/2

Step-by-step explanation:

Since they have the same denominator, you can just subtract the numerators. So, 8-2=6.

6/12 can be simplified to 1/2.

Answer:

the answer is 1/2 or 0.5

Step-by-step explanation:

hope this helps!

Uta invests an amount into a compound interest investment account that pays 6% a year. After six years she withdraws her total balance of $500. Using the formula A=p(1+r)t how much money did Uta initially invest?

Answers

Uta initially invest $353, if she withdraws $500 after six years with compound interest of 6% a year.

Step-by-step explanation:

The given is,

                 After six years she withdraws her total balance of $500

                 Interest rate 6 % a year ( compounded )

Step:1

          Formula to calculate the future amount with an compound interest rate,

                                      [tex]F=P(1+r)^{t}[/tex].............................(1)

        Where, F - Future worth amount

                     P - Initial investment

                      r - Rate of interest

                      t - No. of years

Step:2

        From the given,

                   F = $500

                   r = 6%

                   t = 6 years

       Equation (1) becomes,

                           [tex]500 = P(1+0.06)^{6}[/tex]

                                  = [tex]P(1.06)^{6}[/tex]

                                  = P (1.41852)

                              [tex]P= \frac{500}{1.41852}[/tex]

                                  = 352.48

                                  ≅ 353

                              P = $353

Result:

         Uta initially invest $353, if she withdraws $500 after six years with compound interest of 6% a year.

Answer:

C- $352.48

Step-by-step explanation:

Just took test :]

Given the following information about a hypothesis test of the difference between two means based on independent random samples, which one of the following is the correct rejection region at a significance level of .05? Assume that the samples are obtained from normally distributed populations having equal variances.HA: μA > μB, = 12, = 9, s1 = 5, s2 = 3, n1 = 13, n2 = 10.A. Reject H0 if Z > 1.96B. Reject H0 if Z > 1.645C. Reject H0 if t > 2.08D. Reject H0 if t > 1.782E. Reject H0 if t > 1.721

Answers

Answer:

Null hypothesis:[tex]\mu_{A} \leq \mu_{B}[/tex]

Alternative hypothesis:[tex]\mu_{A} > \mu_{B}[/tex]

Since we dpn't know the population deviations for each group, for this case is better apply a t test to compare means, and the statistic is given by:

[tex]t=\frac{\bar X_{A}-\bar X_{B}}{\sqrt{\frac{\sigma^2_{A}}{n_{A}}+\frac{\sigma^2_{B}}{n_{B}}}}[/tex] (1)

Now we need to find the degrees of freedom given by:

[tex] df = n_A + n_B -2= 13+10-2=21[/tex]

And now since we are conducting a right tailed test we are looking ofr a value who accumulates 0.05 of the are on the right tail fo the t distribution with df =21 and we got:

[tex] t_{cric}= 1.721[/tex]

And for this case the rejection zone would be:

E. Reject H0 if t > 1.721

Step-by-step explanation:

Data given and notation

[tex]\bar X_{A}=12[/tex] represent the mean for 1

[tex]\bar X_{B}=9[/tex] represent the mean for 2

[tex]s_{A}=5[/tex] represent the sample standard deviation for 1

[tex]s_{2}=3[/tex] represent the sample standard deviation for 2

[tex]n_{1}=13[/tex] sample size for the group 1

[tex]n_{2}=10[/tex] sample size for the group 2

t would represent the statistic (variable of interest)

[tex]\alpha=0.05[/tex] significance level provided

Develop the null and alternative hypotheses for this study

We need to conduct a hypothesis in order to check if the mean for group A is higher than the mean for B:

Null hypothesis:[tex]\mu_{A} \leq \mu_{B}[/tex]

Alternative hypothesis:[tex]\mu_{A} > \mu_{B}[/tex]

Since we dpn't know the population deviations for each group, for this case is better apply a t test to compare means, and the statistic is given by:

[tex]t=\frac{\bar X_{A}-\bar X_{B}}{\sqrt{\frac{\sigma^2_{A}}{n_{A}}+\frac{\sigma^2_{B}}{n_{B}}}}[/tex] (1)

Now we need to find the degrees of freedom given by:

[tex] df = n_A + n_B -2= 13+10-2=21[/tex]

And now since we are conducting a right tailed test we are looking ofr a value who accumulates 0.05 of the are on the right tail fo the t distribution with df =21 and we got:

[tex] t_{cric}= 1.721[/tex]

And for this case the rejection zone would be:

E. Reject H0 if t > 1.721

What is the constant proportionality

Answers

Answer:

The relationship between price and the number of empanadas is PROPORTIONAL.

1 Empanada = 50 cent = $0.5

Constant of PROPORTIONALITY = ½

Step-by-step explanation:

From the given table:

2 Empanadas = $1

6 Empanadas = $3

We see that, as the number of Empanadas increases, the amount in Dollars also increases. Such that:

Let E = Empanadas

$ = dollar

~ = sign of PROPORTIONALITY.

Therefore:

$ ~ E

$ = KE

Where K = constant of proportionality.

When E = 4; $ = 2

$2 = K4

K= 2/4

K = ½

$ = ½E (Binding formula)

This applies for all the number of Empanadas bought.

Answer:

.50

Step-by-step explanation:

I ready

Suppose that E and F are two events and that Upper P (Upper E and Upper F )equals0.3 and Upper P (Upper E )equals0.5. What is Upper P (F|E )​? Upper P (F|E )equals nothing ​(Type an integer or a​ decimal.)

Answers

Answer:

[tex]P(\frac{F}{E}) =\frac{0.3}{0.5} =0.6[/tex]

Step-by-step explanation:

Step 1:-

Suppose that E and F are two events and that P(E n F) = 0.3

also given P(E) =0.5

Conditional probability:-

if E₁ and E₂ are two events in a Sample S and P(E₁)≠ 0, then the probability of E₂ , after the event E₁ has occurred, is called the Conditional probability

of the event E₂ given  E₁ and is denoted by

[tex]P(\frac{F}{E}) = \frac{P(EnF)}{P(E)}[/tex]

[tex]P(\frac{F}{E}) =\frac{0.3}{0.5} =0.6[/tex]

What is the first step in solving 2x=y X+y=30

Answers

Answer: x = 10 y=20

Step-by-step explanation:

You can answer this question by plugging in each equation:

2x=y, x+y=30. Let us plug y as 2x in the second equation x+y=30

x+2x= 30

3x= 30

x=10

After we found x we can then find y by plugging the 10 for x.

2(10) = y

y =20

or you could plug in the other equation

10+y=30

subtract 10 from 30 and we get 20

to double check we can plug in both numbers

2(10) = 20 which is correct

and 10 + 20 = 30 which is correct

In order for a constitutional amendment to the Florida constitution to pass 60% of the popular vote must support the amendment. A researcher is interested in determining if the more than sixty percent of the voters would support a new amendment about higher education. The researcher asks 500 random selected potential voters if they would support the amendment. Define the parameter.

Answers

Answer:

p=population of Floridians that would support the amendment

Step-by-step explanation:

we are given parameters are,

n = Sample size = 500

and p = Population proportion = 60% = 0.6  

p = the population proportion of Floridians that would the amendment.

Answer:

A

Step-by-step explanation:

The complete question is:

In order for a constitutional amendment to the Florida constitution to pass 60% of the popular vote must support the amendment. A researcher is interested in determining if the more than sixty percent of the voters would support a new amendment about higher education. The researcher asks 500 random selected potential voters if they would support the amendment. Define the parameter.

A) phat= sample proportion of 500 Floridans that would support the ammendment

B) p= population proportion of Floridans that would support the ammendment

C) phat= population proportion of Floridans that would support the ammendment

D) p= sample proportion of 500 Floridans that would support the ammendment

p is the actual probability of an event which is 0.6

phat is the value calculated from the sample observation

here a sample of 500 Floridans is taken and probability from sample is being observed.  So phat is the parameter which is the population proportion of 500 Floridans that would support the ammendment

A total of 1 232 students have taken a course in Spanish, 879 have taken a course in French, and 114 have taken a course in Russian. Further, 103 have taken courses in both Spanish and French, 23 have taken courses in both Spanish and Russian, and 14 have taken courses in both French and Russian. If 2 092 students have taken at least one of Spanish, French, and Russian, how many students have taken a course in all three languages

Answers

Answer:

[tex]n(S\cap F \cap R)=7[/tex]

Step-by-step explanation:

The Universal Set, n(U)=2092

[tex]n(S)=1232\\n(F)=879\\n(R)=114[/tex]

[tex]n(S\cap R)=23\\n(S\cap F)=103\\n(F\cap R)=14[/tex]

Let the number who take all three subjects, [tex]n(S\cap F \cap R)=x[/tex]

Note that in the Venn Diagram, we have subtracted [tex]n(S\cap F \cap R)=x[/tex] from each of the intersection of two sets.

The next step is to determine the number of students who study only each of the courses.

[tex]n(S\:only)=1232-[103-x+x+23-x]=1106+x\\n(F\: only)=879-[103-x+x+14-x]=762+x\\n(R\:only)=114-[23-x+x+14-x]=77+x[/tex]

These values are substituted in the second Venn diagram

Adding up all the values

2092=[1106+x]+[103-x]+x+[23-x]+[762+x]+[14-x]+[77+x]

2092=2085+x

x=2092-2085

x=7

The number of students who have taken courses in all three subjects, [tex]n(S\cap F \cap R)=7[/tex]

Using the principle of Inclusion-Exclusion, we find that 7 students have taken courses in all three languages: Spanish, French, and Russian.

Finding the Number of Students Taking All Three Language Courses

We can solve this problem using the principle of Inclusion-Exclusion. Let:
S = number of students taking Spanish
F = number of students taking French
R = number of students taking Russian
SF = number of students taking both Spanish and French
SR = number of students taking both Spanish and Russian
FR = number of students taking both French and Russian
SFR = number of students taking all three languages.

From the given data:

S = 1232F = 879R = 114SF = 103SR = 23FR = 14Total students taking at least one language = 2092

The principle of Inclusion-Exclusion states:

Total = S + F + R - SF - SR - FR + SFR
2092 = 1232 + 879 + 114 - 103 - 23 - 14 + SFR

Solving for SFR:

2092 = 2085 + SFR

Thus, SFR = 2092 - 2085 = 7

Therefore, 7 students have taken courses in all three languages: Spanish, French, and Russian.

Simplify.
(4x’y - 9xy + 4) + (-7r’y+ 4xy? + 8)

Answers

Answer:

4 y x '  −  9 x y  −  7 y r '  +  4 x y?  +  12

Step-by-step explanation:

Simplified the expression.

<3

Answer:

4 y x ' − 9 x y − 7 y r ' + 4 x y ? + 12

Which of the following are true about regression with one predictor variable (often called "simple regression")? Check all that apply.

A. The slope describes the amount of change in Y for a one-unit increase in X
B. The regression equation is the line that best fits a set of data as determined by having the least squared error
C. The slope, b, of the regression equation has the same value as r, the estimated correlation

Answers

Answer:

A. The slope describes the amount of change in Y for a one-unit increase in X .B. The regression equation is the line that best fits a set of data as determined by having the least squared error.

Step-by-step explanation:

In statistics, linear regression is a analysis we do to describe the relationship between two variables. With this study, we pretend to know if there's a positive or negative correlation between those variables, if that correlation is strong or weak.

In a linear regression analysis, we modeled the data set using a regression equation, which is basically the line that best fits to the data set, this line is like the average where the majority of data falls. That means choice A is right.

When we use linear equations, we need to know its characteristics, and the most important one is the slope, which is the ratio between the dependent variable and the independent variable. Basically, the slope states the unit rate between Y and X, in other words, it states the amount of Y per unit of X. That means choice B is correct.

Therefore, the correct answers are A and B.

The options that are true about regression with one predictor variable include:

A. The slope describes the amount of change in Y for a one-unit increase in XB. The regression equation is the line that best fits a set of data as determined by having the least squared error.

Regression simply refers to a statistical measurement which attempts to determine the strength that exists between a dependent variable and the independent variables.

It should be noted that in one predictor variable, the slope describes the amount of change in Y for a one-unit increase in X and the regression equation is the line that best fits a set of data as determined by having the least squared error.

Read related link on:

https://brainly.com/question/11503532

represent the times necessary to perform three successive repair tasks at a service facility. Suppose they are normal random variables with means of 50 minutes, 60 minutes, and 40 minutes, respectively. The standard deviations are 15 minutes, 20 minutes, and 10 minutes, respectively

Answers

Question: The question is incomplete. What need to be calculated is not included in the question. Below is the question requirement and the answer.

a) Suppose X1, X2, and X3 are independent. All three repairs must be completed on a given object. What is the mean and variance of the total repair time for this object?

Answer:

Mean = 50 minutes

Variance = 725 minutes

Step-by-step explanation:

X₁ = 50

X₂ = 60

X₃ = 40

σ₁ = 15

σ₂ = 20

σ₃ = 10

Calculating the mean E(Y) using the formula;

E(Y) = E(X₁ +X₂ +X₃)/3

        = (EX₁ + EX₂ + EX₃)/3

        = (50 + 60 + 40)/3

       = 50 minutes

Therefore, the mean of the total repair time for this object is 50 minutes

Calculating the variance V(Y) using the formula;

V(Y) = V(X₁ +X₂ +X₃)

       = E(X₁) +E(X₂) + E(X₃)

       = σ₁² + σ₂² + σ₃²

        = 15² + 20² + 10²

        = 225 + 400 + 100

         = 725 minutes

Therefore, the variance of the total repair time for this object is 725 minutes

Rebekah wants to read a certain number of pages each day during summer vacation.
Today, she read 204 pages, which is 136% of her goal.
How many pages does Rebekah want to read each day?
A. 75 pages
B. 130 pages
C. 150 pages
D. 560 pages

Answers

Answer:

C. 150 pages

Step-by-step explanation:

204 divided by 136 = 1.5

1.5 * 100 = 150

Hope it helps! :)

The answer is C

204 divided by 136 = 1.5

1.5 • 100 = 150

Suppose parts (a) through (d) below provide results for a study on the role of calcium in reducing the symptoms of PMS. For each of the parts, compute an approximate 95% confidence interval for the difference in mean symptom scores between the placebo and calcium-treated conditions for the symptom listed. In each case, the results given are mean ± standard deviation. Suppose there were 228 participants in the placebo group and 212 in the calcium-treated group. (Round your answers to two decimal places.)


(a) mood swings: placebo = 0.70 ± 0.78; calcium = 0.50 ± 0.53

(b) crying spells: placebo = 0.39 + 0.57; calcium = 0.21 + 0.40

(c) aches and pains: placebo = 0.45 + 0.60; calcium = 0.37 + 0.45

(d) craving sweets or salts: placebo = 0.60 + 0.75; calcium = 0.44 + 0.61

Answers

Answer:

Step-by-step explanation:

Hello!

To test if calcium reduces the symptoms of PMS two independent groups of individuals are compared, the first group, control, is treated with the placebo, and the second group is treated with calcium.

The parameter to be estimated is the difference between the mean symptom scores of the placebo and calcium groups, symbolically: μ₁ - μ₂

There is no information about the distribution of both populations X₁~? and X₂~? but since both samples are big enough, n₁= 228 and n₂= 212, you can apply the central limit theorem and approximate the sampling distribution to normal X[bar]₁≈N(μ₁;δ₁²/n) and X[bar]₂≈N(μ₂;δ₂²/n)

The formula for the CI is:

[(X[bar]₁-X[bar]₂) ± [tex]Z_{1-\alpha /2}[/tex] * [tex]\sqrt{\frac{S^2_1}{n_1} +\frac{S^2_2}{n_2} }[/tex]]

95% confidence level [tex]Z_{1-\alpha /2}= Z_{0.975}= 1.96[/tex]

(a) mood swings: placebo = 0.70 ± 0.78; calcium = 0.50 ± 0.53

X₁: Mood swings score of a participant of the placebo group.

X₂: Mood swings score of a participant of the calcium group.

[(0.70-0.50) ± 1.96 * [tex]\sqrt{\frac{0.78^2}{228} +\frac{0.53^2}{212} }[/tex]]

[0.076; 0.324]

(b) crying spells: placebo = 0.39 + 0.57; calcium = 0.21 + 0.40

X₁: Crying spells score of a participant of the placebo group.

X₂: Crying spells score of a participant of the calcium group.

[(0.39-0.21) ± 1.96 * [tex]\sqrt{\frac{0.57^2}{228} +\frac{0.40^2}{212} }[/tex]]

[0.088; 0.272]

(c) aches and pains: placebo = 0.45 + 0.60; calcium = 0.37 + 0.45

X₁: Aches and pains score of a participant of the placebo group.

X₂: Aches and pains score of a participant of the calcium group.

[(0.45-0.37) ± 1.96 * [tex]\sqrt{\frac{0.60^2}{228} +\frac{0.45^2}{212} }[/tex]]

[-0.019; 0.179]

(d) craving sweets or salts: placebo = 0.60 + 0.75; calcium = 0.44 + 0.61

X₁: Craving for sweets or salts score of a participant of the placebo group.

X₂: Craving for sweets or salts score of a participant of the calcium group.

[(0.60-0.44) ± 1.96 * [tex]\sqrt{\frac{0.75^2}{228} +\frac{0.61^2}{212} }[/tex]]

[0.032; 0.287]

I hope this helps!

Using the z-distribution, the 95% confidence intervals are:

a) (0.08, 0.32).

b) (0.09, 0.27).

c) (-0.02, 0.18).

d) (0.03, 0.29).

We have to find the critical value, which is z with a p-value of [tex]\frac{1 + \alpha}{2}[/tex], in which [tex]\alpha[/tex] is the confidence level.

In this problem, [tex]\alpha = 0.95[/tex], thus, z with a p-value of [tex]\frac{1 + 0.95}{2} = 0.975[/tex], which means that it is z = 1.96.

Item a:

The standard errors are:

[tex]s_P = \frac{0.78}{\sqrt{228}} = 0.0517[/tex]

[tex]s_C = \frac{0.53}{\sqrt{212}} = 0.0364[/tex]

For the distribution of the differences, we have that:

[tex]\overline{x} = \mu_P - \mu_C = 0.7 - 0.5 = 0.2[/tex]

[tex]s = \sqrt{s_P^2 + s_C^2} = \sqrt{0.0517^2 + 0.0364^2} = 0.0632[/tex]

The interval is:

[tex]\overline{x} \pm zs[/tex]

Hence:

[tex]\overline{x} - zs = 0.2 - 1.96(0.0632) = 0.08[/tex]

[tex]\overline{x} + zs = 0.2 + 1.96(0.0632) = 0.32[/tex]

The interval is (0.08, 0.32).

Item b:

The standard errors are:

[tex]s_P = \frac{0.57}{\sqrt{228}} = 0.03775[/tex]

[tex]s_C = \frac{0.4}{\sqrt{212}} = 0.02747[/tex]

For the distribution of the differences, we have that:

[tex]\overline{x} = \mu_P - \mu_C = 0.39 - 0.21 = 0.18[/tex]

[tex]s = \sqrt{s_P^2 + s_C^2} = \sqrt{0.03775^2 + 0.02747^2} = 0.0467[/tex]

Hence:

[tex]\overline{x} - zs = 0.18 - 1.96(0.0467) = 0.09[/tex]

[tex]\overline{x} + zs = 0.18 + 1.96(0.0467) = 0.27[/tex]

The interval is (0.09, 0.27).

Item c:

The standard errors are:

[tex]s_P = \frac{0.6}{\sqrt{228}} = 0.0397[/tex]

[tex]s_C = \frac{0.45}{\sqrt{212}} = 0.0309[/tex]

For the distribution of the differences, we have that:

[tex]\overline{x} = \mu_P - \mu_C = 0.45 - 0.37 = 0.08[/tex]

[tex]s = \sqrt{s_P^2 + s_C^2} = \sqrt{0.0397^2 + 0.0309^2} = 0.0503[/tex]

Hence:

[tex]\overline{x} - zs = 0.08 - 1.96(0.0503) = -0.02[/tex]

[tex]\overline{x} + zs = 0.08 + 1.96(0.0503) = 0.18[/tex]

The interval is (-0.02, 0.18).

Item d:

The standard errors are:

[tex]s_P = \frac{0.75}{\sqrt{228}} = 0.0497[/tex]

[tex]s_C = \frac{0.61}{\sqrt{212}} = 0.0419[/tex]

For the distribution of the differences, we have that:

[tex]\overline{x} = \mu_P - \mu_C = 0.60 - 0.44 = 0.16[/tex]

[tex]s = \sqrt{s_P^2 + s_C^2} = \sqrt{0.0497^2 + 0.0419^2} = 0.065[/tex]

Hence:

[tex]\overline{x} - zs = 0.16 - 1.96(0.065) = 0.03[/tex]

[tex]\overline{x} + zs = 0.16 + 1.96(0.065) = 0.29[/tex]

The interval is (0.03, 0.29).

A similar problem is given at https://brainly.com/question/15297663

Use Demoivres Theorem to find (1 + i) 20.
a. 1024i
b. -1024
C.-1024
D.1024

Answers

Answer:

-1024

Step-by-step explanation:

Moivre's theorem allows to easily obtain trigonometric formulas that express the sine and cosine of a multiple angle as a function of the sine and cosine of a simple angle.

De Moivre's theorem can be applied to any complex number [tex]z[/tex]

Where:

[tex]z\in Z[/tex]

Let:

[tex](1+i)=z\\n=20[/tex]

According to Demoivres Theorem, If:

[tex]z=||z||(cos(\theta)+isin(\theta))[/tex]

Then:

[tex]z^n=||z||^n(cos(n\theta)+isin(n\theta))[/tex]

For a complex number [tex]z[/tex]:

[tex]z=a+bi[/tex]

Its magnitude and angle are given by:

[tex]||z||=\sqrt{a^2+b^2} \\\\\theta=arctan(\frac{b}{a} )[/tex]

So:

[tex]||z||=\sqrt{1^2+1^2} =\sqrt{2}[/tex]

[tex]\theta=arctan(\frac{1}{1} )=45^{\circ}[/tex]

Therefore, using De Moivre's theorem:

[tex]z^n=(\sqrt{2} )^{20}(cos(20*45)+isin(20*45))\\\\z^n=(\sqrt{2} )^{20}(cos(900)+isin(900))\\\\z^n=1024(-1+i(0))\\\\z^n=1024(-1)\\\\z^n=(1+i)^{20}=-1024[/tex]

C on e2020

i did it *dab*

A marketing consultant was hired to visit a random sample of five sporting goods stores across the state of California. Each store was part of a large franchise of sporting goods stores. The consultant taught the managers of each store better ways to advertise and display their goods.
The net sales for 1 month before and 1 month after the consultant's visit were recorded as follows for each store (in thousands of dollars):

Before visit: 57.1 94.6 49.2 77.4 43.2
After visit: 63.5 101.8 57.8 81.2 41.9

Do the data indicate that the average net sales improved? (Use a= 0.05)

Answers

Answer:

[tex]t=\frac{\bar d -0}{\frac{s_d}{\sqrt{n}}}=\frac{4.94 -0}{\frac{3.901}{\sqrt{5}}}=2.832[/tex]

[tex]df=n-1=5-1=4[/tex]

[tex]p_v =P(t_{(4)}>2.832) =0.0236[/tex]

We see that the p value is lower than the significance level of 0.05 so then we have enough evidence to reject the null hypothesis and we can conclude that the average net sales improved

Step-by-step explanation:

Let put some notation  

x=test value before , y = test value after

x: 57.1 94.6 49.2 77.4 43.2

y: 63.5 101.8 57.8 81.2 41.9

The system of hypothesis for this case are:

Null hypothesis: [tex]\mu_y- \mu_x \leq 0[/tex]

Alternative hypothesis: [tex]\mu_y -\mu_x >0[/tex]

The first step is calculate the difference [tex]d_i=y_i-x_i[/tex] and we obtain this:

d: 6.4, 7.2, 8.6, 3.8, -1.3

The second step is calculate the mean difference  

[tex]\bar d= \frac{\sum_{i=1}^n d_i}{n}=4.94[/tex]

The third step would be calculate the standard deviation for the differences, and we got:

[tex]s_d =\frac{\sum_{i=1}^n (d_i -\bar d)^2}{n-1} =3.901[/tex]

The next step is calculate the statistic given by :

[tex]t=\frac{\bar d -0}{\frac{s_d}{\sqrt{n}}}=\frac{4.94 -0}{\frac{3.901}{\sqrt{5}}}=2.832[/tex]

The next step is calculate the degrees of freedom given by:

[tex]df=n-1=5-1=4[/tex]

Now we can calculate the p value, since we have a right tailed test the p value is given by:

[tex]p_v =P(t_{(4)}>2.832) =0.0236[/tex]

We see that the p value is lower than the significance level of 0.05 so then we have enough evidence to reject the null hypothesis and we can conclude that the average net sales improved

Simplify the following equation as best as you can.
-6.4m + 4(0.5m - 0.8)

Answers

Answer:

-4.4m-3.2

Step-by-step explanation:

-6.4m+4(0.5m-0.8)

-6.4m+4*0.5+4*0.8

-6.4m+2m-3.2

-4.4m-3.2

Answer:

-4.4m-3.2

Step-by-step explanation:

multiply everything in the parentheses by 4 and then add.

A cable runs along the wall from C to P at a cost of ​$4 per​ meter, and straight from P to M at a cost of ​$5 per meter. If M is 9 meters from the nearest point A on the wall where P​ lies, and A is 33 meters from​ C, find the distance from C to P such that the cost of installing the cable is minimized and find this cost.

Answers

Answer:

The minimum cost of installing the cable is $156.

Step-by-step explanation:

We have an optimization problem.

We have to minimize the cost of the cable.

We will use the variable x to express the the length of cable CP and PM, accordingly to the attache picture.

The length of the cable that goes from C to P (let's call it CP) is x.

[tex]\bar{CP}=x[/tex]

Then, the length of the cable that goes from P to M (PM) can be calcualted usign the Pithagorean theorem:

[tex]\bar{PM}=\sqrt{(33-x)^2+9^2}[/tex]

The cost function Y is:

[tex]Y=4*\bar{CP}+5*\bar{PM}=4x+5\sqrt{(33-x)^2+9^2}[/tex]

To optimize this cost funtion we have to derive and equal to 0:

[tex]\dfrac{dY}{dx}=0\\\\\\\dfrac{dY}{dx}=4+5(\dfrac{1}{2})((33-x)^2+9^2)^{-1/2} *(-2)(33-x)\\\\\\\dfrac{dY}{dx}=4+5\dfrac{x-33}{\sqrt{(33-x)^2+81}}=0\\\\\\\dfrac{x-33}{\sqrt{(33-x)^2+81}}=-\dfrac{4}{5}\\\\\\(x-33)=-\dfrac{4}{5}\sqrt{(33-x)^2+81}\\\\\\(x-33)^2=(-\dfrac{4}{5})^2[(x-33)^2+81]\\\\\\(x-33)^2=\dfrac{16}{25}(x-33)^2+\dfrac{1296}{25}\\\\\\\dfrac{25-16}{25} (x-33)^2=\dfrac{1296}{25}\\\\\\9(x-33)^2=1296\\\\\\x-33=\sqrt{\dfrac{1296}{9}}=\sqrt{144}=\pm12\\\\\\x=33\pm12\\\\\\x_1=33-12=21\\\\x_2=33+12=45[/tex]

The valid solution is x=21, as x can not phisically larger than 33.

The cost then becomes:

[tex]Y=4*\bar{CP}+5*\bar{PM}=4x+5\sqrt{(33-x)^2+9^2}\\\\\\Y=4*21+5\sqrt{(33-21)^2+81}\\\\Y=81+5\sqrt{144+81}\\\\Y=81+5\sqrt{225}\\\\Y=81+5*15\\\\Y=81+75\\\\Y=156[/tex]

Final answer:

This optimization problem in calculus can be solved by setting up a cost function for the total cable installation, taking its derivative, setting it equal to 0 to find the critical points, which will give you the distance from C to P that minimizes cost, check this point for being minimal and calculating the minimal cost by substituting the found distance into the originally defined cost function.

Explanation:

The problem can be solved using the calculus principle of optimization. The situation described in your question makes a right triangle AMP. In this triangle, the vertical side (AP) measures 9 meters, and the hypotenuse (PM) represents cable installation that costs $5 per meter. The distance PC along the wall is $4 per meter. The cost of total cable installation from C -> P -> M is given as follows:

Cost = 4 * length CP + 5 * length PM

By the Pythagorean theorem, we know that [tex]PM = \sqrt{AP^2 + (33 - CP)^2}[/tex] Substituting PM into the equation, we get[tex]\text{Cost} = 4CP + 5 \cdot \sqrt{9^2 + (33-CP)^2}[/tex]

To minimize the cost, we take the derivative of the cost function and set it equal to 0 to find the critical points. Solving this equation will give you the value of CP that minimizes cost. Hence, by substituting found CP back to the original cost formula, we can find the minimal cost of installing the cable.

Learn more about Calculus Optimization here:

https://brainly.com/question/35182200

#SPJ6

what is the slope intercept form of 2x-3y=9

Answers

Answer:

-3y=-2x+9

Step-by-step explanation:

flip the value

when flipping a value remember to invert its sign

Samuel bought 32 and 1/2 ft of window trim at a hardware store the trim cost $1.75 per foot including sales tax if Samuel paid with a $100 bill how much change should he have received

Answers

Answer:

The amount of change he should received is

$100 - $56.875

= $43.125

= $43.13

Step-by-step explanation:

Length of window trim = 32 and 1/2 ft

Cost per foot = $1.75

Amount paid = $100

Total cost of window trim = 32.5×1.75 = $56.875

The amount of change he should received is

$100 - $56.875

= $43.125

= $43.13

As Saturn revolves around the sun, it travels at a speed of approximately 6 miles per second. Convert this speed to miles per minute. At this speed, how many miles will Saturn travel in 3 minutes?

Answers

30 miles per second. Convert this speed to miles per minute. At this speed, how many miles will Mercury travel in 2 minutes

Answer:360 miles per minute , and 1080 in 3 minutes

Step-by-step explanation:

a snack mix recipe calls for 1 1/4 cups of dip and 1/2 cups of veggies. Parkers want to make the same recipe using 1 cup of veggies. How many cups of dip will parker need?

Answers

Answer:

2 1/2 cups

Step-by-step explanation:

You are doubling your recipe. You would do 1 1/4 × 2. First, 1 × 2 = 2 and then 1/4 × 2 = 1/2. Put them together for your answer. I hope this helped.

Final answer:

Parker will need 2 1/2 cups of dip.

Explanation:

To find out how many cups of dip Parker will need, we can set up a proportion using the given information.

The snack mix recipe calls for 1 1/4 cups of dip and 1/2 cups of veggies.

Let's call the number of cups of dip Parker needs x.

The proportion will be: 1 1/4 cups / 1/2 cups = x cups / 1 cup.

To solve for x, we can cross multiply and then divide: (1 1/4) * 1 = (1/2) * x.

Simplifying both sides gives us 5/4 = 1/2 * x.

To isolate x, we can multiply both sides by the reciprocal of 1/2, which is 2/1: (5/4) * (2/1) = x.

Multiplying gives us x = 10/4, which simplifies to x = 2 1/2 cups.

A sociologist develops a test to measure attitudes about public transportation, and 27 randomly selected subjects are given the test. Their mean score is 76.2 and their standard deviation is 21.4. Construct the 90% confidence interval for the mean score of all such subjects.Immersive Reader

Answers

Answer:

The 90% confidence interval for the mean score of all such subjects is between 39.7 and 112.7

Step-by-step explanation:

We have the standard deviation of the sample, so we use the t-distribution to build the confidence interval.

The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So

df = 27 - 1 = 26

90% confidence interval

Now, we have to find a value of T, which is found looking at the t table, with 26 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95([tex]t_{95}[/tex]). So we have T = 1.7056

The margin of error is:

M = T*s = 1.7056*21.4 = 36.50.

In which s is the standard deviation of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 76.2 - 36.5 = 39.7

The upper end of the interval is the sample mean added to M. So it is 76.2 + 36.5 = 112.7

The 90% confidence interval for the mean score of all such subjects is between 39.7 and 112.7

jerome filled bags with trail mix. the weights of the bags are

Answers

How ever much they weigh on the scale
Other Questions
An online gaming site conducted a survey to determine the types of games people play online. if 1500 people participated in the study how many more would play card games than arcade games (Page 824) Hannah drew a circle with a radius of 30 cm. Jonas drew a circle with a radius of 20 cm.What is the approximate difference in the areas of their circles? When loading samples into an agarose gel a. add 6x dye to ALL samples and pipet the SAME total volume for each well. b. use the SAME micropipetter tip for ALL samples. c. add control DNA to ALL your samples. d. load ALL samples BEFORE electrophoresis buffer is added fully over the gel in the electrophoresis rig. e. always go to the second stop of the micropipette to fully dispense ALL of the sample into its well. Ms. Wilson gets her hair cut. How is this counted in GDP? Jimmy bought a 5-kilogram can of peanuts for $4.50. What is the unit price? 2. How did new technologies affect society after World War I?A. They reduced the ability to spread political ideas.B. They forced more people to rely on newspapers for information.C. They resulted in people becoming more isolated than before the war.D. They became an important tool in advertising and influenced consumer spending. Using the digits 1 to 20, at most 1 time each, fill in the boxes to create equivalent expressions. What are the 3 advantages and uses of polyester fabric If you know the answer comment Please 9=4t t=? i need help Please Help!!First correct answer + branliestEvaluate without calculator: 167^216767 What is the source of energy that will send the arrow flying toward the target? please hurry solve for c in the diagram in the picture! Page number to this book quote, please!! "I Am Malala"?We human beings don t realize how great God is. He has given us an extraordinary brain and a sensitive loving heart. He has blessed us with two lips to talk and express our feelings, two eyes which see a world of colours and beauty, two feet which walk on the road of life, two hands to work for us, and two ears to hear the words of love. As I found with my ear, no one knows how much power they have in their each and every organ until they lose one. What is this one..? the width of the rectangular garden is eleven feet less than the length. find the dimensions. if the area is 80 square feet linear function passes through the points (2, 9) and (7, 34). What is the rate of change? What is the definition of a juvenile? Why are people racist It is likely that a member of theLepidoptera family seen flying durinthe day isa. a butterflyb. a moth.a c. another kind of winged inscot